Research Article
BibTex RIS Cite

Avrupa Konut Piyasasındaki Dalgalanmalar: Zaman Serisi Modelleriyle Konut Fiyat Endeksi Değişiminin Tahmini

Year 2025, EARLY VIEW, 1 - 1

Abstract

Bu çalışma, 27 Avrupa ülkesinde Konut Fiyat Endeksi değişikliklerini tahmin etmek için zaman serisi modellerinin karşılaştırmalı bir analizini sunmaktadır. Doğru Konut Fiyat Endeksi tahmini, etkili politikalar ve yatırım stratejileri geliştirmek için gereklidir. Çalışma, 2013 yılının 4. çeyreğinden 2024 yılının 3. çeyreğine kadar olan veriler kullanmaktadır. Metodolojik olarak, verilerin durağanlığı Dickey–Fuller testi ile test edilmiş ve durağan olmayan serilere fark alma uygulanmıştır. ARIMA, Holt Doğrusal Trend, Katkılı Sönümlü Trend ve Üstel Düzeltme modelleri, her ülke için en düşük ortalama karesel hata (MSE) değerine göre değerlendirilmiştir. Bulgular, Avrupa konut piyasasının heterojen yapısını doğrulamış ve tek bir modelin tüm ülkeler için uygun olmadığını göstermiştir. ARIMA modeli dokuz ülke için en doğru sonuçları verirken, Holt Doğrusal Trend ve Katkılı Sönümlü Trend modelleri yedi ülkede en iyi performansı gösterdi. 2025–2026 dönemi için tahminler bu sonuçlara dayalı olarak oluşturulmuştur. Bu çalışma, Avrupa konut piyasalarının değişen dinamiklerine uyum sağlamak için ülkeye özgü ve uyarlanabilir tahmin yaklaşımlarının benimsenmesinin önemini vurgulamaktadır.

