Deep Learning Technologies in Dental Practice: Current Applications and Research Trends
Year 2025,
EARLY VIEW, 1 - 1
Murat Can Şener
,
Hacer Karacan
Abstract
The use of deep learning technologies in dental practice has been steadily increasing in recent years, accompanied by significant progress in related research. This study provides a comprehensive review of deep learning-based image processing techniques within the field of dentistry, with a particular focus on the performance of models applied in dental segmentation and classification tasks. The analysis reveals that architectures such as U-Net, Mask R-CNN, and YOLO have demonstrated high accuracy in detecting teeth, diseases, and lesions in dental radiographs. By systematically examining studies conducted between 2020 and 2025, this review highlights the potential of deep learning methods to enhance clinical diagnosis and treatment processes, emphasizing the growing importance of automated dental image analysis. The discussion section offers a detailed evaluation of the frequent use and success of U-Net, Mask R-CNN, and YOLO architectures, concluding that deep learning-based approaches can be effectively integrated into clinical workflows. These technologies play a critical role in the early diagnosis of dental pathologies and the development of personalized treatment plans.
Ethical Statement
The author(s) of this article declare that the materials and methods used in this study do not require ethical committee permission and/or legal-special permission.
References
- [1] Mayo Clinic, '' Oral health: A window to your overall health'',https://www.mayoclinic.org/healthy-lifestyle/adult-health/in-depth/dental/art-20047475, (Access date: 28 April 2025).
- [2] Di Spirito F., ''Oral and Systemic Health in the Elderly'', Applied Sciences, 12(22): 11718, (2022).
- [3] Seitz M. W., Listl S., Bartols A., Schubert I., Blaschke K., Haux C. and Van Der Zande M. M., ''Current Knowledge on Correlations Between Highly Prevalent Dental Conditions and Chronic Diseases: An Umbrella Review'', Preventing Chronic Disease, 16: E132, (2019).
- [4] GBD 2019 Diseases and Injuries Collaborators, "Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019", The Lancet, 396: 1204-1222, (2020).
- [5] Helli S. and Hamamcı A., ''Tooth Instance Segmentation on Panoramic Dental Radiographs Using U-Nets and Morphological Processing'', Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 10(1): 39–50, (2022).
- [6] Hou S., Zhou T., Liu Y., Dang P., Lu H., Shi H., ''Teeth U-Net: A segmentation model of dental panoramic X-ray images for context semantics and contrast enhancement'', Computers in Biology and Medicine, 152(2): 106296, (2022).
- [7] Karaoglu A., Ozcan C., Pekince A. And Yasa Y., ''Numbering teeth in panoramic images: A novel method based on deep learning and heuristic algorithm'', Engineering Science and Technology, an International Journal, 37(3): 101316, (2023).
- [8] Durmuş M., Ergen B., Çelebi A. and Türkoğlu M., ''ResNet Tabanlı PSPNet Kullanarak Panoramik Görüntülerde Gömülü Diş Segmentasyon Analizi'', Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 36(1): 159–166, (2024).
- [9] Abdulwahhab A. H., Mahmood N. T., Mohammed A. A., Myderrizi I. and Al-Jumaili M. H., ''A review on medical image applications based on deep learning techniques'', Journal of Image and Graphics, 12(3): 215–227, (2024).
- [10] Eker A. G. and Duru N., ''Medikal Görüntü İşlemede Derin Öğrenme Uygulamaları'', Acta Infologica, 5(2): 459–474, (2021).
- [11] Darıcı, M., B., “Performance analysis of combination of cnn-based models with adaboost algorithm to diagnose covid-19 disease”, Journal of Polytechnic, 26(1): 179-190, (2023).
- [12] Ünsal Ü. and Adem K., ''Diş Görüntüleri Üzerinde Görüntü İşleme ve Derin Öğrenme Yöntemleri Kullanılarak Çürük Seviyesinin Sınıflandırılması'', Uluslararası Sivas Bilim ve Teknoloji Üniversitesi Dergisi, 2(2): 30–53, (2023).
- [13] Estai M., Tennant M., Gebauer D., Brostek A., Vignarajan J., Mehdizadeh M. and Saha S., ''Deep learning for automated detection and numbering of permanent teeth on panoramic images'', Dentomaxillofacial Radiology, 51(2): 20210296, (2022).
- [14] Lee J. H., Han S. S., Kim Y. H., Lee C. and Kim I., ''Application of a fully deep convolutional neural network to the automation of tooth segmentation on panoramic radiographs'', Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology, 129(6): 635–642, (2020).
- [15] Chung M., Lee M., Hong J., Park S., Lee J., Lee J., Yang I. H., Lee J. and Shin Y. G., ''Pose-aware instance segmentation framework from cone beam CT images for tooth segmentation'', Computers in Biology and Medicine, 120(11): 103720, (2020).
- [16] Kong Z., Xiong F., Zhang C., Fu Z., Zhang M., Weng J. ve Fan M., ''Automated Maxillofacial Segmentation in Panoramic Dental X-Ray Images Using an Efficient Encoder-Decoder Network'', IEEE Access, 8: 207822-207833, (2020).
- [17] Chen Y., Du H., Yun Z., Yang S., Dai Z., Zhong L., Feng Q. and Yang W., ''Automatic segmentation of individual tooth in dental CBCT images from tooth surface map by a multi-task FCN'', IEEE Access, 8: 97296–97309, (2020).
- [18] Zhao Y., Li P., Gao C., Liu Y., Chen Q., Yang F. and Meng D., ''TSASNet: Tooth segmentation on dental panoramic X-ray images by two-stage attention segmentation network'', Knowledge-Based Systems, 206(8): 106338, (2020).
- [19] Rao Y., Wang Y., Meng F., Pu J., Sun J. and Wang Q., ''A symmetric fully convolutional residual network with DCRF for accurate tooth segmentation'', IEEE Access, 8: 92028–92038, (2020).
- [20] Cha J. Y., Yoon H. I., Yeo I. S., Huh K. H. and Han J. S., ''Panoptic Segmentation on Panoramic Radiographs: Deep Learning-Based Segmentation of Various Structures Including Maxillary Sinus and Mandibular Canal'', Journal of Clinical Medicine, 10(12): 2577, (2021).
- [21] Chen Q., Zhao Y., Liu Y., Sun Y., Yang C., Li P., Zhang L. and Gao C., ''MSLPNet: Multi-scale location perception network for dental panoramic X-ray image segmentation'', Neural Computing and Applications, 33(19): 10277–10291, (2021).
- [22] Duan W., Chen Y., Zhang Q., Lin X. and Yang X., ''Refined tooth and pulp segmentation using U-Net in CBCT image'', Dentomaxillofacial Radiology, 50(6): 20200251, (2021).
- [23] Harsh P., Chakraborty R., Tripathi S. and Sharma K., ''Attention U-Net architecture for dental image segmentation'', 2021 International Conference on Intelligent Technologies (CONIT), Hubli, India, 1–5, (2021).
- [24] Cui Z., Li C., Chen N., Wei G., Chen R., Zhou Y., Shen D. and Wang W., ''TSegNet: An efficient and accurate tooth segmentation network on 3D dental model'', Medical Image Analysis, 69: 101949, (2021).
- [25] Yang Y., Xie R., Jia W., Chen Z., Yang Y., Xie L. And Jiang B., ''Accurate and automatic tooth image segmentation model with deep convolutional neural networks and level set method'', Neurocomputing, 419: 108–125, (2021).
- [26] Ghazvinian Zanjani F., Pourtaherian A., Zinger S., Anssari Moin D., Claessen F., Cherici T., Parinussa S. and de With P. H. N., ''Mask-MCNet: Tooth instance segmentation in 3D point clouds of intra-oral scans'', Neurocomputing, 453: 286–298, (2021).
- [27] Ying S., Wang B., Zhu H., Liu W. and Huang F., ''Caries segmentation on tooth X-ray images with a deep network'', Journal of Dentistry, 119: 104076, (2022).
- [28] da Silva Rocha E. and Endo P. T., ''A comparative study of deep learning models for dental segmentation in panoramic radiograph'', Applied Sciences, 12(6): 3103, (2022).
- [29] Bayrakdar I. S., Orhan K., Çelik Ö., Bilgir E., Sağlam H., Kaplan F. A., Görür S. A., Odabaş A., Aslan A. F. and Różyło-Kalinowska I., ''A U-Net approach to apical lesion segmentation on panoramic radiographs'', BioMed Research International, 2022: 7035367, (2022).
