Research Article
BibTex RIS Cite

Elektrikle Çalışan Drone Sistemleri İçin Biomimetik Tabanlı Pervane

Year 2025, EARLY VIEW, 1 - 1
https://doi.org/10.2339/politeknik.1704137

Abstract

Bu çalışmada, mürettebatsız hava araçları için özelleşmiş biyomimetik tabanlı bir pervane tasarlanmıştır. Tasarlanan pervane, elektrik motorlu İHA sistemleri için özelleştirilmiştir. Bu pervane, yüksek verimlilik ve düşük gürültü izi hedefleri ile biyomimetik disiplini ışığında geliştirilmiştir. Günümüzde ticari olarak kullanılan elektrikli hava araçları hala yüksek hızlı içten yanmalı motorlar için geliştirilmiş pervanelerin ölçeklendirilmiş versiyonlarını kullanmaktadır. Elektrik motorlarının verimli çalıştığı düşük hızlarda gerekli itkiyi elde etmek için düşük hızlarda eşit itki üretebilen bir pervaneye ihtiyaç duyulmaktadır. Bu çalışma kapsamında, bir yusufçuğun arka kanatları kullanılarak pervane kanat veter dağılımı, pervane burulma açısı dağılımı ve kanat tasarımları gerçekleştirilmiş ve hesaplamalı akışkanlar dinamiği kullanılarak sayısal analizler yapılmıştır. Sonuçlar, benzer boyut ve hatveye sahip ticari bir pervane ile karşılaştırılmıştır. Tasarlanan biyomimetik pervanenin düşük hızlarda verimlilik kaybı olmadan eşit itme gücü üretebildiği sonucuna varılmıştır.

