Aktif Karbon-Nikel Sülfür-Borofen Bazlı Elektrokatalizör Geliştirilmesi ve Hidrojen Evrim Reaksiyonu Performansının İncelenmesi
Year 2025,
EARLY VIEW, 1 - 1
Bilge Aslan Tanrıverdi
,
Büşranur Duman Sıncak
,
Mert Yekta Doğan
,
Hacı Mehmet Taşdemir
,
Dilşad Dolunay Eslek Koyuncu
,
Alpay Şahin
Abstract
Sürdürülebilir kalkınma hedeflerine ulaşmada stratejik bir rol üstlenen hidrojen teknolojisi, sera gazı emisyonlarının azaltılmasına yönelik önemli bir düşük karbon seçeneği sunmaktadır. Özellikle yeşil hidrojen, net sıfır emisyon hedeflerine yönelik geçiş sürecinde kilit bir rol üstlenmektedir. Bu çalışmada, aktif karbon destekli elektrot yüzeyine nikel sülfür ve borofen malzemeleri yüklenerek elektrokatalizörler sentezlenmiş ve hidrojen oluşum reaksiyonu (HER) için elektrokimyasal performansları karşılaştırmalı olarak incelenmiştir. Aktif karbonun XRD deseni, grafitik tabakaların varlığını ve malzemenin amorf karakterini ortaya koymuştur. Ortalama gözenek çapı ise yaklaşık 1,44 nm olup, gözenek dağılımının büyük ölçüde mikrogözenek bölgesinde yoğunlaştığı belirlenmiştir. Hidrotermal yöntemle sentezlenen NiS’in XRD deseninde gözlenen karakteristik pikler ise Millerite (NiS) fazına karşılık gelmektedir. Pul pul dökülme yöntemiyle sentezlenen borofen için elde edilen XRD kırınım piklerinin çoğu β-rhombohedral bor ile uyumludur. Sentezlenen elektrokatalizörler arasında borofen katkılı nikel sülfür elektrokatalizörü (80AC18NiS2B), 10 mA.cm⁻² de 421 mV aşırı potansiyel, stabilite testi sonrası %43,47 akım artışı ve belirgin elektro¬kimyasal aktivasyon ile iyileşmiş HER kinetiğini göstermiştir. Bu çalışma, aktif karbon destekli nikel sülfür ve borofen katkılı elektrokatalizörünün, sürdürülebilir hidrojen üretimi için etkin ve uzun ömürlü alternatifler sunabileceğini göstermektedir.
References
-
[1] Hassan Q., Algburi S., Sameen A.Z., Salman H.M., Jaszczur M. “Green hydrogen: A pathway to a sustainable energy future”, International Journey of Hydrogen Energy, 50, 310-333, (2024).
-
[2] Mohajan, Haradhan “Greenhouse gas emissions increase global warming” International Journal of Economic and Political, 1(2), 21–34, (2013).
-
[3] Mohideen M. M., Ramakrishna S., Prabu S., Liu Y. “Advancing green energy solution with the impetus of Covid-19 pandemic”, Journal of Energy Chemistry, Volume 59, Pages 688-705, (2021).
-
[4] Gördesel Yıldız M., Yörük Ö., Uysal D. Doğan Ö.M., “Investigation of Hydrogen Production via Black Water Electrolysis”, Journal of Polytechnic, 28(2): 585-594, (2025).
-
[5] Anders F.A., Regmi Y. N., Wei C., Xia D., Kibsgaard J., King L. A. “Precious Metal Free Hydrogen Evolution Catalyst Design and Application”, Chem. Rev.,124, 5617-5667, (2024).
-
[6] Harichandan S.,Kar S.K., Rai P.K. “A systematic and critical review of green hydrogen economy in India”, International Journal of Hydrogen Energy, Vol 48, 18, 31425-31442 (2023).
-
[7] Luo Y., Zhang Y., Zhu J., Tian X., Liu G., Feng Z., Pan L., Liu X., Han N., and Tan R. “Material Engineering Strategies for Efficient Hydrogen Evolution Reaction Catalysts”, Small Methods, 2400158, 1-18, (2024).