- [30] Rohrer C., Krois J., Patel J., Meyer-Lueckel H., Rodrigues J. A. and Schwendicke F., ''Segmentation of Dental Restorations on Panoramic Radiographs Using Deep Learning'', Diagnostics, 12(6): 1316, (2022).
- [31] Cui Z., Fang Y., Mei L., Zhang B., Yu B., Liu J., Jiang C., Sun Y., Ma L., Huang J., Liu Y., Zhao Y., Lian C., Ding Z., Zhu M. and Shen D., ''A fully automatic AI system for tooth and alveolar bone segmentation from cone-beam CT images'', Nature Communications, 13(1): 2096, (2022).
- [32] Panetta K., Rajendran R., Ramesh A., Rao S. and Agaian S., ''Tufts Dental Database: A Multimodal Panoramic X-Ray Dataset for Benchmarking Diagnostic Systems'', IEEE Journal of Biomedical and Health Informatics, 26(4): 1650–1659, (2022).
- [33] Oztekin F., Katar O., Sadak F., Aydogan M., Talo Yildirim T., Plawiak P., Yildirim O., Talo M. and Karabatak M., ''Automatic semantic segmentation for dental restorations in panoramic radiography images using U-Net model'', International Journal of Imaging Systems and Technology, 32(6): 1990–2001, (2022).
- [34] Ghafoor A., Moon S.-Y. and Lee B., ''Multiclass segmentation using teeth attention modules for dental X-ray images'', IEEE Access, 11: 123891–123903, (2023).
- [35] Gardiyanoğlu E., Ünsal G., Akkaya N., Aksoy S. and Orhan K., ''Automatic segmentation of teeth, crown-bridge restorations, dental implants, restorative fillings, dental caries, residual roots, and root canal fillings on orthopantomographs: Convenience and pitfalls'', Diagnostics, 13(8): 1487, (2023).
- [36] Lin S., Hao X., Liu Y., Yan D., Liu J. and Zhong M., ''Lightweight deep learning methods for panoramic dental X-ray image segmentation'', Neural Computing and Applications, 35(11): 8295-8306, (2022).
- [37] Baydar, O., Różyło-Kalinowska, I., Futyma-Gąbka, K., & Sağlam, H. (2023). The U-Net Approaches to Evaluation of Dental Bite-Wing Radiographs: An Artificial Intelligence Study. Diagnostics, 13(3), 453, (2023).
- [38] Rubiu G., Bologna M., Cellina M., Cè M., Sala D., Pagani R., Mattavelli E., Fazzini D., Ibba S., Papa S. and Ali M., ''Teeth segmentation in panoramic dental X-ray using Mask regional convolutional neural network'', Applied Sciences, 13(13): 7947, (2023).
- [39] Yang S., Li A., Li P., Yun Z., Lin G., Cheng J., Xu S. and Qiu B., ''Automatic segmentation of inferior alveolar canal with ambiguity classification in panoramic images using deep learning'', Heliyon, 9(2): e13694, (2023).
- [40] Zhu H., Cao Z., Lian L., Ye G., Gao H. and Wu J., ''CariesNet: a deep learning approach for segmentation of multi-stage caries lesion from oral panoramic X-ray image'', Neural Computing and Applications, 35: 16051-16059, (2023).
- [41] Mărginean A. C., Mureşanu S., Hedeşiu M. and Dioşan L., ''Teeth segmentation and carious lesions segmentation in panoramic X-ray images using CariSeg, a networks' ensemble'', Heliyon, 10(10): e30836, (2024).
- [42] Lin Z., He Z., Wang X., Zhang B., Liu C., Su W., Tan J. and Xie S., ''DBGANet: Dual-Branch Geometric Attention Network for Accurate 3D Tooth Segmentation'', IEEE Transactions on Circuits and Systems for Video Technology, 34(6): 4285–4298, (2024).
- [43] Wen X., Liu Z., Chu Y., Le M. and Li L., ''MRCM-UCTransNet: Automatic and accurate 3D tooth segmentation network from cone-beam CT images'', International Journal of Imaging Systems and Technology, 34(4): e23139, (2024).
- [44] Zannah R., Bashar M., Mushfiq R. B., Chakrabarty A., Hossain S. and Jung Y. J., ''Semantic segmentation on panoramic dental X-ray images using U-Net architectures'', IEEE Access, 12: 44598–44612, (2024).
- [45] Ma Y., Qu Z., Liu X., Lin J. and Jin Z., ''A high-precision framework for teeth instance segmentation in panoramic radiographs'', Displays, 89: 103064, (2025).
- [46] Durmuş M., Ergen B., Çelebi A. and Türkoğlu M., ''Comparative analysis of pixel-based segmentation models for accurate detection of impacted teeth on panoramic radiographs'', IEEE Access, 13: 6262–6276, (2025).
- [47] Fındık A. B., Demir G. D., Özkaya U. and Özdemir G., ''A robust generative segmentation method for panoramic dental radiography images'', International Journal of Imaging Systems and Technology, 35(3): e70099, (2025).
- [48] Şener B., “Tıbbi görüntülemede derin üretken modeller : bir literatür taraması”, Journal of Polytechnic, 28(2): 413-433, (2025).
- [49] Goodfellow I., Bengio Y. and Courville A., ''Deep Learning'', MIT Press, (2016).
- [50] Kuwada C., Ariji Y., Fukuda M., Kise Y., Fujita H., Katsumata A. and Ariji E., ''Deep learning systems for detecting and classifying the presence of impacted supernumerary teeth in the maxillary incisor region on panoramic radiographs'', Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, 130(4): 464–469, (2020).
- [51] Kim D., Choi E., Jeong H. G., Chang J. and Youm S., ''Expert system for mandibular condyle detection and osteoarthritis classification in panoramic imaging using R-CNN and CNN'', Applied Sciences, 10(21): 7464, (2020).
- [52] Kılıc M. C., Bayrakdar I. S., Çelik Ö., Bilgir E., Orhan K., Aydın O. B., Kaplan F. A., Sağlam H., Odabaş A., Aslan A. F. and Yılmaz A. B., ''Artificial intelligence system for automatic deciduous tooth detection and numbering in panoramic radiographs'', Dentomaxillofacial Radiology, 50(6): 20200172, (2021).
- [53] Lee D. W., Kim S. Y., Jeong S. N. and Lee J. H., ''Artificial intelligence in fractured dental implant detection and classification: Evaluation using dataset from two dental hospitals'', Diagnostics, 11(2): 233, (2021).
- [54] Moran M., Faria M., Giraldi G., Bastos L., Oliveira L. and Conci A., ''Classification of approximal caries in bitewing radiographs using convolutional neural networks'', Sensors, 21(15): 5192, (2021).
- [55] Krois J., Schneider L. and Schwendicke F., ''Impact of image context on deep learning for classification of teeth on radiographs'', Journal of Clinical Medicine, 10(8): 1635, (2021).
- [56] Chen H., Li H., Zhao Y., Zhao J. and Wang Y., ''Dental disease detection on periapical radiographs based on deep convolutional neural networks'', International Journal of Computer Assisted Radiology and Surgery, 16(4): 649–661, (2021).
- [57] Ahn Y., Hwang J. J., Jung Y. H., Jeong T. and Shin J., ''Automated mesiodens classification system using deep learning on panoramic radiographs of children'', Diagnostics, 11(8): 1477, (2021).
- [58] Yasa Y., Çelik Ö., Bayrakdar I. S., Pekince A., Orhan K., Akarsu S., Atasoy S., Bilgir E., Odabaş A. and Aslan A. F., ''An artificial intelligence proposal to automatic teeth detection and numbering in dental bitewing radiographs'', Acta Odontologica Scandinavica, 79(4): 275–281, (2021).
- [59] Li C. W., Lin S. Y., Chou H. S., Chen T. Y., Chen Y. A., Liu S. Y., Liu Y. L., Chen C. A., Huang Y. C., Chen S. L., Mao Y. C., Abu P. A. R., Chiang W. Y. and Lo W. S., ''Detection of dental apical lesions using CNNs on periapical radiograph'', Sensors, 21(21): 7049, (2021).
- [60] Bayraktar Y., Ayan E. “Diagnosis of interproximal caries lesions with deep convolutional neural network in digital bitewing radiographs” Clinical Oral Investigations, 26(1):623–632, (2021).
- [61] Mao Y.-C., Chen T.-Y., Chou H.-S., Lin S.-Y., Liu S.-Y., Chen Y.-A., Liu Y.-L., Chen C.-A., Huang Y.-C., Chen S.-L., Abu P. A. R., Chiang W.-Y., ''Caries and Restoration Detection Using Bitewing Film Based on Transfer Learning with CNNs'', Sensors, 21(13): 4613, (2021).
