Research Article
BibTex RIS Cite

Control of Battery Energy Storage Systems Providing Primary Frequency Control Service

Year 2025, EARLY VIEW, 1 - 1
https://doi.org/10.2339/politeknik.1742465

Abstract

The increasing share of renewable energy sources in the system leads to a decrease in system inertia and a weakening of frequency stability. Sudden power imbalances occurring under low inertia conditions lead to faster and higher amplitude frequency deviations, while conventional generation units cannot adequately respond to these rapid changes. Therefore, thanks to their short response time and bidirectional active power support, battery energy storage systems stand out as an effective solution for frequency control applications. In this study, a battery model providing primary frequency control services was created in the MATLAB/Simulink environment using grid frequency data for 2023. The dead band, depth of discharge and level of charge set point parameters were optimized using the grid search algorithm to effectively utilize battery energy storage systems in primary frequency control and improve their performance. The system parameters determined from the simulation studies are observed to have significant effects on the annual capacity decay of the battery, the number of cycles, and the system revenue. As a result, it becomes clear that operating battery energy storage systems in accordance with primary frequency control service requirements has a decisive impact on system performance and economic efficiency.

References

  • [1] Behabtu H. A., Messagie M., Coosemans T., Berecibar M., Fante K. A., Kebede A. A. and Van Mierlo J., “A Review of Energy Storage Technologies’ Application Potentials in Renewable Energy Sources Grid Integration'”, Sustainability, 12: 10511, (2020).
  • [2] Zhao C., Hashemi S., Andersen P. B. and Traholt C., “Data-driven state of health modeling of battery energy storage systems providing grid services'”, 11th International Conference on Power, Energy and Electrical Engineering (CPEEE), Tokyo, Japan, 43–49, (2021).
  • [3] Özdoğan N. ve Bahçeci S., “Şebekeye Bağlı Bir Rüzgâr Enerji Sisteminin PSCAD ile Modellenmesi ve İncelenmesi”, Politeknik Dergisi, 26(1): 49-59, (2023).
  • [4] Luo X., Wang J., Dooner M. and Clarke J., “Overview of current development in electrical energy storage technologies and the application potential in power system operation”, Applied Energy, 137: 511–536, (2015).
  • [5] Zakeri B. and Syri S., “Electrical energy storage systems: A comparative life cycle cost analysis”, Renewable and Sustainable Energy Reviews, 42: 569–596, (2015).
  • [6] Divya K. C. and Østergaard J., “Battery energy storage technology for power systems—An overview”, Electric Power Systems Research, 79: 511–520, (2009).
  • [7] International Renewable Energy Agency (IRENA), “Electricity Storage and Renewables: Costs and Markets to 2030”, IRENA Publications, Abu Dhabi, (2017).
  • [8] Saib S, Bayındır R, Vadi S., “A review: Usage of Different Technologies of Electrical Energy Storage System Coupled Hybrid Power System”, Politeknik Dergisi, 28(2):331-349, (2025).
  • [9] Dunn B., Kamath H. and Tarascon J. M., “Electrical Energy Storage for the Grid: A Battery of Choices”, Science, 334: 928–935, (2011).
  • [10] Olabi A. G., Wilberforce T., Sayed E. T. and Abdelkareem M. A., “Overview of energy storage technologies”, Energy, 254: 124998, (2022).
  • [11] Wang Y., Chen K. and Xue H., “Advances and prospects of next-generation energy storage devices”, Energy Storage Materials, 25: 729–748, (2020).
  • [12] Schmidt O., Melchior S., Hawkes A. and Staffell I., “Projecting the Future Levelized Cost of Electricity Storage Technologies”, Joule, 3: 81–100, (2019).
  • [13] European Association for Storage of Energy (EASE), “Energy Storage: A Key Enabler for the European Green Deal”, EASE Publications, Brussels, (2020).
  • [14] Su D. and Lei Z., “Optimal configuration of battery energy storage system in primary frequency regulation”, Energy Reports, 7(S6): 157–162, (2021).