-
[8] Tymoczko J., Calle-Vallejo F., Schuhmann W., Bandarenka A.S. “Making the hydrogen evolution reaction in polymer electrolyte membrane electrolysers even faster”, Nature Communications, 7:10990, (2015).
-
[9] Tasgin B., Ilbas M. “Pressure Analysis Investigation of PEM Electrolyzer Cell Used for Green Hydrogen Production”, Journal of Polytechnic, 26(4): 1533-1541, (2023).
-
[10] Aydınoğlu A.U., Erden-Topal Y. ve Gökalp İ., “Hidrojen Teknolojileri Araştırmalarında Disiplinlerarasılık: Toplumsal Bilimler Yaklaşımı”, Politeknik Dergisi, 26(1): 357-366, (2023).
-
[11] Bao F., Kemppainen E., Dorbandt I., Bors R., Xi F., Schlatmann R., Krol R.V. and Calnan S. “Understanding the Hydrogen Evolution Reaction Kinetics of Electrodeposited Nickel–Molybdenum in Acidic, Near-Neutral, and Alkaline Conditions”, ChemElectroChem, 8/1, (2021).
-
[12] Panda A., Son Y., Umer M., Lee G., Balamurugan M., Lee J., Kim W., Umapathi h, EA Lohith R., Keerthi K., Nam K.T., Zboril R., Kim M.J., Venkateswarlu S., Yoon M. “Diatom derived hollow 3D Frame as a synergetic support for millerite nanoparticles: A unique hydrogen evolution electrocatalyst and its mechanistic insights”, Chemical Engineering Journal, 509, 160831, (2025).
-
[13] Chafidz A., Astuti W., Hartanto D., Mutia A.S., Sari P.R. “Preparation of activated carbon from banana peel waste for reducing air pollutant from motorcycle muffler”, MATEC Web of Conferences 154, 01021, (2018).
-
[14] Yerdauletov M. S., Nazarov K., Mukhametuly B., Yeleuov M.A., Daulbayev C., Abdulkarimova R., Yskakov A., Napolskiy F., Krivchenko V. “Characterization of Activated Carbon from Rice Husk for Enhanced Energy Storage Devices”, Molecules, 28, 5818, (2023).
-
[15] Dogan M.Y., Yasyerli S., Tasdemir H.M, Arbag H., Yasyerli N. “H2 production from H2S over activated carbon prepared at different carbonization temperatures as efficient microwave catalyst”, Renewable Energy, 256, 124191 (2025).
-
[16] Mitchell G.S. da Silva, Celisnolia M. Leite, Marco A.L. Cordeiro, Valmor R. Mastelaro, Edson R. Leite “One-Step Synthesis of Nickel Sulfides and Their Electrocatalytic Activities for Hydrogen Evolution Reaction: A Case Study of Crystalline h NiS and o Ni9S8 Nanoparticles”, ACS Appl. Energy Mater, 3, 9498-9503, (2020).
-
[17] Chen Y., Fan Y., Cui Z., Huang H., Cai D., Zhang J., Zhou Y., Xu M., Tong R. “Nickel Sulfide-Based Electrocatalysts For Overall Water Splitting”, International Journal of Hydrogen Energy, Volume 48, Issue 72, 22 August 2023, Pages 27992-28017, (2023).
-
[18] Karthikeyan R., Navaneethan M. Archana J., Thangaraju D., Arivanandhan M. and Hayakawa Y. “Shape controlled synthesis of hierarchical nickel sulfide by the hydrothermal method”, Dalton Transactions, 2-19, (2014).
-
[19] Gupta G. H., Kadakia S., Agiwal D., Keshari T., Kumar S. “Borophene Nanomaterials: Synthesis and Applications in Biosensors”, Mater. Adv., 5, 1803, (2024).
-
[20] Weng Q., Li G., Feng X., Nielsch K., Golberg D., Schmidr O.G. “Electronic and Optical Properties of 2D Materials Constructed from Light Atoms”, Adv. Mater., 30, 1801600, (2018).