References

  • [1] Ulaş, E. C., Başak, H., & Akkurt, A. “Araç Koltuğu Sırt Desteğinin Biyomimetik Tabanlı Tasarımı ve Analizi.” Politeknik Dergisi, 26(2), 775-785., (2023).
  • [2] Başak, H., & Şahinoğlu, A. O. “Doğada Bulunan Darbe Sönümleme Sisteminin Yapısal Analoji Yoluyla Geri Tepme Mekanizmasına Entegre Edilmesi.” Politeknik Dergisi, 26(4), 1413-1420., (2023).
  • [3] Zari, M. P., “Biomimetic approaches to architectural design for increased sustainability.” In Proceedings of the Sustainable Building Conference (SB07), Auckland, New Zealand., (2007).
  • [4] Yıldız, M., “Electric Energy Use in Aviation, Perspective and Applications.” Politeknik Dergisi, 24(4), 1605-1610., (2021).
  • [5] Center, G. R., “correct theory: https://www.grc.nasa.gov/www/k- 12/airplane/right2.html. (2017), (Accessed: 2021-10-25).
  • [6] McLean, D. “Understanding aerodynamics: Arguing from the real physics.” John Wiley & Sons., (2012).
  • [7] McLean, D. “Aerodynamic lift, part 2: A comprehensive physical explanation.” The Physics Teacher, 56(8), 521–524., (2018).
  • [8] Çelebi, Y., & Aydın, H. “Analysis of Directional Stability of A Quadcopter for Different Propeller Designs Using Experimental and Computational Fluid Dynamics Applications.” Politeknik Dergisi1-1., (2025).
  • [9] Rossow, V. J. “Technical Notes: Thrust Changes Induced by Ground and Ceiling Planes on a Rotor in Hover.” Journal of the American Helicopter Society, 30(3), 53-55., (1985).
  • [10] Brandt, J. B., "Small-Scale Propeller Performance at Low Speeds," M.S. Thesis, Department of Aerospace Engineering, University of Illinois at Urbana- Champaign, Illinois, (2005).
  • [11] Lee, T. E., Leishman, J. G., & Ramasamy, M. “Fluid dynamics of interacting blade tip vortices with a ground plane.” Journal of the American Helicopter Society, 55(2), 22005–2200516., (2010).
  • [12] Deters, R. W., Ananda, G. K., & Selig, M. S., “Slipstream Measurements of Small-Scale Propellers at Low Reynolds Numbers.” 33rd AIAA Applied Aerodynamics Conference. (2015).
  • [13] Gamble, D., & Arena, A. “Automated Dynamic Propeller Testing at Low Reynolds Numbers.” 48th AIAA Aerospace Sciences Meeting, Including the New Horizons Forum and Aerospace Exposition., (2010).
  • [14] Heinzen, S., Hall, C., & Gopalarathnam, A. “Passively Varying Pitch Propeller for Small UAS.” 48th AIAA Aerospace Sciences Meeting, Including the New Horizons Forum and Aerospace Exposition. (2010).
  • [15] Tracy, I. P. “Propeller design and analysis for a small, autonomous UAV” Master’s thesis, Massachusetts Institute of Technology. (2012).
  • [16] Bettinger, B., “Manufacturing, analysis, and experimental testing of multi-bladed propellers for SUAS., (2012).
  • [17] Merchant, M., & Miller, L. S. “Propeller performance measurement for low Reynolds number UAV applications.” In 44th AIAA Aerospace Sciences Meeting and Exhibit., (2006).
  • [18] Stajuda, M., Karczewski, M., Obidowski, D., & Jozwik, K. “Development of a CFD model for propeller simulation.” Mechanics and Mechanical Engineering, 20(4), 579–593., (2016).
  • [19] Rumsey, C. L., & Ying, S. X. “Prediction of high lift: Review of present CFD capability.” Progress in Aerospace Sciences, 38(2), 145–180., (2002).
  • [20] Zeune, C., Ol, M., & Logan, M. “Analytical/Experimental Comparison for Small Electric Unmanned Air Vehicle Propellers.” 26th AIAA Applied Aerodynamics Conference., (2008).
  • [21] Azuma OkunoSpicer, R. A., & Niklas, K. J. “Plant biomechanics: An engineering approach to plant form and function.” The Journal of Ecology, 81(3), 592. (1993).
  • [22] Certini, D., Cummins, C., Mastropaolo, E., Nakayama, N., & Viola, I. M. “On the aerodynamics of the gliding seeds of Javan cucumber.” Proceedings of the UK Fluids Conference., (2019).