- [62] Aljabri M., Aljameel S. S., Min-Allah N., Alhuthayfi J., Alghamdi L., Alduhailan N., Alfehaid R., Alqarawi R., Alhareky M., Shahin S. Y. and Al Turki W., ''Canine impaction classification from panoramic dental radiographic images using deep learning models'', Informatics in Medicine Unlocked, 30: 100918, (2022).
- [63] Almalki Y. E., Din A. I., Ramzan M., Irfan M., Aamir K. M., Almalki A., Alotaibi S., Alaglan G., Alshamrani H. A. and Rahman S., ''Deep learning models for classification of dental diseases using orthopantomography X-ray OPG images'', Sensors, 22(19): 7370, (2022).
- [64] Vasdev D., Gupta V., Shubham S., Chaudhary A., Jain N., Salimi M. and Ahmadian A., ''Periapical dental X-ray image classification using deep neural networks'', Annals of Operations Research, 1–29, (2022).
- [65] Shon H. S., Kong V., Park J. S., Jang W., Cha E. J., Kim S. Y., Lee E. Y., Kang T. G. and Kim K. A., ''Deep learning model for classifying periodontitis stages on dental panoramic radiography'', Applied Sciences, 12(17): 8500, (2022).
- [66] Al-Ghamdi A. S. A., Ragab M., AlGhamdi S. A., Asseri A. H., Mansour R. F. and Koundal D., ''Detection of dental diseases through X-ray images using neural search architecture network'', Computational Intelligence and Neuroscience, 2022: 3500552, (2022).
- [67] Vimalarani G. and Ramachandraiah U., “Automatic diagnosis and detection of dental caries in bitewing radiographs using pervasive deep gradient based LeNet classifier model”, Microprocessors and Microsystems, 94(13):104654, (2022).
- [68] Estai M., Tennant M., Gebauer D., Brostek A., Vignarajan J., Mehdizadeh M. and Saha S., ''Evaluation of a deep learning system for automatic detection of proximal surface dental caries on bitewing radiographs'', Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology, 134(2): 262–270, (2022).
- [69] Li S., Liu J., Zhou Z., Zhou Z., Wu X., Li Y., Wang S., Liao W., Ying S. and Zhao Z., ''Artificial intelligence for caries and periapical periodontitis detection'', Journal of Dentistry, 122: 104107, (2022).
- [70] Chen S.-L., Chen T.-Y., Huang Y.-C., Chen C.-A., Chou H.-S., Huang Y.-Y., Lin W.-C., Li T.-C., Yuan J.-J., Abu P. A. R. and Chiang W.-Y., ''Missing teeth and restoration detection using dental panoramic radiography based on transfer learning with CNNs'', IEEE Access, 10: 118654–118664, (2022).
- [71] Chen S.-L., Chen T.-Y., Mao Y.-C., Lin S.-Y., Huang Y.-Y., Chen C.-A., Lin Y.-J., Hsu Y.-M., Li C.-A., Chiang W.-Y., Wong K.-Y. and Abu P. A. R., ''Automated detection system based on convolution neural networks for retained root, endodontic treated teeth, and implant recognition on dental panoramic images'', IEEE Sensors Journal, 22(23): 23293–23306, (2022).
- [72] Calazans M. A. A., Ferreira F. A. B. S., Alcoforado M. L. M. G., Santos A., Pontual A. A. and Madeiro F., ''Automatic classification system for periapical lesions in cone-beam computed tomography'', Sensors, 22(17): 6481, (2022).
- [73] Kaya E., Gunec H. G., Aydin K. C., Urkmez E. S., Duranay R. and Ates H. F., ''A deep learning approach to permanent tooth germ detection on pediatric panoramic radiographs'', Imaging Science in Dentistry, 52(3): 275–281, (2022).
- [74] Liu F., Gao L., Wan J., Lyu Z.-L., Huang Y.-Y., Liu C. and Han M., ''Recognition of digital dental X-ray images using a convolutional neural network'', Journal of Digital Imaging, 36(1): 73–79, (2023).
- [75] Zhou X., Yu G., Yin Q., Yang J., Sun J., Lv S. and Shi Q., ''Tooth type enhanced transformer for children caries diagnosis on dental panoramic radiographs'', Diagnostics, 13(4): 689, (2023).
- [76] Chen I. D. S., Yang C. M., Chen M. J., Chen M. C., Weng R. M. and Yeh C. H., ''Deep learning-based recognition of periodontitis and dental caries in dental X-ray images'', Bioengineering, 10(8): 911, (2023).
- [77] Chung M., Lee J., Park S., Lee M., Lee C. E., Lee J. and Shin Y.-G., ''Individual tooth detection and identification from dental panoramic X-ray images via point-wise localization and distance regularization'', Artificial Intelligence in Medicine, 139: 102490, (2023).
- [78] Chen S.-L., Chen T.-Y., Mao Y.-C., Lin S.-Y., Huang Y.-Y., Chen C.-A., Lin Y.-J., Chuang M.-H. and Abu P. A. R., ''Detection of various dental conditions on dental panoramic radiography using Faster R-CNN'', IEEE Access, 11: 127388–127401, (2023).
- [79] Yilmaz S., Tasyurek M., Amuk M., Celik M. and Canger E. M., ''Developing deep learning methods for classification of teeth in dental panoramic radiography'', Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology, 138(1): 118–127, (2024).
- [80] Lee H.-S., Yang S., Han J.-Y., Kang J.-H., Kim J.-E., Huh K.-H., Yi W.-J. and Heo M.-S., ''Automatic detection and classification of nasopalatine duct cyst and periapical cyst on panoramic radiographs using deep convolutional neural networks'', Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, 138(1): 184–195, (2024).
- [81] Bilal A., Khan A. H., Almohammadi K., Al Ghamdi S. A., Long H. and Malik H., ''PDCNET: Deep convolutional neural network for classification of periodontal disease using dental radiographs'', IEEE Access, 12: 150147–150165, (2024).
- [82] Korkmaz O. E., Guller H., Miloglu O., Ozbek I. Y., Oral E. A. and Guller M. T., ''The detection of distomolar teeth on panoramic radiographs using different artificial intelligence models'', Journal of Stomatology Oral and Maxillofacial Surgery, 126(5): 102151, (2025).
- [83] Zhang X., Guo E., Liu X., Zhao H., Yang J., Li W., Wu W. and Sun W., ''Enhancing furcation involvement classification on panoramic radiographs with vision transformers'', BMC Oral Health, 25(1): 153, (2025).
- [84] Wang Q., Zhu X., Sun Z., Zhang B., Yu J. and Qian S., ''Optimized Yolov8 feature fusion algorithm for dental disease detection'', Computers in Biology and Medicine, 187: 109778, (2025).
- [85] Küçük D. B., Imak A., Özçelik S. T. A., Çelebi A., Türkoğlu M., Sengur A. and Koundal D., ''Hybrid CNN-Transformer model for accurate impacted tooth detection in panoramic radiographs'', Diagnostics, 15(3): 244, (2025).
- [86] Bishop C. M., ''Pattern Recognition and Machine Learning'', Springer, (2006).
- [87] Kim C., Kim D., Jeong H., Yoon S.-J. and Youm S., ''Automatic tooth detection and numbering using a combination of a CNN and heuristic algorithm'', Applied Sciences, 10(16): 5624, (2020).
- [88] Lian L., Zhu T., Zhu F. and Zhu H., ''Deep learning for caries detection and classification'', Diagnostics, 11(9): 1672, (2021).
- [89] Muramatsu C., Morishita T., Takahashi R., Hayashi T., Nishiyama W., Ariji Y., Zhou X., Hara T., Katsumata A., Ariji E. and Fujita H., ''Tooth detection and classification on panoramic radiographs for automatic dental chart filing: improved classification by multi-sized input data'', Oral Radiology, 37(1): 13–19, (2021).
- [90] Shaheen E., Leite A., Alqahtani K. A., Smolders A., Van Gerven A., Willems H. and Jacobs R., ''A novel deep learning system for multi-class tooth segmentation and classification on cone beam computed tomography: A validation study'', Journal of Dentistry, 115: 103865, (2021).
- [91] Sivasundaram S. and Pandian C., ''Performance analysis of classification and segmentation of cysts in panoramic dental images using convolutional neural network architecture'', International Journal of Imaging Systems and Technology, 31(4): 2214–2225, (2021).
- [92] Leite A. F., Van Gerven A., Willems H., Beznik T., Lahoud P., Gaêta-Araujo H., Vranckx M. and Jacobs R., ''Artificial intelligence-driven novel tool for tooth detection and segmentation on panoramic radiographs'', Clinical Oral Investigations, 25(4): 2257–2267, (2021).