-
[21] Ou M., Wang X., Yu L., Liu C., Tao W., Ji X. and Mei l. “The Emergence and Evolution of Borophene”, Adv. Sci., 2001801, (1- 29), (2021).
-
[22] Arbağ H., “Effect of impregnation sequence of Mg on performance of mesoporous alümina supported Ni catalyst in dry reforming of methane”, International Journal of Hydrogen Energy, Volume 43, Issue 3, 6561-6574, (2018).
-
[23] Zhanga Y., Liua L., Zhanga P., Wanga J., Xuc M., Denga Q., Zenga Z., Deng S., “Ultra-high surface area and nitrogen-rich porous carbons prepared by a lowtemperature activation method with superior gas selective adsorption and outstanding supercapacitance performance”, Chemical Engineering Journal, 355, 309–319, (2019).
-
[24] Tang J., Ding Q., Zhang S., Wu G. And Hu L., “Improved Tribological Performance of Amorphous Carbon (a-C) Coating by ZrO2 Nanoparticles”, Materials, 9, 795, (2016).
-
[25] Shahroudi A., Esfandiari M. and Habibzadeh S. “Nickel sulfide and phosphide electrocatalysts for hydrogen evolution reaction: challenges and future perspectives”, RSC Adv., 12, 29440–29468, (2022).
-
[26] Fu B., Tzitzios V., Zhang Q. Rodriguez, B., Pissas M., Sofianos M. V., “Exploring the Magnetic and Electrocatalytic Properties of Amorphous MnB Nanoflakes”, Nanomaterials, 13(2), 300 (2023).
-
[27] Wang Y., Sun Y., Liao H., Sun S., Li S., Ager J.W., Xu Z.J. “Activation Effect of Electrochemical Cycling on Gold Nanoparticles towards the Hydrogen Evolution Reaction in Sulfuric Acid”, Electrochimica Acta 209, 440–447 (2016).
-
[28] Chung J.Y, Yuan Y., Mishra T.P., Joseph C., Canepa P., Ranjan P., Sadki E.H.S., Gradecak S., Garaj S., “Structure and exfoliation mechanism of twodimensional boron nanosheets” Nature Communications, 15:6122, (2024).
-
[29] Macdonald R.J., Johnson W.B, “Impedance Spectroscopy Theory, Experiment, and Applications, Chapter-1: Fundamentals of Impedance Spectroscopy”, Second Edition, A John Wiley & Sons, Inc., Publication, 2 (2005).
Development of Activated Carbon-Nickel Sulfide-Borophene Based Electrocatalyst and Investigation of Hydrogen Evolution Reaction Performance
Year 2025,
EARLY VIEW, 1 - 1
Bilge Aslan Tanrıverdi
,
Büşranur Duman Sıncak
,
Mert Yekta Doğan
,
Hacı Mehmet Taşdemir
,
Dilşad Dolunay Eslek Koyuncu
,
Alpay Şahin
Abstract
Hydrogen technology, which plays a strategic role in achieving sustainable development goals, offers an important low-carbon option for reducing greenhouse gas emissions. Green hydrogen, in particular, plays a key role in the transition to net-zero emissions targets. In this study, electrocatalysts were synthesized by loading nickel sulfide and borophene materials onto an activated carbon-supported electrode surface, and their electrochemical performances for the hydrogen evolution reaction (HER) were comparatively investigated. The XRD pattern of activated carbon revealed the presence of graphitic layers and the amorphous character of the material. The average pore diameter is approximately 1.44 nm, and it has been determined that the pore distribution is largely concentrated in the micropore region. The characteristic peaks observed in the XRD pattern of NiS synthesized by the hydrothermal method correspond to the Millerite (NiS) phase. Most of the XRD diffraction peaks obtained for borophene synthesized by the flaking method are consistent with β-rhombohedral boron. Among the synthesized electrocatalysts, the borophen-doped nickel sulfide electrocatalyst (80AC18NiS2B) exhibited an overpotential of 421 mV at 10 mA.cm⁻², 43.47% current increase after the stability test, and improved HER kinetics with significant electrochemical activation. This study demonstrates that nickel sulfide and borophene supported on activated carbon electrocatalysts can offer effective and long-lasting alternatives for sustainable hydrogen production.