  • [23] Anderson, R. C. “Do dragonflies migrate across the western Indian Ocean? Journal of Tropical Ecology, 25(4), 347–358., (2009).
  • [24] Götz, K. G. “Optomotorische Untersuchung des visuellen Systems einiger Augenmutanten der Fruchtfliege Drosophila.” Kybernetik, 2(2), 77–92., (1964).
  • [25] Clark, C. J., LePiane, K., & Liu, L. “Evolution and ecology of silent flight in owls and other flying vertebrates.” Integrative Organismal Biology, 2(1)., (2020).
  • [26] Miklosovic, D. S., Schultz, M. P., & Esquivel, C. “Effects of surface finish on aerodynamic performance of a sailboat centerboard.” Journal of Aircraft, 41(5), 1073–1081. (2004).
  • [27] Zhang Wei, Y., Xu, F., Bian, S., & Kong, D. “Noise Reduction of UAV Using Biomimetic Propellers with Varied Morphologies Leading-edge Serration.” Journal of Bionic Engineering, 17(4), 767-779., (2020).
  • [28] Zhang, Y., Zhang, X., Li, Y., Chang, M., & Xu, J. “Aerodynamic performance of a low-Reynolds UAV with leading-edge protuberances inspired by humpback whale flippers.” Chinese Journal of Aeronautics, 34(5), 415–424., (2021).
  • [29] Tay, W., Lu, Z., Ramesh, S. S., & Khoo, B. “Numerical Simulations of Serrated Propellers to Reduce Noise. Supercomputing Frontiers,” 87-103., (2020).
  • [30] Hintz, Z., & Hu, H. “An Experimental Study on a Bio-Inspired UAV Propeller's Aerodynamic and Aeroacoustic Performances.” 35th AIAA Applied Aerodynamics Conference., (2017).
  • [31] Smith, A. “Economic drivers behind the proliferation of unmanned aerial vehicles.” Journal of UAV Economics, 5(2), 123–138., (2020).
  • [32] Johnson, B. “Cost trends in electronics and their impact on UAV deployment. Electronics & Drone Technology Review, 4(1), 45–60., (2019).
  • [33] Li, M. “A review of unconventional rotary wing UAV design. Drones, 9(5), 323., (2025).
  • [34] Chen, L., Wu, J., & Cheng, B. “Leading-edge vortex formation and transient lift generation on a revolving wing at a low Reynolds number. Aerospace Science and Technology, 97, 105589., (2020).
  • [35] Li, X., & Wang, Y. “Challenges and innovations in electric rotary wing UAV propeller design: flight time and noise issues. Journal of UAV Propulsion & Acoustic Engineering, 12(3), 145–160., (2019).
  • [36] Hintz, C., Khanbolouki, P., Perez, A. M., Tehrani, M., & Poroseva, S. “Experimental study of the effects of bio-inspired blades and 3D printing on the performance of a small propeller.” In 2018 AIAA Applied Aerodynamics Conference., (2018).
  • [37] Palmiter, S. M., & Katz, J. “Evaluation of a potential flow model for propeller and wind turbine design. Journal of Propulsion and Power, 28(3), 558–566., (2012).
  • [38] Pourrajabian, A., Dehghan, M., & Rahgozar, S. “Genetic algorithms for designing and optimizing horizontal axis wind turbine (HAWT) blades: A continuous or binary approach?” Sustainable Energy Technologies and Assessments, 44, 101022., (2021).
  • [39] Garinis, D., Dinulovic, M., & Rasuo, B. “Dynamic analysis of modified composite helicopter blade.” FME Transactions, 40, 187–194., (2012).
  • [40] Koehler, C., Liang, Z., Gaston, Z., Wan, H., & Dong, H. “3D reconstruction and analysis of wing deformation in free-flying dragonflies.” Journal of Experimental Biology. (2012).
  • [41] Kutty, H. A., & Rajendran, P. “Review on Numerical and Experimental Research on Conventional and Unconventional Propeller Blade Design.” International Review of Aerospace Engineering (IREASE), 10(2), 61. (2017).
  • [42] T-MOTOR Store. (n.d.). Antigravity MN4006 KV350 – 2PCS/SET. Store.tmotor.com. https://store.tmotor.com/goods.yhy?id=440 (Accessed: May 9, 2022).
  • [43] T-MOTOR Store. (n.d.). P155 Prop-2PCS/PAIR Polish carbon fiber propellers multirotor. Store.tmotor.com. https://store.tmotor.com/goods.php?id=351 (Accessed: May 9, 2022).