- [93] Mima Y., Nakayama R., Hizukuri A. and Murata K., ''Tooth detection for each tooth type by application of faster R CNNs to divided analysis areas of dental panoramic X ray images '', Radiological Physics and Technology, 15(2): 170–176, (2021).
- [94] Görürgöz C., Orhan K., Bayrakdar İ.Ş., Çelik Ö., Bilgir E., Odabaş A., Aslan A.F. and Jagtap R., “Performance of a convolutional neural network algorithm for tooth detection and numbering on periapical radiographs”,Dentomaxillofacial Radiology, 51(3): 20210296, (2022).
- [95] Estai M., Tennant M., Gebauer D., Brostek A., Vignarajan J., Mehdizadeh M. and Saha S., ''Deep learning for automated detection and numbering of permanent teeth on panoramic images'', Dentomaxillofacial Radiology, 51(2): 20210296, (2022).
- [96] Tekin B. Y., Ozcan C., Pekince A. and Yasa Y., ''An enhanced tooth segmentation and numbering according to FDI notation in bitewing radiographs'', Computers in Biology and Medicine, 146: 105547, (2022).
- [97] Chandrashekar G., AlQarni S., Bumann E. E. and Lee Y., ''Collaborative deep learning model for tooth segmentation and identification using panoramic radiographs'', Computers in Biology and Medicine, 148: 105829, (2022).
- [98] Zhang K., Chen H., Lyu P. and Wu J., ''A relation-based framework for effective teeth recognition on dental periapical X-rays'', Computerized Medical Imaging and Graphics, 95: 102022, (2022).
- [99] Park J., Lee J., Moon S. and Lee K., ''Deep learning based detection of missing tooth regions for dental implant planning in panoramic radiographic images'', Applied Sciences, 12(3): 1595, (2022).
- [100] Haghanifar A., Majdabadi M. M., Haghanifar S., Choi Y. and Ko S. B., ''PaXNet: Tooth segmentation and dental caries detection in panoramic X-ray using ensemble transfer learning and capsule classifier'', Multimedia Tools and Applications, 82: 27659–27679, (2023).
- [101] Fatima A., Shafi I., Afzal H., Mahmood K., Díez I. T., Lipari V., Ballester J. B. and Ashraf I., ''Deep learning-based multiclass instance segmentation for dental lesion detection'', Healthcare, 11(3): 347, (2023).
- [102] Rašić M., Tropčić M., Karlović P., Gabrić D., Subašić M. and Knežević P., ''Detection and segmentation of radiolucent lesions in the lower jaw on panoramic radiographs using deep neural networks'', Medicina, 59(12): 2138, (2023).
- [103] Panyarak W., Suttapak W., Wantanajittikul K., Charuakkra A. and Prapayasatok S., ''Assessment of YOLOv3 for caries detection in bitewing radiographs based on the ICCMS™ radiographic scoring system'', Clinical Oral Investigations, 27(4): 1731–1742, (2023).
- [104] Zhao X., Xu T., Peng L., Li S., Zhao Y., Liu H., He J. and Liang S., ''Recognition and segmentation of teeth and mandibular nerve canals in panoramic dental X-rays by Mask RCNN'', Displays, 78(1): 102447, (2023).
- [105] Chen C. C., Wu Y. F., Aung L. M., Lin J. C., Ngo S. T., Su J. N., Lin Y. M. and Chang W. J., ''Automatic recognition of teeth and periodontal bone loss measurement in digital radiographs using deep-learning artificial intelligence'', Journal of Dental Sciences, 18(3): 1301–1309, (2023).
- [106] Alqahtani K. A., Jacobs R., Smolders A., Van Gerven A., Willems H., Shujaat S. and Shaheen E., ''Deep convolutional neural network-based automated segmentation and classification of teeth with orthodontic brackets on cone-beam computed-tomographic images: a validation study'', European Journal of Orthodontics, 45(2): 169–174, (2023).
- [107] Xu M., Wu Y., Xu Z., Ding P., Bai H. and Deng X., ''Robust automated teeth identification from dental radiographs using deep learning'', Journal of Dentistry, 136: 104607, (2023).
- [108] Adnan, N., Umer, F., Malik, S. and Hussain, O. A. '' Multi-model deep learning approach for segmentation of teeth and periapical lesions on pantomographs'', Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology, 138(1): 196–204, (2024).
- [109] Manzari O. N., Bayrami F., Khaloo H., Khodakaramimaghsoud Z. and Shokouhi S. B., ''DenUnet: enhancing dental image segmentation through edge and body fusion'', Multimedia Tools and Applications, 84(14): 13201 - 13221, (2024).
- [110] Ariji Y., Araki K., Fukuda M., Nozawa M., Kuwada C., Kise Y. and Ariji E., ''Effects of the combined use of segmentation or detection models on the deep learning classification performance for cyst-like lesions of the jaws on panoramic radiographs: Preliminary research'', Oral Science International, 21(2): 198–206, (2024).
- [111] Brahmi W. and Jdey I., ''Automatic tooth instance segmentation and identification from panoramic X-ray images using deep CNN'', Multimedia Tools and Applications, 83(18): 55565–55585, (2024).
- [112] Latke V. and Narawade V., ''Detection of dental periapical lesions using retinex based image enhancement and lightweight deep learning model'', Image and Vision Computing, 146: 105016, (2024).
- [113] Amasya H., Jaju P. P., Ezhov M., Gusarev M., Atakan C., Sanders A., Manulius D., Golitskya M., Shrivastava K., Singh A., Gupta A., Önder M. and Orhan K., ''Development and validation of an artificial intelligence software for periodontal bone loss in panoramic imaging'', International Journal of Imaging Systems and Technology, 34(1): e22973, (2024).
- [114] Kadi H., Kawczynski M., Bendjama S., Flores J. Z., Leong-Hoi A., de Lastic H., Balbierer J., Mabileau C., Radoux J. P., Grollemund B., Jaegle J., Guebert C., Bisch B. and Bloch-Zupan A., ''i-Dent: A virtual assistant to diagnose rare genetic dental diseases'', Computers in Biology and Medicine, 180: 108927, (2024).
- [115] Guo Y., Guo J., Li Y., Zhang P., Zhao Y.-D., Qiao Y., Liu B. and Wang G., ''Rapid detection of non-normal teeth on dental X-ray images using improved Mask R-CNN with attention mechanism'', International Journal of Computer Assisted Radiology and Surgery, 19(4): 779–790, (2024).
- [116] Alsolamy M., Nadeem F., Azhari A. A., Alsolami W. and Ahmed W. M., ''Automated detection and labeling of posterior teeth in dental bitewing X-rays using deep learning'', Computers in Biology and Medicine, 183(10): 109262, (2024).
- [117] Beser B., Reis T., Berber M. N., Topaloglu E., Gungor E., Coruh Kılıc M., Duman S., Çelik Ö., Kuran A. and Bayrakdar İ. Ş., ''YOLO-V5 based deep learning approach for tooth detection and segmentation on pediatric panoramic radiographs in mixed dentition'', BMC Medical Imaging, 24(1): 224, (2024).
- [118] Xu X., Chen J. and Yin J., ''Tooth instance segmentation and disease detection with uncertainty-aware contrastive learning and cross-scale attention'', IEEE Journal of Biomedical and Health Informatics, (2025).
- [119] Hua Y., Chen R. and Qin H., ''YOLO-DentSeg: A lightweight real-time model for accurate detection and segmentation of oral diseases in panoramic radiographs'', Electronics, 14(4): 805, (2025).
- [120] Balel Y., Sağtaş K., Teke F. and Kurt M. A., ''Artificial intelligence-based detection and numbering of dental implants on panoramic radiographs'', Clinical Implant Dentistry and Related Research, 27(1): e70000, (2025).
- [121] Liu J., Zhang H., Chen J., Meng R., Gao C., Han L., Song Y., Tian Y. and Wang Y., ''Automated detection and segmentation of dental caries using a novel cascaded learning approach'', Biomedical Signal Processing and Control, 102: 107344, (2025).
- [122] Karadağ B. and Arı A., “Object detection with YOLOv7 model on smart mobile devices”, Journal of Polytechnic, 26(3): 1207-1214, (2023).