References

  • [1] Shao J., Yu L., Hong J., and Wang X., “Forecasting house price index with social media sentiment: A decomposition–ensemble approach,” Journal of Forecasting, 44(1): 216–241, (2025).
  • [2] Adetunji A. B., Akande O. N., Ajala F. A., Oyewo O., Akande Y. F., and Oluwadara G., “House price prediction using random forest machine learning technique”, Procedia Computer Science, 199: 806–813, (2022).
  • [3] https://ec.europa.eu/eurostat/databrowser/view/teicp270/default/table?lang=en, “EUROSTAT”,(2025).
  • [4] Sobana P., Balakumaran M., Bharathkumar S., Boopathi P., and Harish J., “House price prediction using machine learning”, Challenges in Information, Communication and Computing Technology, CRC Press, London, (2024).
  • [5] Preethi, Murthy D. H. R., Hiremani V., Devadas R. M., and Sapna R., “Optimizing polynomial and regularization techniques for enhanced housing price prediction accuracy”, SN Computer Science, 6(2): 96-109, (2025). [6] Yang X., “Research on house price prediction based on machine learning”, ITM Web of Conferences, 70: 02018, (2025).
  • [7] Ningsih I. R., Faqih A., and Rinaldi A. R., “House price prediction analysis using a comparison of machine learning algorithms in the Jabodetabek area”, Journal of Artificial Intelligence and Engineering Applications, 4(2): 687–694, (2025).
  • [8] Wang X., Gao S., Zhou S., Guo Y., Duan Y., and Wu D., “Prediction of house price index based on bagging integrated WOA-SVR model,” Mathematical Problems in Engineering, 2021: 1–15, (2021).
  • [9] Truong Q., Nguyen M., Dang H., and Mei B., “Housing price prediction via improved machine learning techniques,” Procedia Computer Science, 174: 433–442, (2020).
  • [10] Alsaideen M. and Ertem Z., “A comprehensive analysis of resilient multivariate forecasting models for steel plate price prediction”, Journal of Polytechnic, 28(2): 627-637, (2024).
  • [11] Nalici M. E., Söylemez İ., and Ünlü R., “Türkiye’de tahıl üretiminin tahminlemesi: karşılaştırmalı analiz”, Erciyes Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 40(2): 288–303, (2024).
  • [12] Sutcu M. and Gulbahar I. T., “Long term currency forecast with multiple trend corrected exponential smoothing with shifting lags”, International Journal of Industrial Optimization, 4(1): 47–57, (2023).
  • [13] Hatipoğlu A. and Altuntaş V., “DeepTFBS: transkripsiyon faktörü bağlanma bölgeleri tahmini için derin öğrenme yöntemleri kullanan hibrit bir model”, Journal of Polytechnic, 28(4): 1089-1099, (2025).
  • [14] Akyüz B., Karatay S., and Erken F., “Comparison of the performance of the regression models in GPS-total electron content prediction”, Journal of Polytechnic, 26(1): 321–328, (2023).
  • [15] Yavuz M., “Türkiye’de ihracatin ekonomik büyüme üzerine etkisi: bir zaman serisi analizi”, Ege Üniversitesi, 15. İktisat Öğrencileri Kongresi, İzmir, (2012).
  • [16] Dickey D. A. and Fuller W. A., “Distribution of the estimators for autoregressive time series with a unit root”, Journal of the American Statistical Association, 74(366a): 427–431, (1979).
  • [17] Salles R., Belloze K., Porto F., Gonzalez P. H., and Ogasawara E., “Nonstationary time series transformation methods: an experimental review”, Knowledge-Based Systems, 164: 274–291, (2019).
  • [18] Bhanja Samit D. A., “Impact of Data Normalization on Deep Neural Network for Time Series Forecasting,” ArXiv, (2018).
  • [19] Gardner E. S. and Mckenzie Ed., “Forecasting trends in time series,” Management Science, 31(10): 1237–1246, (1985).
  • [20] Hyndman R. J. and Athanasopoulos G., “Forecasting: principles and practice”, 3rd Edition. OTexts, Australia, (2021).
  • [21] Kumar M. and Kumar J., “Impact of Coiflet wavelet decomposition on forecasting accuracy: shifts in ARIMA and exponential smoothing performance”, Metallurgical and Materials Engineering, 31(1): 177–192, (2025).
  • [22] Smyl S., Bergmeir C., Dokumentov A., Long X., Wibowo E., and Schmidt D., “Local and global trend Bayesian exponential smoothing models,” International Journal of Forecasting, 41(1): 111–127, (2025).
  • [23] Wang L., Chen L., Jin S., and Li C., “Forecasting the green behaviour level of Chinese enterprises: A conjoined application of the autoregressive integrated moving average (ARIMA) model and multi-scenario simulation,” Technology in Society, 81: 102825, (2025).
  • [24] Diebold F. X. and Mariano R. S., “Comparing predictive accuracy”, Journal of Business & Economic Statistics, 13(3): 253–263, (1995).
  • [25] Vansteenkiste I. and Hiebert P., “Do house price developments spillover across euro area countries? Evidence from a global VAR,” Journal of Housing Economics, 20(4): 299–314, (2011).
  • [26] Geng N., “Fundamental drivers of house prices in advanced economies”, IMF Working Papers, 2018(164): 1-24, (2018).
  • [27] Agnello L. and Schuknecht L., “Booms and busts in housing markets: determinants and implications,” Journal of Housing Economics, 20(3): 171–190, (2011).
  • [28] Calza A., Monacelli T., and Stracca L., “Housing finance and monetary policy”, Journal of the European Economic Association, 11(s1):101–122, (2013).
  • [29] Cerutti E., Claessens S., and Laeven L., “The use and effectiveness of macroprudential policies: new evidence,” Journal of Financial Stability, 28: 203–224, (2017).

Fluctuations in the European Housing Market: Forecasting the House Price Index Change with Time-Series Models

Year 2025, EARLY VIEW, 1 - 1

Abstract

This study presents a comparative analysis of a time series models for forecasting changes in the Housing Price Index (HPI) in 27 European countries. Accurate HPI forecasting is essential for the development of effective policies and investment strategies. The study uses quarterly data from Q4 2013 to Q3 2024. Methodologically, the stationarity of the data is tested using the Dickey–Fuller test and differencing is applied to non-stationary series. The ARIMA, Holt Linear Trend, Additive Damped Trend and Exponential Smoothing models are evaluated based on the lowest mean squared error (MSE) value for each country. The findings confirmed the heterogeneous structure of the European housing market, showing that no single model is suitable for all countries. The ARIMA model provided the most accurate results for nine countries, while the Holt Linear Trend and Additive Damped Trend models performed best in seven countries each. Forecasts for the period 2025–2026 are generated based on these results. This study highlights the importance of adopting country-specific and adaptable forecasting approaches to accommodate the varying dynamics of European housing markets.