  • [15] Çelik E., “Termik Güç Santrali ve Fotovoltaik Güneş Enerji Sisteminden Oluşan Güç Sisteminde Üstel PI Denetleyici ile Sekonder Frekans Regülasyonu”, Mühendislik Bilimleri ve Araştırmaları Dergisi, 6(1): 133–142, (2024).
  • [16] Enerji Piyasası Düzenleme Kurumu, “Elektrik Piyasası Yan Hizmetler Yönetmeliği”, (2025).
  • [17] Enerji Piyasası Düzenleme Kurumu, “Elektrik Piyasası Şebeke Yönetmeliği”, (2025).
  • [18] Koller M., Booth C., Burt G. and Fox B., “Primary frequency response from battery energy storage system: A case study”, Energy Procedia, 46: 220–226, (2013).
  • [19] Yang Y., Bremner S., Menictas C. and Kay M., “Battery energy storage system size determination in renewable energy-based power systems”, Renewable and Sustainable Energy Reviews, 91: 109–125, (2018).
  • [20] Peddakapu K., Mohamed M. R., Srinivasarao P., Arya Y., Leung P. K. and Kishore D. J. K., “A state-of-the-art review on modern and future developments of AGC/LFC of conventional and renewable energy-based power systems”, Renewable Energy Focus, 43: 146–171, (2022).
  • [21] Huang J. and Yang D., “Improved system frequency regulation capability of a battery energy storage system”, Frontiers in Energy Research, 10: 904430, 1–10, (2022).
  • [22] Mufalo C. B. M., Lima B. C., Otremba L., Monaro R. M. and Salles M. B. C., “Optimized sizing of BESS for primary frequency control in a hybrid O&G FPSO unit”, IET Renewable Power Generation, 19(1): e70061, (2025).
  • [23] Suberu M. Y., Mustafa M. W. and Bashir N., “Energy storage systems for renewable energy power sector integration and mitigation of intermittency”, Renewable and Sustainable Energy Reviews, 35: 499–514, (2014).
  • [24] Arrigo F., Bompard E., Merlo M. and Milano F., “Assessment of primary frequency control through battery energy storage systems”, Electric Power and Energy Systems, 115: 105428, (2020).
  • [25] Yoon M., Lee J., Song S., Yoo Y., Jang G., Jung S. and Hwang S., “Utilization of energy storage system for frequency regulation in large-scale transmission system”, Energies, 12(20): 3863, (2019).
  • [26] Aghamohammadi M. R. and Abdolahinia H., “A new approach for optimal sizing of battery energy storage system for primary frequency control of islanded microgrid”, Electric Power and Energy Systems, 54: 325–333, (2014).
  • [27] Namor E., Sossan F., Cherkaoui R. and Paolone M., “Control of Battery Storage Systems for the Simultaneous Provision of Multiple Services”, IEEE Transactions on Smart Grid, 10(3): 2799–2809, (2019).
  • [28] Kalavani F., Zamani-Gargari M., Mohammadi-Ivatloo B. and Rasouli M., “A contemporary review of the applications of nature-inspired algorithms for optimal design of automatic generation control for multi-area power systems”, Artificial Intelligence Review, 51(2): 187–218, (2019).
  • [29] Mejía-Giraldo D., Velásquez-Gomez G., Muñoz-Galeano N., Cano-Quintero J. B. and Lemos Cano S., “A BESS Sizing Strategy for Primary Frequency Regulation Support of Solar Photovoltaic Plants”, Energies, 12(2): 317, (2019).
  • [30] Mureddu M., Facchini A. and Damiano A., “A Statistical Approach for Modeling the Aging Effects in Li-Ion Energy Storage Systems”, IEEE Access, 6: 42196–42206, (2018).
  • [31] Mohamed A., Rigo-Mariani R., Debusschere V. and Pin L., “Stacked Revenues for Energy Storage Participating in Energy and Reserve Markets with an Optimal Frequency Regulation Modeling”, Applied Energy, 350: 121721, (2023).
  • [32] Khezri R., Steen D., Wikner E. and Tuan L. A., “Optimal V2G Scheduling of an EV With Calendar and Cycle Aging of Battery: An MILP Approach”, IEEE Transactions on Transportation Electrification, 10(4): 10497-10507, (2024).
  • [33] Duanmu C., Shi L., Jian D., Ding R., Li Y. and Wu F., “Optimized Battery Capacity Allocation Method for Wind Farms with Dual Operating Conditions”, Sustainability, 16(9): 3615, (2024).
  • [34] Nehasil R. and Mészáros P., “Frequency Regulation with Storage: On Losses and Profits”, European Journal of Operational Research, 311(2): 511–525, (2024).
  • [35] Moradzadeh M. and Haghifam M. R., “Voltage/Frequency Deviations Control via Distributed Battery Energy Storage System Considering State of Charge”, Applied Sciences, 9(6): 1148, (2019).