Biomimetic-Based Propeller Design for Electric-Powered Drone Systems

Year 2025, EARLY VIEW, 1 - 1
https://doi.org/10.2339/politeknik.1704137

Abstract

In this study, a biomimetic-based propeller specialized for uncrewed aerial vehicles was designed. The designed propeller is customized for UAV systems with electric motors. This propeller was developed in light of the biomimetics discipline with the goals of high efficiency and low noise trail. Today, commercially used electric air vehicles still use scaled versions of propellers developed for high-speed internal combustion engines. A propeller capable of generating equal thrust at low speeds, where electric motors operate efficiently, is needed to achieve the required thrust at low speeds. Within the scope of this study, propeller blade vet distribution, propeller torsion angle distribution, and airfoil designs were realized using the rear wings of a dragonfly, and numerical analyses were performed using computational fluid dynamics. The results were compared with a commercial propeller of similar size and pitch. It was concluded that the designed biomimetic propeller could produce equal thrust at low speeds without losing efficiency.

References

  • [1] Ulaş, E. C., Başak, H., & Akkurt, A. “Araç Koltuğu Sırt Desteğinin Biyomimetik Tabanlı Tasarımı ve Analizi.” Politeknik Dergisi, 26(2), 775-785., (2023).
  • [2] Başak, H., & Şahinoğlu, A. O. “Doğada Bulunan Darbe Sönümleme Sisteminin Yapısal Analoji Yoluyla Geri Tepme Mekanizmasına Entegre Edilmesi.” Politeknik Dergisi, 26(4), 1413-1420., (2023).
  • [3] Zari, M. P., “Biomimetic approaches to architectural design for increased sustainability.” In Proceedings of the Sustainable Building Conference (SB07), Auckland, New Zealand., (2007).
  • [4] Yıldız, M., “Electric Energy Use in Aviation, Perspective and Applications.” Politeknik Dergisi, 24(4), 1605-1610., (2021).
  • [5] Center, G. R., “correct theory: https://www.grc.nasa.gov/www/k- 12/airplane/right2.html. (2017), (Accessed: 2021-10-25).
  • [6] McLean, D. “Understanding aerodynamics: Arguing from the real physics.” John Wiley & Sons., (2012).
  • [7] McLean, D. “Aerodynamic lift, part 2: A comprehensive physical explanation.” The Physics Teacher, 56(8), 521–524., (2018).
  • [8] Çelebi, Y., & Aydın, H. “Analysis of Directional Stability of A Quadcopter for Different Propeller Designs Using Experimental and Computational Fluid Dynamics Applications.” Politeknik Dergisi1-1., (2025).
  • [9] Rossow, V. J. “Technical Notes: Thrust Changes Induced by Ground and Ceiling Planes on a Rotor in Hover.” Journal of the American Helicopter Society, 30(3), 53-55., (1985).
  • [10] Brandt, J. B., "Small-Scale Propeller Performance at Low Speeds," M.S. Thesis, Department of Aerospace Engineering, University of Illinois at Urbana- Champaign, Illinois, (2005).
  • [11] Lee, T. E., Leishman, J. G., & Ramasamy, M. “Fluid dynamics of interacting blade tip vortices with a ground plane.” Journal of the American Helicopter Society, 55(2), 22005–2200516., (2010).
  • [12] Deters, R. W., Ananda, G. K., & Selig, M. S., “Slipstream Measurements of Small-Scale Propellers at Low Reynolds Numbers.” 33rd AIAA Applied Aerodynamics Conference. (2015).
  • [13] Gamble, D., & Arena, A. “Automated Dynamic Propeller Testing at Low Reynolds Numbers.” 48th AIAA Aerospace Sciences Meeting, Including the New Horizons Forum and Aerospace Exposition., (2010).
  • [14] Heinzen, S., Hall, C., & Gopalarathnam, A. “Passively Varying Pitch Propeller for Small UAS.” 48th AIAA Aerospace Sciences Meeting, Including the New Horizons Forum and Aerospace Exposition. (2010).
  • [15] Tracy, I. P. “Propeller design and analysis for a small, autonomous UAV” Master’s thesis, Massachusetts Institute of Technology. (2012).
  • [16] Bettinger, B., “Manufacturing, analysis, and experimental testing of multi-bladed propellers for SUAS., (2012).
  • [17] Merchant, M., & Miller, L. S. “Propeller performance measurement for low Reynolds number UAV applications.” In 44th AIAA Aerospace Sciences Meeting and Exhibit., (2006).
  • [18] Stajuda, M., Karczewski, M., Obidowski, D., & Jozwik, K. “Development of a CFD model for propeller simulation.” Mechanics and Mechanical Engineering, 20(4), 579–593., (2016).
  • [19] Rumsey, C. L., & Ying, S. X. “Prediction of high lift: Review of present CFD capability.” Progress in Aerospace Sciences, 38(2), 145–180., (2002).