References
-
[1] Hassan Q., Algburi S., Sameen A.Z., Salman H.M., Jaszczur M. “Green hydrogen: A pathway to a sustainable energy future”, International Journey of Hydrogen Energy, 50, 310-333, (2024).
-
[2] Mohajan, Haradhan “Greenhouse gas emissions increase global warming” International Journal of Economic and Political, 1(2), 21–34, (2013).
-
[3] Mohideen M. M., Ramakrishna S., Prabu S., Liu Y. “Advancing green energy solution with the impetus of Covid-19 pandemic”, Journal of Energy Chemistry, Volume 59, Pages 688-705, (2021).
-
[4] Gördesel Yıldız M., Yörük Ö., Uysal D. Doğan Ö.M., “Investigation of Hydrogen Production via Black Water Electrolysis”, Journal of Polytechnic, 28(2): 585-594, (2025).
-
[5] Anders F.A., Regmi Y. N., Wei C., Xia D., Kibsgaard J., King L. A. “Precious Metal Free Hydrogen Evolution Catalyst Design and Application”, Chem. Rev.,124, 5617-5667, (2024).
-
[6] Harichandan S.,Kar S.K., Rai P.K. “A systematic and critical review of green hydrogen economy in India”, International Journal of Hydrogen Energy, Vol 48, 18, 31425-31442 (2023).
-
[7] Luo Y., Zhang Y., Zhu J., Tian X., Liu G., Feng Z., Pan L., Liu X., Han N., and Tan R. “Material Engineering Strategies for Efficient Hydrogen Evolution Reaction Catalysts”, Small Methods, 2400158, 1-18, (2024).
-
[8] Tymoczko J., Calle-Vallejo F., Schuhmann W., Bandarenka A.S. “Making the hydrogen evolution reaction in polymer electrolyte membrane electrolysers even faster”, Nature Communications, 7:10990, (2015).
-
[9] Tasgin B., Ilbas M. “Pressure Analysis Investigation of PEM Electrolyzer Cell Used for Green Hydrogen Production”, Journal of Polytechnic, 26(4): 1533-1541, (2023).
-
[10] Aydınoğlu A.U., Erden-Topal Y. ve Gökalp İ., “Hidrojen Teknolojileri Araştırmalarında Disiplinlerarasılık: Toplumsal Bilimler Yaklaşımı”, Politeknik Dergisi, 26(1): 357-366, (2023).
-
[11] Bao F., Kemppainen E., Dorbandt I., Bors R., Xi F., Schlatmann R., Krol R.V. and Calnan S. “Understanding the Hydrogen Evolution Reaction Kinetics of Electrodeposited Nickel–Molybdenum in Acidic, Near-Neutral, and Alkaline Conditions”, ChemElectroChem, 8/1, (2021).
-
[12] Panda A., Son Y., Umer M., Lee G., Balamurugan M., Lee J., Kim W., Umapathi h, EA Lohith R., Keerthi K., Nam K.T., Zboril R., Kim M.J., Venkateswarlu S., Yoon M. “Diatom derived hollow 3D Frame as a synergetic support for millerite nanoparticles: A unique hydrogen evolution electrocatalyst and its mechanistic insights”, Chemical Engineering Journal, 509, 160831, (2025).
-
[13] Chafidz A., Astuti W., Hartanto D., Mutia A.S., Sari P.R. “Preparation of activated carbon from banana peel waste for reducing air pollutant from motorcycle muffler”, MATEC Web of Conferences 154, 01021, (2018).
-
[14] Yerdauletov M. S., Nazarov K., Mukhametuly B., Yeleuov M.A., Daulbayev C., Abdulkarimova R., Yskakov A., Napolskiy F., Krivchenko V. “Characterization of Activated Carbon from Rice Husk for Enhanced Energy Storage Devices”, Molecules, 28, 5818, (2023).
-
[15] Dogan M.Y., Yasyerli S., Tasdemir H.M, Arbag H., Yasyerli N. “H2 production from H2S over activated carbon prepared at different carbonization temperatures as efficient microwave catalyst”, Renewable Energy, 256, 124191 (2025).