  • [36] Torres A., Cano A. and Gomez J., “A review of battery energy storage systems for ancillary services in distribution grids”, Frontiers in Energy Research, 10: 971704, (2022).
  • [37] Ma Q., Wei W., Wu L. and Mei S., “Life-Aware Operation of Battery Energy Storage in Frequency Regulation”, IEEE Transactions on Sustainable Energy, 14(3): 1725-1736, (2023).
  • [38] Krupp A., Beckmann R., Draheim P., Meschede E., Ferg E., Schuldt F. and Agert C., “Operating Strategy Optimization Considering Battery Aging for a Sector Coupling System Providing Frequency Containment Reserve”, Journal of Energy Storage, 68: 107787, (2023).
  • [39] Koltermann L., Celi Cortés M., Figgener J., Zurmühlen S. and Sauer D. U., “Power Curves of Megawatt-Scale Battery Storage Technologies for Frequency Regulation and Energy Trading”, Applied Energy, 347: 121428, (2023).
  • [40] Türkiye Elektrik İletim A.Ş., Elektrik Depolama Ünite ve Tesislerinin Yan Hizmetlerde Kullanılmasına Dair Teknik Kriterler ve Test Prosedürleri, https://www.teias.gov.tr/duyurular/elektrik-depolama-tesislerine-ait-usul-esas-ve-teknik-kriterler-hakkinda-duyuru, (2025).
  • [41] Türkiye Elektrik İletim A.Ş., ''Piyasa Yönetim Sistemi Modülü'', https://tpys.teias.gov.tr, (2025).
  • [42] Thien J., Schweer D., vom Stein D., Moser A. and Sauer D. U., “Real-world operating strategy and sensitivity analysis of frequency containment reserve provision with battery energy storage systems in the German market”, Journal of Energy Storage, 13: 143–163, (2017).
  • [43] Ndeche K. C. and Ezeonu S. O., “Implementation of Coulomb Counting Method for Estimating the State of Charge of Lithium-Ion Battery”, Physical Science International Journal, 25(3): 1–8, (2021).
  • [44] Gundogdu B. M., “Control Analysis for Grid Tied Battery Energy Storage System for SOC and SOH Management”, Doktora Tezi, Dept. of Electronic and Electrical Engineering, University of Sheffield, (2019).
  • [45] Gao Y., Li Y., Huang X., Liu Y. and Yang X., “Aging mechanisms under different state-of-charge ranges and the multi-indicators system of state-of-health for lithium-ion battery with Li(NiMnCo)O2 cathode”, Journal of Power Sources, 400: 641–651, (2018).
  • [46] Hoke A., Brissette A., Maksimovic D. and Pratt A., “Maximizing lithium ion vehicle battery life through optimized partial charging”, Proceedings of the IEEE PES Innovative Smart Grid Technologies (ISGT’13), Washington, DC, 1–5, (2013).
  • [47] Stroe D. I., “Lifetime models for Lithium-ion batteries used in virtual power plant applications”, Doktora Tezi, Dept. of Energy Technology, Aalborg University, (2014).
  • [48] Stecca M., Soeiro T. B., Elizondo L. R., Bauer P. and Palensky P., “Lifetime Estimation of Grid-Connected Battery Storage and Power Electronics Inverter Providing Primary Frequency Regulation”, IEEE Open J. Ind. Electron. Soc., 2: 115–126, (2021).
  • [49] Maheshwari A., Paterakis N. G., Santarelli M. and Gibescu M., “Optimizing the operation of energy storage using a non-linear lithium-ion battery degradation model”, Applied Energy, 261: 114360, (2020).
  • [50] Türkiye Elektrik İletim A.Ş., “Günlük Frekans Bilgisi”, https://www.teias.gov.tr/gunluk-frekans-bilgisi, , (2024).
  • [51] Enerji Piyasası Düzenleme Kurumu, “Dengeleme ve Uzlaştırma Yönetmeliği”, (2025).
  • [52] Huang Q., Mao J. and Liu Y., “An improved grid search algorithm of SVR parameters optimization”, Proceedings of the IEEE International Conference on Communication Technology, 1022–1026, (2012).
  • [53] Kavalcı Yılmaz E. and Bakır H., “Hyperparameter Tunning and Feature Selection Methods for Malware Detection”, Politeknik Dergisi, 27(1):343-353, (2024).
  • [54] Hong J., Liang F., Gong X., Xu X. and Yu Q., “Accurate State of Charge Estimation for Real-World Battery Systems Using a Novel Grid Search and Cross Validated Optimised LSTM Neural Network”, Energies, 15(24): 9654, (2022).
  • [55] Zhang J., Chen Y., Yang K., Zhao J. and Yan X., “Insider threat detection based on adaptive optimization DBN by grid search”, Proceedings of the 2019 IEEE International Conference on Intelligence and Security Informatics (ISI), 1–6, (2019).