  • [20] Zeune, C., Ol, M., & Logan, M. “Analytical/Experimental Comparison for Small Electric Unmanned Air Vehicle Propellers.” 26th AIAA Applied Aerodynamics Conference., (2008).
  • [21] Azuma OkunoSpicer, R. A., & Niklas, K. J. “Plant biomechanics: An engineering approach to plant form and function.” The Journal of Ecology, 81(3), 592. (1993).
  • [22] Certini, D., Cummins, C., Mastropaolo, E., Nakayama, N., & Viola, I. M. “On the aerodynamics of the gliding seeds of Javan cucumber.” Proceedings of the UK Fluids Conference., (2019).
  • [23] Anderson, R. C. “Do dragonflies migrate across the western Indian Ocean? Journal of Tropical Ecology, 25(4), 347–358., (2009).
  • [24] Götz, K. G. “Optomotorische Untersuchung des visuellen Systems einiger Augenmutanten der Fruchtfliege Drosophila.” Kybernetik, 2(2), 77–92., (1964).
  • [25] Clark, C. J., LePiane, K., & Liu, L. “Evolution and ecology of silent flight in owls and other flying vertebrates.” Integrative Organismal Biology, 2(1)., (2020).
  • [26] Miklosovic, D. S., Schultz, M. P., & Esquivel, C. “Effects of surface finish on aerodynamic performance of a sailboat centerboard.” Journal of Aircraft, 41(5), 1073–1081. (2004).
  • [27] Zhang Wei, Y., Xu, F., Bian, S., & Kong, D. “Noise Reduction of UAV Using Biomimetic Propellers with Varied Morphologies Leading-edge Serration.” Journal of Bionic Engineering, 17(4), 767-779., (2020).
  • [28] Zhang, Y., Zhang, X., Li, Y., Chang, M., & Xu, J. “Aerodynamic performance of a low-Reynolds UAV with leading-edge protuberances inspired by humpback whale flippers.” Chinese Journal of Aeronautics, 34(5), 415–424., (2021).
  • [29] Tay, W., Lu, Z., Ramesh, S. S., & Khoo, B. “Numerical Simulations of Serrated Propellers to Reduce Noise. Supercomputing Frontiers,” 87-103., (2020).
  • [30] Hintz, Z., & Hu, H. “An Experimental Study on a Bio-Inspired UAV Propeller's Aerodynamic and Aeroacoustic Performances.” 35th AIAA Applied Aerodynamics Conference., (2017).
  • [31] Smith, A. “Economic drivers behind the proliferation of unmanned aerial vehicles.” Journal of UAV Economics, 5(2), 123–138., (2020).
  • [32] Johnson, B. “Cost trends in electronics and their impact on UAV deployment. Electronics & Drone Technology Review, 4(1), 45–60., (2019).
  • [33] Li, M. “A review of unconventional rotary wing UAV design. Drones, 9(5), 323., (2025).
  • [34] Chen, L., Wu, J., & Cheng, B. “Leading-edge vortex formation and transient lift generation on a revolving wing at a low Reynolds number. Aerospace Science and Technology, 97, 105589., (2020).
  • [35] Li, X., & Wang, Y. “Challenges and innovations in electric rotary wing UAV propeller design: flight time and noise issues. Journal of UAV Propulsion & Acoustic Engineering, 12(3), 145–160., (2019).
  • [36] Hintz, C., Khanbolouki, P., Perez, A. M., Tehrani, M., & Poroseva, S. “Experimental study of the effects of bio-inspired blades and 3D printing on the performance of a small propeller.” In 2018 AIAA Applied Aerodynamics Conference., (2018).
  • [37] Palmiter, S. M., & Katz, J. “Evaluation of a potential flow model for propeller and wind turbine design. Journal of Propulsion and Power, 28(3), 558–566., (2012).
  • [38] Pourrajabian, A., Dehghan, M., & Rahgozar, S. “Genetic algorithms for designing and optimizing horizontal axis wind turbine (HAWT) blades: A continuous or binary approach?” Sustainable Energy Technologies and Assessments, 44, 101022., (2021).
  • [39] Garinis, D., Dinulovic, M., & Rasuo, B. “Dynamic analysis of modified composite helicopter blade.” FME Transactions, 40, 187–194., (2012).
  • [40] Koehler, C., Liang, Z., Gaston, Z., Wan, H., & Dong, H. “3D reconstruction and analysis of wing deformation in free-flying dragonflies.” Journal of Experimental Biology. (2012).
  • [41] Kutty, H. A., & Rajendran, P. “Review on Numerical and Experimental Research on Conventional and Unconventional Propeller Blade Design.” International Review of Aerospace Engineering (IREASE), 10(2), 61. (2017).
  • [42] T-MOTOR Store. (n.d.). Antigravity MN4006 KV350 – 2PCS/SET. Store.tmotor.com. https://store.tmotor.com/goods.yhy?id=440 (Accessed: May 9, 2022).
  • [43] T-MOTOR Store. (n.d.). P155 Prop-2PCS/PAIR Polish carbon fiber propellers multirotor. Store.tmotor.com. https://store.tmotor.com/goods.php?id=351 (Accessed: May 9, 2022).
There are 43 citations in total.