Diş Hekimliğinde Derin Öğrenme Teknolojileri: Güncel Uygulamalar ve Araştırma Trendleri
Year 2025,
EARLY VIEW, 1 - 1
Murat Can Şener
,
Hacer Karacan
Abstract
Son yıllarda diş hekimliği uygulamalarında derin öğrenme teknolojilerinin kullanımı giderek artmakta ve bu alandaki araştırmalarda önemli ilerlemeler kaydedilmektedir. Bu çalışma, diş hekimliği alanında derin öğrenmeye dayalı görüntü işleme tekniklerini kapsamlı bir şekilde inceleyerek özellikle diş segmentasyonu ve sınıflandırma görevlerinde uygulanan modellerin performansına odaklanmaktadır. Yapılan analizler, U-Net, Mask R-CNN ve YOLO gibi mimarilerin diş radyografilerinde dişlerin, hastalıkların ve lezyonların tespitinde yüksek doğruluk sağladığını göstermektedir. 2020 ile 2025 yılları arasında gerçekleştirilen çalışmaları sistematik olarak inceleyen bu derleme, derin öğrenme yöntemlerinin klinik tanı ve tedavi süreçlerini geliştirme potansiyelini vurgulamakta ve otomatik diş görüntü analizinin artan önemini ortaya koymaktadır. Tartışma bölümünde, U-Net, Mask R-CNN ve YOLO mimarilerinin sık kullanımı ve başarıları detaylı şekilde değerlendirilmekte ve derin öğrenmeye dayalı yaklaşımların klinik iş akışlarına etkin bir şekilde entegre edilebileceği sonucuna varılmaktadır. Bu teknolojiler, diş patolojilerinin erken tanısında ve kişiselleştirilmiş tedavi planlarının geliştirilmesinde kritik bir rol oynamaktadır.
References
- [1] Mayo Clinic, '' Oral health: A window to your overall health'',https://www.mayoclinic.org/healthy-lifestyle/adult-health/in-depth/dental/art-20047475, (Access date: 28 April 2025).
- [2] Di Spirito F., ''Oral and Systemic Health in the Elderly'', Applied Sciences, 12(22): 11718, (2022).
- [3] Seitz M. W., Listl S., Bartols A., Schubert I., Blaschke K., Haux C. and Van Der Zande M. M., ''Current Knowledge on Correlations Between Highly Prevalent Dental Conditions and Chronic Diseases: An Umbrella Review'', Preventing Chronic Disease, 16: E132, (2019).
- [4] GBD 2019 Diseases and Injuries Collaborators, "Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019", The Lancet, 396: 1204-1222, (2020).
- [5] Helli S. and Hamamcı A., ''Tooth Instance Segmentation on Panoramic Dental Radiographs Using U-Nets and Morphological Processing'', Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 10(1): 39–50, (2022).
- [6] Hou S., Zhou T., Liu Y., Dang P., Lu H., Shi H., ''Teeth U-Net: A segmentation model of dental panoramic X-ray images for context semantics and contrast enhancement'', Computers in Biology and Medicine, 152(2): 106296, (2022).
- [7] Karaoglu A., Ozcan C., Pekince A. And Yasa Y., ''Numbering teeth in panoramic images: A novel method based on deep learning and heuristic algorithm'', Engineering Science and Technology, an International Journal, 37(3): 101316, (2023).
- [8] Durmuş M., Ergen B., Çelebi A. and Türkoğlu M., ''ResNet Tabanlı PSPNet Kullanarak Panoramik Görüntülerde Gömülü Diş Segmentasyon Analizi'', Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 36(1): 159–166, (2024).
- [9] Abdulwahhab A. H., Mahmood N. T., Mohammed A. A., Myderrizi I. and Al-Jumaili M. H., ''A review on medical image applications based on deep learning techniques'', Journal of Image and Graphics, 12(3): 215–227, (2024).
- [10] Eker A. G. and Duru N., ''Medikal Görüntü İşlemede Derin Öğrenme Uygulamaları'', Acta Infologica, 5(2): 459–474, (2021).
- [11] Darıcı, M., B., “Performance analysis of combination of cnn-based models with adaboost algorithm to diagnose covid-19 disease”, Journal of Polytechnic, 26(1): 179-190, (2023).
- [12] Ünsal Ü. and Adem K., ''Diş Görüntüleri Üzerinde Görüntü İşleme ve Derin Öğrenme Yöntemleri Kullanılarak Çürük Seviyesinin Sınıflandırılması'', Uluslararası Sivas Bilim ve Teknoloji Üniversitesi Dergisi, 2(2): 30–53, (2023).
- [13] Estai M., Tennant M., Gebauer D., Brostek A., Vignarajan J., Mehdizadeh M. and Saha S., ''Deep learning for automated detection and numbering of permanent teeth on panoramic images'', Dentomaxillofacial Radiology, 51(2): 20210296, (2022).
- [14] Lee J. H., Han S. S., Kim Y. H., Lee C. and Kim I., ''Application of a fully deep convolutional neural network to the automation of tooth segmentation on panoramic radiographs'', Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology, 129(6): 635–642, (2020).
- [15] Chung M., Lee M., Hong J., Park S., Lee J., Lee J., Yang I. H., Lee J. and Shin Y. G., ''Pose-aware instance segmentation framework from cone beam CT images for tooth segmentation'', Computers in Biology and Medicine, 120(11): 103720, (2020).
- [16] Kong Z., Xiong F., Zhang C., Fu Z., Zhang M., Weng J. ve Fan M., ''Automated Maxillofacial Segmentation in Panoramic Dental X-Ray Images Using an Efficient Encoder-Decoder Network'', IEEE Access, 8: 207822-207833, (2020).
- [17] Chen Y., Du H., Yun Z., Yang S., Dai Z., Zhong L., Feng Q. and Yang W., ''Automatic segmentation of individual tooth in dental CBCT images from tooth surface map by a multi-task FCN'', IEEE Access, 8: 97296–97309, (2020).
- [18] Zhao Y., Li P., Gao C., Liu Y., Chen Q., Yang F. and Meng D., ''TSASNet: Tooth segmentation on dental panoramic X-ray images by two-stage attention segmentation network'', Knowledge-Based Systems, 206(8): 106338, (2020).
- [19] Rao Y., Wang Y., Meng F., Pu J., Sun J. and Wang Q., ''A symmetric fully convolutional residual network with DCRF for accurate tooth segmentation'', IEEE Access, 8: 92028–92038, (2020).
- [20] Cha J. Y., Yoon H. I., Yeo I. S., Huh K. H. and Han J. S., ''Panoptic Segmentation on Panoramic Radiographs: Deep Learning-Based Segmentation of Various Structures Including Maxillary Sinus and Mandibular Canal'', Journal of Clinical Medicine, 10(12): 2577, (2021).
- [21] Chen Q., Zhao Y., Liu Y., Sun Y., Yang C., Li P., Zhang L. and Gao C., ''MSLPNet: Multi-scale location perception network for dental panoramic X-ray image segmentation'', Neural Computing and Applications, 33(19): 10277–10291, (2021).
- [22] Duan W., Chen Y., Zhang Q., Lin X. and Yang X., ''Refined tooth and pulp segmentation using U-Net in CBCT image'', Dentomaxillofacial Radiology, 50(6): 20200251, (2021).
- [23] Harsh P., Chakraborty R., Tripathi S. and Sharma K., ''Attention U-Net architecture for dental image segmentation'', 2021 International Conference on Intelligent Technologies (CONIT), Hubli, India, 1–5, (2021).
- [24] Cui Z., Li C., Chen N., Wei G., Chen R., Zhou Y., Shen D. and Wang W., ''TSegNet: An efficient and accurate tooth segmentation network on 3D dental model'', Medical Image Analysis, 69: 101949, (2021).
- [25] Yang Y., Xie R., Jia W., Chen Z., Yang Y., Xie L. And Jiang B., ''Accurate and automatic tooth image segmentation model with deep convolutional neural networks and level set method'', Neurocomputing, 419: 108–125, (2021).
- [26] Ghazvinian Zanjani F., Pourtaherian A., Zinger S., Anssari Moin D., Claessen F., Cherici T., Parinussa S. and de With P. H. N., ''Mask-MCNet: Tooth instance segmentation in 3D point clouds of intra-oral scans'', Neurocomputing, 453: 286–298, (2021).
- [27] Ying S., Wang B., Zhu H., Liu W. and Huang F., ''Caries segmentation on tooth X-ray images with a deep network'', Journal of Dentistry, 119: 104076, (2022).
- [28] da Silva Rocha E. and Endo P. T., ''A comparative study of deep learning models for dental segmentation in panoramic radiograph'', Applied Sciences, 12(6): 3103, (2022).