Primer Frekans Kontrol Hizmeti Veren Batarya Enerji Depolama Sistemlerinin Kontrolü

Year 2025, EARLY VIEW, 1 - 1
https://doi.org/10.2339/politeknik.1742465

Abstract

Yenilenebilir enerji kaynaklarının sistemdeki payının artması, sistem ataletinin azalmasına ve frekans kararlılığının zayıflamasına neden olmaktadır. Düşük atalet koşullarında meydana gelen ani güç dengesizlikleri, frekansın daha hızlı ve yüksek genlikli sapmalar göstermesine yol açmakta, geleneksel üretim birimleri ise bu hızlı değişimlere yeterli yanıt verememektedir. Bu nedenle, kısa tepki süresi ve çift yönlü aktif güç desteği gibi özellikleri sayesinde batarya enerji depolama sistemleri, frekans kontrolü uygulamaları için etkili bir çözüm olarak öne çıkmaktadır. Bu çalışmada, 2023 yılına ait şebeke frekans verileri ile MATLAB/Simulink ortamında Primer frekans kontrol hizmeti veren batarya modeli oluşturulmuştur. Ölü bant, deşarj derinliği ve şarj durumu ayar noktası parametreleri ile batarya enerji depolama sistemlerinin primer frekans kontrolü hizmetinde etkin şekilde kullanılabilmesi ve performansının artırılması amacıyla ızgara arama algoritması ile optimize edilmiştir. Gerçekleştirilen benzetim çalışmaları sonucunda belirlenen sistem parametrelerinin, bataryanın yıllık kapasite azalması, döngü sayısı ve sistem geliri üzerinde önemli etkiler oluşturduğu gözlemlenmektedir. Sonuç olarak, batarya enerji depolama sistemlerinin primer frekans kontrol hizmeti gerekliliklerine uygun şekilde işletilebilmesinin, sistem performansı ve ekonomik verimlilik üzerinde belirleyici bir etkiye sahip olduğu ortaya çıkmaktadır.