References

  • [1] Shao J., Yu L., Hong J., and Wang X., “Forecasting house price index with social media sentiment: A decomposition–ensemble approach,” Journal of Forecasting, 44(1): 216–241, (2025).
  • [2] Adetunji A. B., Akande O. N., Ajala F. A., Oyewo O., Akande Y. F., and Oluwadara G., “House price prediction using random forest machine learning technique”, Procedia Computer Science, 199: 806–813, (2022).
  • [3] https://ec.europa.eu/eurostat/databrowser/view/teicp270/default/table?lang=en, “EUROSTAT”,(2025).
  • [4] Sobana P., Balakumaran M., Bharathkumar S., Boopathi P., and Harish J., “House price prediction using machine learning”, Challenges in Information, Communication and Computing Technology, CRC Press, London, (2024).
  • [5] Preethi, Murthy D. H. R., Hiremani V., Devadas R. M., and Sapna R., “Optimizing polynomial and regularization techniques for enhanced housing price prediction accuracy”, SN Computer Science, 6(2): 96-109, (2025). [6] Yang X., “Research on house price prediction based on machine learning”, ITM Web of Conferences, 70: 02018, (2025).
  • [7] Ningsih I. R., Faqih A., and Rinaldi A. R., “House price prediction analysis using a comparison of machine learning algorithms in the Jabodetabek area”, Journal of Artificial Intelligence and Engineering Applications, 4(2): 687–694, (2025).
  • [8] Wang X., Gao S., Zhou S., Guo Y., Duan Y., and Wu D., “Prediction of house price index based on bagging integrated WOA-SVR model,” Mathematical Problems in Engineering, 2021: 1–15, (2021).
  • [9] Truong Q., Nguyen M., Dang H., and Mei B., “Housing price prediction via improved machine learning techniques,” Procedia Computer Science, 174: 433–442, (2020).
  • [10] Alsaideen M. and Ertem Z., “A comprehensive analysis of resilient multivariate forecasting models for steel plate price prediction”, Journal of Polytechnic, 28(2): 627-637, (2024).
  • [11] Nalici M. E., Söylemez İ., and Ünlü R., “Türkiye’de tahıl üretiminin tahminlemesi: karşılaştırmalı analiz”, Erciyes Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 40(2): 288–303, (2024).
  • [12] Sutcu M. and Gulbahar I. T., “Long term currency forecast with multiple trend corrected exponential smoothing with shifting lags”, International Journal of Industrial Optimization, 4(1): 47–57, (2023).
  • [13] Hatipoğlu A. and Altuntaş V., “DeepTFBS: transkripsiyon faktörü bağlanma bölgeleri tahmini için derin öğrenme yöntemleri kullanan hibrit bir model”, Journal of Polytechnic, 28(4): 1089-1099, (2025).
  • [14] Akyüz B., Karatay S., and Erken F., “Comparison of the performance of the regression models in GPS-total electron content prediction”, Journal of Polytechnic, 26(1): 321–328, (2023).
  • [15] Yavuz M., “Türkiye’de ihracatin ekonomik büyüme üzerine etkisi: bir zaman serisi analizi”, Ege Üniversitesi, 15. İktisat Öğrencileri Kongresi, İzmir, (2012).
  • [16] Dickey D. A. and Fuller W. A., “Distribution of the estimators for autoregressive time series with a unit root”, Journal of the American Statistical Association, 74(366a): 427–431, (1979).
  • [17] Salles R., Belloze K., Porto F., Gonzalez P. H., and Ogasawara E., “Nonstationary time series transformation methods: an experimental review”, Knowledge-Based Systems, 164: 274–291, (2019).
  • [18] Bhanja Samit D. A., “Impact of Data Normalization on Deep Neural Network for Time Series Forecasting,” ArXiv, (2018).
  • [19] Gardner E. S. and Mckenzie Ed., “Forecasting trends in time series,” Management Science, 31(10): 1237–1246, (1985).
  • [20] Hyndman R. J. and Athanasopoulos G., “Forecasting: principles and practice”, 3rd Edition. OTexts, Australia, (2021).
  • [21] Kumar M. and Kumar J., “Impact of Coiflet wavelet decomposition on forecasting accuracy: shifts in ARIMA and exponential smoothing performance”, Metallurgical and Materials Engineering, 31(1): 177–192, (2025).
  • [22] Smyl S., Bergmeir C., Dokumentov A., Long X., Wibowo E., and Schmidt D., “Local and global trend Bayesian exponential smoothing models,” International Journal of Forecasting, 41(1): 111–127, (2025).
  • [23] Wang L., Chen L., Jin S., and Li C., “Forecasting the green behaviour level of Chinese enterprises: A conjoined application of the autoregressive integrated moving average (ARIMA) model and multi-scenario simulation,” Technology in Society, 81: 102825, (2025).
  • [24] Diebold F. X. and Mariano R. S., “Comparing predictive accuracy”, Journal of Business & Economic Statistics, 13(3): 253–263, (1995).
  • [25] Vansteenkiste I. and Hiebert P., “Do house price developments spillover across euro area countries? Evidence from a global VAR,” Journal of Housing Economics, 20(4): 299–314, (2011).
  • [26] Geng N., “Fundamental drivers of house prices in advanced economies”, IMF Working Papers, 2018(164): 1-24, (2018).
  • [27] Agnello L. and Schuknecht L., “Booms and busts in housing markets: determinants and implications,” Journal of Housing Economics, 20(3): 171–190, (2011).
  • [28] Calza A., Monacelli T., and Stracca L., “Housing finance and monetary policy”, Journal of the European Economic Association, 11(s1):101–122, (2013).
  • [29] Cerutti E., Claessens S., and Laeven L., “The use and effectiveness of macroprudential policies: new evidence,” Journal of Financial Stability, 28: 203–224, (2017).
There are 28 citations in total.