- [29] Bayrakdar I. S., Orhan K., Çelik Ö., Bilgir E., Sağlam H., Kaplan F. A., Görür S. A., Odabaş A., Aslan A. F. and Różyło-Kalinowska I., ''A U-Net approach to apical lesion segmentation on panoramic radiographs'', BioMed Research International, 2022: 7035367, (2022).
- [30] Rohrer C., Krois J., Patel J., Meyer-Lueckel H., Rodrigues J. A. and Schwendicke F., ''Segmentation of Dental Restorations on Panoramic Radiographs Using Deep Learning'', Diagnostics, 12(6): 1316, (2022).
- [31] Cui Z., Fang Y., Mei L., Zhang B., Yu B., Liu J., Jiang C., Sun Y., Ma L., Huang J., Liu Y., Zhao Y., Lian C., Ding Z., Zhu M. and Shen D., ''A fully automatic AI system for tooth and alveolar bone segmentation from cone-beam CT images'', Nature Communications, 13(1): 2096, (2022).
- [32] Panetta K., Rajendran R., Ramesh A., Rao S. and Agaian S., ''Tufts Dental Database: A Multimodal Panoramic X-Ray Dataset for Benchmarking Diagnostic Systems'', IEEE Journal of Biomedical and Health Informatics, 26(4): 1650–1659, (2022).
- [33] Oztekin F., Katar O., Sadak F., Aydogan M., Talo Yildirim T., Plawiak P., Yildirim O., Talo M. and Karabatak M., ''Automatic semantic segmentation for dental restorations in panoramic radiography images using U-Net model'', International Journal of Imaging Systems and Technology, 32(6): 1990–2001, (2022).
- [34] Ghafoor A., Moon S.-Y. and Lee B., ''Multiclass segmentation using teeth attention modules for dental X-ray images'', IEEE Access, 11: 123891–123903, (2023).
- [35] Gardiyanoğlu E., Ünsal G., Akkaya N., Aksoy S. and Orhan K., ''Automatic segmentation of teeth, crown-bridge restorations, dental implants, restorative fillings, dental caries, residual roots, and root canal fillings on orthopantomographs: Convenience and pitfalls'', Diagnostics, 13(8): 1487, (2023).
- [36] Lin S., Hao X., Liu Y., Yan D., Liu J. and Zhong M., ''Lightweight deep learning methods for panoramic dental X-ray image segmentation'', Neural Computing and Applications, 35(11): 8295-8306, (2022).
- [37] Baydar, O., Różyło-Kalinowska, I., Futyma-Gąbka, K., & Sağlam, H. (2023). The U-Net Approaches to Evaluation of Dental Bite-Wing Radiographs: An Artificial Intelligence Study. Diagnostics, 13(3), 453, (2023).
- [38] Rubiu G., Bologna M., Cellina M., Cè M., Sala D., Pagani R., Mattavelli E., Fazzini D., Ibba S., Papa S. and Ali M., ''Teeth segmentation in panoramic dental X-ray using Mask regional convolutional neural network'', Applied Sciences, 13(13): 7947, (2023).
- [39] Yang S., Li A., Li P., Yun Z., Lin G., Cheng J., Xu S. and Qiu B., ''Automatic segmentation of inferior alveolar canal with ambiguity classification in panoramic images using deep learning'', Heliyon, 9(2): e13694, (2023).
- [40] Zhu H., Cao Z., Lian L., Ye G., Gao H. and Wu J., ''CariesNet: a deep learning approach for segmentation of multi-stage caries lesion from oral panoramic X-ray image'', Neural Computing and Applications, 35: 16051-16059, (2023).
- [41] Mărginean A. C., Mureşanu S., Hedeşiu M. and Dioşan L., ''Teeth segmentation and carious lesions segmentation in panoramic X-ray images using CariSeg, a networks' ensemble'', Heliyon, 10(10): e30836, (2024).
- [42] Lin Z., He Z., Wang X., Zhang B., Liu C., Su W., Tan J. and Xie S., ''DBGANet: Dual-Branch Geometric Attention Network for Accurate 3D Tooth Segmentation'', IEEE Transactions on Circuits and Systems for Video Technology, 34(6): 4285–4298, (2024).
- [43] Wen X., Liu Z., Chu Y., Le M. and Li L., ''MRCM-UCTransNet: Automatic and accurate 3D tooth segmentation network from cone-beam CT images'', International Journal of Imaging Systems and Technology, 34(4): e23139, (2024).
- [44] Zannah R., Bashar M., Mushfiq R. B., Chakrabarty A., Hossain S. and Jung Y. J., ''Semantic segmentation on panoramic dental X-ray images using U-Net architectures'', IEEE Access, 12: 44598–44612, (2024).
- [45] Ma Y., Qu Z., Liu X., Lin J. and Jin Z., ''A high-precision framework for teeth instance segmentation in panoramic radiographs'', Displays, 89: 103064, (2025).
- [46] Durmuş M., Ergen B., Çelebi A. and Türkoğlu M., ''Comparative analysis of pixel-based segmentation models for accurate detection of impacted teeth on panoramic radiographs'', IEEE Access, 13: 6262–6276, (2025).
- [47] Fındık A. B., Demir G. D., Özkaya U. and Özdemir G., ''A robust generative segmentation method for panoramic dental radiography images'', International Journal of Imaging Systems and Technology, 35(3): e70099, (2025).
- [48] Şener B., “Tıbbi görüntülemede derin üretken modeller : bir literatür taraması”, Journal of Polytechnic, 28(2): 413-433, (2025).
- [49] Goodfellow I., Bengio Y. and Courville A., ''Deep Learning'', MIT Press, (2016).
- [50] Kuwada C., Ariji Y., Fukuda M., Kise Y., Fujita H., Katsumata A. and Ariji E., ''Deep learning systems for detecting and classifying the presence of impacted supernumerary teeth in the maxillary incisor region on panoramic radiographs'', Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, 130(4): 464–469, (2020).
- [51] Kim D., Choi E., Jeong H. G., Chang J. and Youm S., ''Expert system for mandibular condyle detection and osteoarthritis classification in panoramic imaging using R-CNN and CNN'', Applied Sciences, 10(21): 7464, (2020).
- [52] Kılıc M. C., Bayrakdar I. S., Çelik Ö., Bilgir E., Orhan K., Aydın O. B., Kaplan F. A., Sağlam H., Odabaş A., Aslan A. F. and Yılmaz A. B., ''Artificial intelligence system for automatic deciduous tooth detection and numbering in panoramic radiographs'', Dentomaxillofacial Radiology, 50(6): 20200172, (2021).
- [53] Lee D. W., Kim S. Y., Jeong S. N. and Lee J. H., ''Artificial intelligence in fractured dental implant detection and classification: Evaluation using dataset from two dental hospitals'', Diagnostics, 11(2): 233, (2021).
- [54] Moran M., Faria M., Giraldi G., Bastos L., Oliveira L. and Conci A., ''Classification of approximal caries in bitewing radiographs using convolutional neural networks'', Sensors, 21(15): 5192, (2021).
- [55] Krois J., Schneider L. and Schwendicke F., ''Impact of image context on deep learning for classification of teeth on radiographs'', Journal of Clinical Medicine, 10(8): 1635, (2021).
- [56] Chen H., Li H., Zhao Y., Zhao J. and Wang Y., ''Dental disease detection on periapical radiographs based on deep convolutional neural networks'', International Journal of Computer Assisted Radiology and Surgery, 16(4): 649–661, (2021).
- [57] Ahn Y., Hwang J. J., Jung Y. H., Jeong T. and Shin J., ''Automated mesiodens classification system using deep learning on panoramic radiographs of children'', Diagnostics, 11(8): 1477, (2021).
- [58] Yasa Y., Çelik Ö., Bayrakdar I. S., Pekince A., Orhan K., Akarsu S., Atasoy S., Bilgir E., Odabaş A. and Aslan A. F., ''An artificial intelligence proposal to automatic teeth detection and numbering in dental bitewing radiographs'', Acta Odontologica Scandinavica, 79(4): 275–281, (2021).
- [59] Li C. W., Lin S. Y., Chou H. S., Chen T. Y., Chen Y. A., Liu S. Y., Liu Y. L., Chen C. A., Huang Y. C., Chen S. L., Mao Y. C., Abu P. A. R., Chiang W. Y. and Lo W. S., ''Detection of dental apical lesions using CNNs on periapical radiograph'', Sensors, 21(21): 7049, (2021).
- [60] Bayraktar Y., Ayan E. “Diagnosis of interproximal caries lesions with deep convolutional neural network in digital bitewing radiographs” Clinical Oral Investigations, 26(1):623–632, (2021).