References

  • [1] Behabtu H. A., Messagie M., Coosemans T., Berecibar M., Fante K. A., Kebede A. A. and Van Mierlo J., “A Review of Energy Storage Technologies’ Application Potentials in Renewable Energy Sources Grid Integration'”, Sustainability, 12: 10511, (2020).
  • [2] Zhao C., Hashemi S., Andersen P. B. and Traholt C., “Data-driven state of health modeling of battery energy storage systems providing grid services'”, 11th International Conference on Power, Energy and Electrical Engineering (CPEEE), Tokyo, Japan, 43–49, (2021).
  • [3] Özdoğan N. ve Bahçeci S., “Şebekeye Bağlı Bir Rüzgâr Enerji Sisteminin PSCAD ile Modellenmesi ve İncelenmesi”, Politeknik Dergisi, 26(1): 49-59, (2023).
  • [4] Luo X., Wang J., Dooner M. and Clarke J., “Overview of current development in electrical energy storage technologies and the application potential in power system operation”, Applied Energy, 137: 511–536, (2015).
  • [5] Zakeri B. and Syri S., “Electrical energy storage systems: A comparative life cycle cost analysis”, Renewable and Sustainable Energy Reviews, 42: 569–596, (2015).
  • [6] Divya K. C. and Østergaard J., “Battery energy storage technology for power systems—An overview”, Electric Power Systems Research, 79: 511–520, (2009).
  • [7] International Renewable Energy Agency (IRENA), “Electricity Storage and Renewables: Costs and Markets to 2030”, IRENA Publications, Abu Dhabi, (2017).
  • [8] Saib S, Bayındır R, Vadi S., “A review: Usage of Different Technologies of Electrical Energy Storage System Coupled Hybrid Power System”, Politeknik Dergisi, 28(2):331-349, (2025).
  • [9] Dunn B., Kamath H. and Tarascon J. M., “Electrical Energy Storage for the Grid: A Battery of Choices”, Science, 334: 928–935, (2011).
  • [10] Olabi A. G., Wilberforce T., Sayed E. T. and Abdelkareem M. A., “Overview of energy storage technologies”, Energy, 254: 124998, (2022).
  • [11] Wang Y., Chen K. and Xue H., “Advances and prospects of next-generation energy storage devices”, Energy Storage Materials, 25: 729–748, (2020).
  • [12] Schmidt O., Melchior S., Hawkes A. and Staffell I., “Projecting the Future Levelized Cost of Electricity Storage Technologies”, Joule, 3: 81–100, (2019).
  • [13] European Association for Storage of Energy (EASE), “Energy Storage: A Key Enabler for the European Green Deal”, EASE Publications, Brussels, (2020).
  • [14] Su D. and Lei Z., “Optimal configuration of battery energy storage system in primary frequency regulation”, Energy Reports, 7(S6): 157–162, (2021).
  • [15] Çelik E., “Termik Güç Santrali ve Fotovoltaik Güneş Enerji Sisteminden Oluşan Güç Sisteminde Üstel PI Denetleyici ile Sekonder Frekans Regülasyonu”, Mühendislik Bilimleri ve Araştırmaları Dergisi, 6(1): 133–142, (2024).
  • [16] Enerji Piyasası Düzenleme Kurumu, “Elektrik Piyasası Yan Hizmetler Yönetmeliği”, (2025).
  • [17] Enerji Piyasası Düzenleme Kurumu, “Elektrik Piyasası Şebeke Yönetmeliği”, (2025).
  • [18] Koller M., Booth C., Burt G. and Fox B., “Primary frequency response from battery energy storage system: A case study”, Energy Procedia, 46: 220–226, (2013).
  • [19] Yang Y., Bremner S., Menictas C. and Kay M., “Battery energy storage system size determination in renewable energy-based power systems”, Renewable and Sustainable Energy Reviews, 91: 109–125, (2018).
  • [20] Peddakapu K., Mohamed M. R., Srinivasarao P., Arya Y., Leung P. K. and Kishore D. J. K., “A state-of-the-art review on modern and future developments of AGC/LFC of conventional and renewable energy-based power systems”, Renewable Energy Focus, 43: 146–171, (2022).
  • [21] Huang J. and Yang D., “Improved system frequency regulation capability of a battery energy storage system”, Frontiers in Energy Research, 10: 904430, 1–10, (2022).