Details

Primary Language English
Subjects Machine Learning (Other), Industrial Engineering
Journal Section Research Article
Authors

İsmet Soylemez 0000-0002-8253-9389

Mehmet Eren Nalici 0000-0002-7954-6916

Ramazan Ünlü 0000-0002-1201-195X

Early Pub Date August 29, 2025
Publication Date October 15, 2025
Submission Date June 20, 2025
Acceptance Date August 10, 2025
Published in Issue Year 2025 EARLY VIEW

Cite

APA Soylemez, İ., Nalici, M. E., & Ünlü, R. (2025). Fluctuations in the European Housing Market: Forecasting the House Price Index Change with Time-Series Models. Politeknik Dergisi1-1. https://doi.org/10.2339/politeknik.1724043
AMA Soylemez İ, Nalici ME, Ünlü R. Fluctuations in the European Housing Market: Forecasting the House Price Index Change with Time-Series Models. Politeknik Dergisi. Published online August 1, 2025:1-1. doi:10.2339/politeknik.1724043
Chicago Soylemez, İsmet, Mehmet Eren Nalici, and Ramazan Ünlü. “Fluctuations in the European Housing Market: Forecasting the House Price Index Change With Time-Series Models”. Politeknik Dergisi, August (August 2025), 1-1. https://doi.org/10.2339/politeknik.1724043.
EndNote Soylemez İ, Nalici ME, Ünlü R (August 1, 2025) Fluctuations in the European Housing Market: Forecasting the House Price Index Change with Time-Series Models. Politeknik Dergisi 1–1.
IEEE İ. Soylemez, M. E. Nalici, and R. Ünlü, “Fluctuations in the European Housing Market: Forecasting the House Price Index Change with Time-Series Models”, Politeknik Dergisi, pp. 1–1, August2025, doi: 10.2339/politeknik.1724043.
ISNAD Soylemez, İsmet et al. “Fluctuations in the European Housing Market: Forecasting the House Price Index Change With Time-Series Models”. Politeknik Dergisi. August2025. 1-1. https://doi.org/10.2339/politeknik.1724043.
JAMA Soylemez İ, Nalici ME, Ünlü R. Fluctuations in the European Housing Market: Forecasting the House Price Index Change with Time-Series Models. Politeknik Dergisi. 2025;:1–1.
MLA Soylemez, İsmet et al. “Fluctuations in the European Housing Market: Forecasting the House Price Index Change With Time-Series Models”. Politeknik Dergisi, 2025, pp. 1-1, doi:10.2339/politeknik.1724043.
Vancouver Soylemez İ, Nalici ME, Ünlü R. Fluctuations in the European Housing Market: Forecasting the House Price Index Change with Time-Series Models. Politeknik Dergisi. 2025:1-.