- [61] Mao Y.-C., Chen T.-Y., Chou H.-S., Lin S.-Y., Liu S.-Y., Chen Y.-A., Liu Y.-L., Chen C.-A., Huang Y.-C., Chen S.-L., Abu P. A. R., Chiang W.-Y., ''Caries and Restoration Detection Using Bitewing Film Based on Transfer Learning with CNNs'', Sensors, 21(13): 4613, (2021).
- [62] Aljabri M., Aljameel S. S., Min-Allah N., Alhuthayfi J., Alghamdi L., Alduhailan N., Alfehaid R., Alqarawi R., Alhareky M., Shahin S. Y. and Al Turki W., ''Canine impaction classification from panoramic dental radiographic images using deep learning models'', Informatics in Medicine Unlocked, 30: 100918, (2022).
- [63] Almalki Y. E., Din A. I., Ramzan M., Irfan M., Aamir K. M., Almalki A., Alotaibi S., Alaglan G., Alshamrani H. A. and Rahman S., ''Deep learning models for classification of dental diseases using orthopantomography X-ray OPG images'', Sensors, 22(19): 7370, (2022).
- [64] Vasdev D., Gupta V., Shubham S., Chaudhary A., Jain N., Salimi M. and Ahmadian A., ''Periapical dental X-ray image classification using deep neural networks'', Annals of Operations Research, 1–29, (2022).
- [65] Shon H. S., Kong V., Park J. S., Jang W., Cha E. J., Kim S. Y., Lee E. Y., Kang T. G. and Kim K. A., ''Deep learning model for classifying periodontitis stages on dental panoramic radiography'', Applied Sciences, 12(17): 8500, (2022).
- [66] Al-Ghamdi A. S. A., Ragab M., AlGhamdi S. A., Asseri A. H., Mansour R. F. and Koundal D., ''Detection of dental diseases through X-ray images using neural search architecture network'', Computational Intelligence and Neuroscience, 2022: 3500552, (2022).
- [67] Vimalarani G. and Ramachandraiah U., “Automatic diagnosis and detection of dental caries in bitewing radiographs using pervasive deep gradient based LeNet classifier model”, Microprocessors and Microsystems, 94(13):104654, (2022).
- [68] Estai M., Tennant M., Gebauer D., Brostek A., Vignarajan J., Mehdizadeh M. and Saha S., ''Evaluation of a deep learning system for automatic detection of proximal surface dental caries on bitewing radiographs'', Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology, 134(2): 262–270, (2022).
- [69] Li S., Liu J., Zhou Z., Zhou Z., Wu X., Li Y., Wang S., Liao W., Ying S. and Zhao Z., ''Artificial intelligence for caries and periapical periodontitis detection'', Journal of Dentistry, 122: 104107, (2022).
- [70] Chen S.-L., Chen T.-Y., Huang Y.-C., Chen C.-A., Chou H.-S., Huang Y.-Y., Lin W.-C., Li T.-C., Yuan J.-J., Abu P. A. R. and Chiang W.-Y., ''Missing teeth and restoration detection using dental panoramic radiography based on transfer learning with CNNs'', IEEE Access, 10: 118654–118664, (2022).
- [71] Chen S.-L., Chen T.-Y., Mao Y.-C., Lin S.-Y., Huang Y.-Y., Chen C.-A., Lin Y.-J., Hsu Y.-M., Li C.-A., Chiang W.-Y., Wong K.-Y. and Abu P. A. R., ''Automated detection system based on convolution neural networks for retained root, endodontic treated teeth, and implant recognition on dental panoramic images'', IEEE Sensors Journal, 22(23): 23293–23306, (2022).
- [72] Calazans M. A. A., Ferreira F. A. B. S., Alcoforado M. L. M. G., Santos A., Pontual A. A. and Madeiro F., ''Automatic classification system for periapical lesions in cone-beam computed tomography'', Sensors, 22(17): 6481, (2022).
- [73] Kaya E., Gunec H. G., Aydin K. C., Urkmez E. S., Duranay R. and Ates H. F., ''A deep learning approach to permanent tooth germ detection on pediatric panoramic radiographs'', Imaging Science in Dentistry, 52(3): 275–281, (2022).
- [74] Liu F., Gao L., Wan J., Lyu Z.-L., Huang Y.-Y., Liu C. and Han M., ''Recognition of digital dental X-ray images using a convolutional neural network'', Journal of Digital Imaging, 36(1): 73–79, (2023).
- [75] Zhou X., Yu G., Yin Q., Yang J., Sun J., Lv S. and Shi Q., ''Tooth type enhanced transformer for children caries diagnosis on dental panoramic radiographs'', Diagnostics, 13(4): 689, (2023).
- [76] Chen I. D. S., Yang C. M., Chen M. J., Chen M. C., Weng R. M. and Yeh C. H., ''Deep learning-based recognition of periodontitis and dental caries in dental X-ray images'', Bioengineering, 10(8): 911, (2023).
- [77] Chung M., Lee J., Park S., Lee M., Lee C. E., Lee J. and Shin Y.-G., ''Individual tooth detection and identification from dental panoramic X-ray images via point-wise localization and distance regularization'', Artificial Intelligence in Medicine, 139: 102490, (2023).
- [78] Chen S.-L., Chen T.-Y., Mao Y.-C., Lin S.-Y., Huang Y.-Y., Chen C.-A., Lin Y.-J., Chuang M.-H. and Abu P. A. R., ''Detection of various dental conditions on dental panoramic radiography using Faster R-CNN'', IEEE Access, 11: 127388–127401, (2023).
- [79] Yilmaz S., Tasyurek M., Amuk M., Celik M. and Canger E. M., ''Developing deep learning methods for classification of teeth in dental panoramic radiography'', Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology, 138(1): 118–127, (2024).
- [80] Lee H.-S., Yang S., Han J.-Y., Kang J.-H., Kim J.-E., Huh K.-H., Yi W.-J. and Heo M.-S., ''Automatic detection and classification of nasopalatine duct cyst and periapical cyst on panoramic radiographs using deep convolutional neural networks'', Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, 138(1): 184–195, (2024).
- [81] Bilal A., Khan A. H., Almohammadi K., Al Ghamdi S. A., Long H. and Malik H., ''PDCNET: Deep convolutional neural network for classification of periodontal disease using dental radiographs'', IEEE Access, 12: 150147–150165, (2024).
- [82] Korkmaz O. E., Guller H., Miloglu O., Ozbek I. Y., Oral E. A. and Guller M. T., ''The detection of distomolar teeth on panoramic radiographs using different artificial intelligence models'', Journal of Stomatology Oral and Maxillofacial Surgery, 126(5): 102151, (2025).
- [83] Zhang X., Guo E., Liu X., Zhao H., Yang J., Li W., Wu W. and Sun W., ''Enhancing furcation involvement classification on panoramic radiographs with vision transformers'', BMC Oral Health, 25(1): 153, (2025).
- [84] Wang Q., Zhu X., Sun Z., Zhang B., Yu J. and Qian S., ''Optimized Yolov8 feature fusion algorithm for dental disease detection'', Computers in Biology and Medicine, 187: 109778, (2025).
- [85] Küçük D. B., Imak A., Özçelik S. T. A., Çelebi A., Türkoğlu M., Sengur A. and Koundal D., ''Hybrid CNN-Transformer model for accurate impacted tooth detection in panoramic radiographs'', Diagnostics, 15(3): 244, (2025).
- [86] Bishop C. M., ''Pattern Recognition and Machine Learning'', Springer, (2006).
- [87] Kim C., Kim D., Jeong H., Yoon S.-J. and Youm S., ''Automatic tooth detection and numbering using a combination of a CNN and heuristic algorithm'', Applied Sciences, 10(16): 5624, (2020).
- [88] Lian L., Zhu T., Zhu F. and Zhu H., ''Deep learning for caries detection and classification'', Diagnostics, 11(9): 1672, (2021).
- [89] Muramatsu C., Morishita T., Takahashi R., Hayashi T., Nishiyama W., Ariji Y., Zhou X., Hara T., Katsumata A., Ariji E. and Fujita H., ''Tooth detection and classification on panoramic radiographs for automatic dental chart filing: improved classification by multi-sized input data'', Oral Radiology, 37(1): 13–19, (2021).
- [90] Shaheen E., Leite A., Alqahtani K. A., Smolders A., Van Gerven A., Willems H. and Jacobs R., ''A novel deep learning system for multi-class tooth segmentation and classification on cone beam computed tomography: A validation study'', Journal of Dentistry, 115: 103865, (2021).
- [91] Sivasundaram S. and Pandian C., ''Performance analysis of classification and segmentation of cysts in panoramic dental images using convolutional neural network architecture'', International Journal of Imaging Systems and Technology, 31(4): 2214–2225, (2021).