  • [22] Mufalo C. B. M., Lima B. C., Otremba L., Monaro R. M. and Salles M. B. C., “Optimized sizing of BESS for primary frequency control in a hybrid O&G FPSO unit”, IET Renewable Power Generation, 19(1): e70061, (2025).
  • [23] Suberu M. Y., Mustafa M. W. and Bashir N., “Energy storage systems for renewable energy power sector integration and mitigation of intermittency”, Renewable and Sustainable Energy Reviews, 35: 499–514, (2014).
  • [24] Arrigo F., Bompard E., Merlo M. and Milano F., “Assessment of primary frequency control through battery energy storage systems”, Electric Power and Energy Systems, 115: 105428, (2020).
  • [25] Yoon M., Lee J., Song S., Yoo Y., Jang G., Jung S. and Hwang S., “Utilization of energy storage system for frequency regulation in large-scale transmission system”, Energies, 12(20): 3863, (2019).
  • [26] Aghamohammadi M. R. and Abdolahinia H., “A new approach for optimal sizing of battery energy storage system for primary frequency control of islanded microgrid”, Electric Power and Energy Systems, 54: 325–333, (2014).
  • [27] Namor E., Sossan F., Cherkaoui R. and Paolone M., “Control of Battery Storage Systems for the Simultaneous Provision of Multiple Services”, IEEE Transactions on Smart Grid, 10(3): 2799–2809, (2019).
  • [28] Kalavani F., Zamani-Gargari M., Mohammadi-Ivatloo B. and Rasouli M., “A contemporary review of the applications of nature-inspired algorithms for optimal design of automatic generation control for multi-area power systems”, Artificial Intelligence Review, 51(2): 187–218, (2019).
  • [29] Mejía-Giraldo D., Velásquez-Gomez G., Muñoz-Galeano N., Cano-Quintero J. B. and Lemos Cano S., “A BESS Sizing Strategy for Primary Frequency Regulation Support of Solar Photovoltaic Plants”, Energies, 12(2): 317, (2019).
  • [30] Mureddu M., Facchini A. and Damiano A., “A Statistical Approach for Modeling the Aging Effects in Li-Ion Energy Storage Systems”, IEEE Access, 6: 42196–42206, (2018).
  • [31] Mohamed A., Rigo-Mariani R., Debusschere V. and Pin L., “Stacked Revenues for Energy Storage Participating in Energy and Reserve Markets with an Optimal Frequency Regulation Modeling”, Applied Energy, 350: 121721, (2023).
  • [32] Khezri R., Steen D., Wikner E. and Tuan L. A., “Optimal V2G Scheduling of an EV With Calendar and Cycle Aging of Battery: An MILP Approach”, IEEE Transactions on Transportation Electrification, 10(4): 10497-10507, (2024).
  • [33] Duanmu C., Shi L., Jian D., Ding R., Li Y. and Wu F., “Optimized Battery Capacity Allocation Method for Wind Farms with Dual Operating Conditions”, Sustainability, 16(9): 3615, (2024).
  • [34] Nehasil R. and Mészáros P., “Frequency Regulation with Storage: On Losses and Profits”, European Journal of Operational Research, 311(2): 511–525, (2024).
  • [35] Moradzadeh M. and Haghifam M. R., “Voltage/Frequency Deviations Control via Distributed Battery Energy Storage System Considering State of Charge”, Applied Sciences, 9(6): 1148, (2019).
  • [36] Torres A., Cano A. and Gomez J., “A review of battery energy storage systems for ancillary services in distribution grids”, Frontiers in Energy Research, 10: 971704, (2022).
  • [37] Ma Q., Wei W., Wu L. and Mei S., “Life-Aware Operation of Battery Energy Storage in Frequency Regulation”, IEEE Transactions on Sustainable Energy, 14(3): 1725-1736, (2023).
  • [38] Krupp A., Beckmann R., Draheim P., Meschede E., Ferg E., Schuldt F. and Agert C., “Operating Strategy Optimization Considering Battery Aging for a Sector Coupling System Providing Frequency Containment Reserve”, Journal of Energy Storage, 68: 107787, (2023).
  • [39] Koltermann L., Celi Cortés M., Figgener J., Zurmühlen S. and Sauer D. U., “Power Curves of Megawatt-Scale Battery Storage Technologies for Frequency Regulation and Energy Trading”, Applied Energy, 347: 121428, (2023).