Details

Primary Language English
Subjects Engineering Design
Journal Section Research Article
Authors

Hüdayim Başak 0000-0001-8066-5384

Ahmet Tavşan 0009-0007-1691-9117

Early Pub Date August 25, 2025
Publication Date December 4, 2025
Submission Date May 22, 2025
Acceptance Date July 10, 2025
Published in Issue Year 2025 EARLY VIEW

Cite

APA Başak, H., & Tavşan, A. (2025). Biomimetic-Based Propeller Design for Electric-Powered Drone Systems. Politeknik Dergisi1-1. https://doi.org/10.2339/politeknik.1704137
AMA Başak H, Tavşan A. Biomimetic-Based Propeller Design for Electric-Powered Drone Systems. Politeknik Dergisi. Published online August 1, 2025:1-1. doi:10.2339/politeknik.1704137
Chicago Başak, Hüdayim, and Ahmet Tavşan. “Biomimetic-Based Propeller Design for Electric-Powered Drone Systems”. Politeknik Dergisi, August (August 2025), 1-1. https://doi.org/10.2339/politeknik.1704137.
EndNote Başak H, Tavşan A (August 1, 2025) Biomimetic-Based Propeller Design for Electric-Powered Drone Systems. Politeknik Dergisi 1–1.
IEEE H. Başak and A. Tavşan, “Biomimetic-Based Propeller Design for Electric-Powered Drone Systems”, Politeknik Dergisi, pp. 1–1, August2025, doi: 10.2339/politeknik.1704137.
ISNAD Başak, Hüdayim - Tavşan, Ahmet. “Biomimetic-Based Propeller Design for Electric-Powered Drone Systems”. Politeknik Dergisi. August2025. 1-1. https://doi.org/10.2339/politeknik.1704137.
JAMA Başak H, Tavşan A. Biomimetic-Based Propeller Design for Electric-Powered Drone Systems. Politeknik Dergisi. 2025;:1–1.
MLA Başak, Hüdayim and Ahmet Tavşan. “Biomimetic-Based Propeller Design for Electric-Powered Drone Systems”. Politeknik Dergisi, 2025, pp. 1-1, doi:10.2339/politeknik.1704137.
Vancouver Başak H, Tavşan A. Biomimetic-Based Propeller Design for Electric-Powered Drone Systems. Politeknik Dergisi. 2025:1-.