- [92] Leite A. F., Van Gerven A., Willems H., Beznik T., Lahoud P., Gaêta-Araujo H., Vranckx M. and Jacobs R., ''Artificial intelligence-driven novel tool for tooth detection and segmentation on panoramic radiographs'', Clinical Oral Investigations, 25(4): 2257–2267, (2021).
- [93] Mima Y., Nakayama R., Hizukuri A. and Murata K., ''Tooth detection for each tooth type by application of faster R CNNs to divided analysis areas of dental panoramic X ray images '', Radiological Physics and Technology, 15(2): 170–176, (2021).
- [94] Görürgöz C., Orhan K., Bayrakdar İ.Ş., Çelik Ö., Bilgir E., Odabaş A., Aslan A.F. and Jagtap R., “Performance of a convolutional neural network algorithm for tooth detection and numbering on periapical radiographs”,Dentomaxillofacial Radiology, 51(3): 20210296, (2022).
- [95] Estai M., Tennant M., Gebauer D., Brostek A., Vignarajan J., Mehdizadeh M. and Saha S., ''Deep learning for automated detection and numbering of permanent teeth on panoramic images'', Dentomaxillofacial Radiology, 51(2): 20210296, (2022).
- [96] Tekin B. Y., Ozcan C., Pekince A. and Yasa Y., ''An enhanced tooth segmentation and numbering according to FDI notation in bitewing radiographs'', Computers in Biology and Medicine, 146: 105547, (2022).
- [97] Chandrashekar G., AlQarni S., Bumann E. E. and Lee Y., ''Collaborative deep learning model for tooth segmentation and identification using panoramic radiographs'', Computers in Biology and Medicine, 148: 105829, (2022).
- [98] Zhang K., Chen H., Lyu P. and Wu J., ''A relation-based framework for effective teeth recognition on dental periapical X-rays'', Computerized Medical Imaging and Graphics, 95: 102022, (2022).
- [99] Park J., Lee J., Moon S. and Lee K., ''Deep learning based detection of missing tooth regions for dental implant planning in panoramic radiographic images'', Applied Sciences, 12(3): 1595, (2022).
- [100] Haghanifar A., Majdabadi M. M., Haghanifar S., Choi Y. and Ko S. B., ''PaXNet: Tooth segmentation and dental caries detection in panoramic X-ray using ensemble transfer learning and capsule classifier'', Multimedia Tools and Applications, 82: 27659–27679, (2023).
- [101] Fatima A., Shafi I., Afzal H., Mahmood K., Díez I. T., Lipari V., Ballester J. B. and Ashraf I., ''Deep learning-based multiclass instance segmentation for dental lesion detection'', Healthcare, 11(3): 347, (2023).
- [102] Rašić M., Tropčić M., Karlović P., Gabrić D., Subašić M. and Knežević P., ''Detection and segmentation of radiolucent lesions in the lower jaw on panoramic radiographs using deep neural networks'', Medicina, 59(12): 2138, (2023).
- [103] Panyarak W., Suttapak W., Wantanajittikul K., Charuakkra A. and Prapayasatok S., ''Assessment of YOLOv3 for caries detection in bitewing radiographs based on the ICCMS™ radiographic scoring system'', Clinical Oral Investigations, 27(4): 1731–1742, (2023).
- [104] Zhao X., Xu T., Peng L., Li S., Zhao Y., Liu H., He J. and Liang S., ''Recognition and segmentation of teeth and mandibular nerve canals in panoramic dental X-rays by Mask RCNN'', Displays, 78(1): 102447, (2023).
- [105] Chen C. C., Wu Y. F., Aung L. M., Lin J. C., Ngo S. T., Su J. N., Lin Y. M. and Chang W. J., ''Automatic recognition of teeth and periodontal bone loss measurement in digital radiographs using deep-learning artificial intelligence'', Journal of Dental Sciences, 18(3): 1301–1309, (2023).
- [106] Alqahtani K. A., Jacobs R., Smolders A., Van Gerven A., Willems H., Shujaat S. and Shaheen E., ''Deep convolutional neural network-based automated segmentation and classification of teeth with orthodontic brackets on cone-beam computed-tomographic images: a validation study'', European Journal of Orthodontics, 45(2): 169–174, (2023).
- [107] Xu M., Wu Y., Xu Z., Ding P., Bai H. and Deng X., ''Robust automated teeth identification from dental radiographs using deep learning'', Journal of Dentistry, 136: 104607, (2023).
- [108] Adnan, N., Umer, F., Malik, S. and Hussain, O. A. '' Multi-model deep learning approach for segmentation of teeth and periapical lesions on pantomographs'', Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology, 138(1): 196–204, (2024).
- [109] Manzari O. N., Bayrami F., Khaloo H., Khodakaramimaghsoud Z. and Shokouhi S. B., ''DenUnet: enhancing dental image segmentation through edge and body fusion'', Multimedia Tools and Applications, 84(14): 13201 - 13221, (2024).
- [110] Ariji Y., Araki K., Fukuda M., Nozawa M., Kuwada C., Kise Y. and Ariji E., ''Effects of the combined use of segmentation or detection models on the deep learning classification performance for cyst-like lesions of the jaws on panoramic radiographs: Preliminary research'', Oral Science International, 21(2): 198–206, (2024).
- [111] Brahmi W. and Jdey I., ''Automatic tooth instance segmentation and identification from panoramic X-ray images using deep CNN'', Multimedia Tools and Applications, 83(18): 55565–55585, (2024).
- [112] Latke V. and Narawade V., ''Detection of dental periapical lesions using retinex based image enhancement and lightweight deep learning model'', Image and Vision Computing, 146: 105016, (2024).
- [113] Amasya H., Jaju P. P., Ezhov M., Gusarev M., Atakan C., Sanders A., Manulius D., Golitskya M., Shrivastava K., Singh A., Gupta A., Önder M. and Orhan K., ''Development and validation of an artificial intelligence software for periodontal bone loss in panoramic imaging'', International Journal of Imaging Systems and Technology, 34(1): e22973, (2024).
- [114] Kadi H., Kawczynski M., Bendjama S., Flores J. Z., Leong-Hoi A., de Lastic H., Balbierer J., Mabileau C., Radoux J. P., Grollemund B., Jaegle J., Guebert C., Bisch B. and Bloch-Zupan A., ''i-Dent: A virtual assistant to diagnose rare genetic dental diseases'', Computers in Biology and Medicine, 180: 108927, (2024).
- [115] Guo Y., Guo J., Li Y., Zhang P., Zhao Y.-D., Qiao Y., Liu B. and Wang G., ''Rapid detection of non-normal teeth on dental X-ray images using improved Mask R-CNN with attention mechanism'', International Journal of Computer Assisted Radiology and Surgery, 19(4): 779–790, (2024).
- [116] Alsolamy M., Nadeem F., Azhari A. A., Alsolami W. and Ahmed W. M., ''Automated detection and labeling of posterior teeth in dental bitewing X-rays using deep learning'', Computers in Biology and Medicine, 183(10): 109262, (2024).
- [117] Beser B., Reis T., Berber M. N., Topaloglu E., Gungor E., Coruh Kılıc M., Duman S., Çelik Ö., Kuran A. and Bayrakdar İ. Ş., ''YOLO-V5 based deep learning approach for tooth detection and segmentation on pediatric panoramic radiographs in mixed dentition'', BMC Medical Imaging, 24(1): 224, (2024).
- [118] Xu X., Chen J. and Yin J., ''Tooth instance segmentation and disease detection with uncertainty-aware contrastive learning and cross-scale attention'', IEEE Journal of Biomedical and Health Informatics, (2025).
- [119] Hua Y., Chen R. and Qin H., ''YOLO-DentSeg: A lightweight real-time model for accurate detection and segmentation of oral diseases in panoramic radiographs'', Electronics, 14(4): 805, (2025).
- [120] Balel Y., Sağtaş K., Teke F. and Kurt M. A., ''Artificial intelligence-based detection and numbering of dental implants on panoramic radiographs'', Clinical Implant Dentistry and Related Research, 27(1): e70000, (2025).
- [121] Liu J., Zhang H., Chen J., Meng R., Gao C., Han L., Song Y., Tian Y. and Wang Y., ''Automated detection and segmentation of dental caries using a novel cascaded learning approach'', Biomedical Signal Processing and Control, 102: 107344, (2025).
- [122] Karadağ B. and Arı A., “Object detection with YOLOv7 model on smart mobile devices”, Journal of Polytechnic, 26(3): 1207-1214, (2023).