-
[16] Mitchell G.S. da Silva, Celisnolia M. Leite, Marco A.L. Cordeiro, Valmor R. Mastelaro, Edson R. Leite “One-Step Synthesis of Nickel Sulfides and Their Electrocatalytic Activities for Hydrogen Evolution Reaction: A Case Study of Crystalline h NiS and o Ni9S8 Nanoparticles”, ACS Appl. Energy Mater, 3, 9498-9503, (2020).
-
[17] Chen Y., Fan Y., Cui Z., Huang H., Cai D., Zhang J., Zhou Y., Xu M., Tong R. “Nickel Sulfide-Based Electrocatalysts For Overall Water Splitting”, International Journal of Hydrogen Energy, Volume 48, Issue 72, 22 August 2023, Pages 27992-28017, (2023).
-
[18] Karthikeyan R., Navaneethan M. Archana J., Thangaraju D., Arivanandhan M. and Hayakawa Y. “Shape controlled synthesis of hierarchical nickel sulfide by the hydrothermal method”, Dalton Transactions, 2-19, (2014).
-
[19] Gupta G. H., Kadakia S., Agiwal D., Keshari T., Kumar S. “Borophene Nanomaterials: Synthesis and Applications in Biosensors”, Mater. Adv., 5, 1803, (2024).
-
[20] Weng Q., Li G., Feng X., Nielsch K., Golberg D., Schmidr O.G. “Electronic and Optical Properties of 2D Materials Constructed from Light Atoms”, Adv. Mater., 30, 1801600, (2018).
-
[21] Ou M., Wang X., Yu L., Liu C., Tao W., Ji X. and Mei l. “The Emergence and Evolution of Borophene”, Adv. Sci., 2001801, (1- 29), (2021).
-
[22] Arbağ H., “Effect of impregnation sequence of Mg on performance of mesoporous alümina supported Ni catalyst in dry reforming of methane”, International Journal of Hydrogen Energy, Volume 43, Issue 3, 6561-6574, (2018).
-
[23] Zhanga Y., Liua L., Zhanga P., Wanga J., Xuc M., Denga Q., Zenga Z., Deng S., “Ultra-high surface area and nitrogen-rich porous carbons prepared by a lowtemperature activation method with superior gas selective adsorption and outstanding supercapacitance performance”, Chemical Engineering Journal, 355, 309–319, (2019).
-
[24] Tang J., Ding Q., Zhang S., Wu G. And Hu L., “Improved Tribological Performance of Amorphous Carbon (a-C) Coating by ZrO2 Nanoparticles”, Materials, 9, 795, (2016).
-
[25] Shahroudi A., Esfandiari M. and Habibzadeh S. “Nickel sulfide and phosphide electrocatalysts for hydrogen evolution reaction: challenges and future perspectives”, RSC Adv., 12, 29440–29468, (2022).
-
[26] Fu B., Tzitzios V., Zhang Q. Rodriguez, B., Pissas M., Sofianos M. V., “Exploring the Magnetic and Electrocatalytic Properties of Amorphous MnB Nanoflakes”, Nanomaterials, 13(2), 300 (2023).
-
[27] Wang Y., Sun Y., Liao H., Sun S., Li S., Ager J.W., Xu Z.J. “Activation Effect of Electrochemical Cycling on Gold Nanoparticles towards the Hydrogen Evolution Reaction in Sulfuric Acid”, Electrochimica Acta 209, 440–447 (2016).
-
[28] Chung J.Y, Yuan Y., Mishra T.P., Joseph C., Canepa P., Ranjan P., Sadki E.H.S., Gradecak S., Garaj S., “Structure and exfoliation mechanism of twodimensional boron nanosheets” Nature Communications, 15:6122, (2024).
-
[29] Macdonald R.J., Johnson W.B, “Impedance Spectroscopy Theory, Experiment, and Applications, Chapter-1: Fundamentals of Impedance Spectroscopy”, Second Edition, A John Wiley & Sons, Inc., Publication, 2 (2005).