  • [40] Türkiye Elektrik İletim A.Ş., Elektrik Depolama Ünite ve Tesislerinin Yan Hizmetlerde Kullanılmasına Dair Teknik Kriterler ve Test Prosedürleri, https://www.teias.gov.tr/duyurular/elektrik-depolama-tesislerine-ait-usul-esas-ve-teknik-kriterler-hakkinda-duyuru, (2025).
  • [41] Türkiye Elektrik İletim A.Ş., ''Piyasa Yönetim Sistemi Modülü'', https://tpys.teias.gov.tr, (2025).
  • [42] Thien J., Schweer D., vom Stein D., Moser A. and Sauer D. U., “Real-world operating strategy and sensitivity analysis of frequency containment reserve provision with battery energy storage systems in the German market”, Journal of Energy Storage, 13: 143–163, (2017).
  • [43] Ndeche K. C. and Ezeonu S. O., “Implementation of Coulomb Counting Method for Estimating the State of Charge of Lithium-Ion Battery”, Physical Science International Journal, 25(3): 1–8, (2021).
  • [44] Gundogdu B. M., “Control Analysis for Grid Tied Battery Energy Storage System for SOC and SOH Management”, Doktora Tezi, Dept. of Electronic and Electrical Engineering, University of Sheffield, (2019).
  • [45] Gao Y., Li Y., Huang X., Liu Y. and Yang X., “Aging mechanisms under different state-of-charge ranges and the multi-indicators system of state-of-health for lithium-ion battery with Li(NiMnCo)O2 cathode”, Journal of Power Sources, 400: 641–651, (2018).
  • [46] Hoke A., Brissette A., Maksimovic D. and Pratt A., “Maximizing lithium ion vehicle battery life through optimized partial charging”, Proceedings of the IEEE PES Innovative Smart Grid Technologies (ISGT’13), Washington, DC, 1–5, (2013).
  • [47] Stroe D. I., “Lifetime models for Lithium-ion batteries used in virtual power plant applications”, Doktora Tezi, Dept. of Energy Technology, Aalborg University, (2014).
  • [48] Stecca M., Soeiro T. B., Elizondo L. R., Bauer P. and Palensky P., “Lifetime Estimation of Grid-Connected Battery Storage and Power Electronics Inverter Providing Primary Frequency Regulation”, IEEE Open J. Ind. Electron. Soc., 2: 115–126, (2021).
  • [49] Maheshwari A., Paterakis N. G., Santarelli M. and Gibescu M., “Optimizing the operation of energy storage using a non-linear lithium-ion battery degradation model”, Applied Energy, 261: 114360, (2020).
  • [50] Türkiye Elektrik İletim A.Ş., “Günlük Frekans Bilgisi”, https://www.teias.gov.tr/gunluk-frekans-bilgisi, , (2024).
  • [51] Enerji Piyasası Düzenleme Kurumu, “Dengeleme ve Uzlaştırma Yönetmeliği”, (2025).
  • [52] Huang Q., Mao J. and Liu Y., “An improved grid search algorithm of SVR parameters optimization”, Proceedings of the IEEE International Conference on Communication Technology, 1022–1026, (2012).
  • [53] Kavalcı Yılmaz E. and Bakır H., “Hyperparameter Tunning and Feature Selection Methods for Malware Detection”, Politeknik Dergisi, 27(1):343-353, (2024).
  • [54] Hong J., Liang F., Gong X., Xu X. and Yu Q., “Accurate State of Charge Estimation for Real-World Battery Systems Using a Novel Grid Search and Cross Validated Optimised LSTM Neural Network”, Energies, 15(24): 9654, (2022).
  • [55] Zhang J., Chen Y., Yang K., Zhao J. and Yan X., “Insider threat detection based on adaptive optimization DBN by grid search”, Proceedings of the 2019 IEEE International Conference on Intelligence and Security Informatics (ISI), 1–6, (2019).
There are 55 citations in total.

Details

Primary Language Turkish
Subjects Electrical Energy Storage, Electrical Energy Transmission, Networks and Systems
Journal Section Research Article
Authors

Ümit Şenol 0009-0009-3611-867X

Fatih Emre Boran 0000-0001-8404-3814

Early Pub Date August 25, 2025
Publication Date October 13, 2025
Submission Date July 15, 2025
Acceptance Date August 1, 2025
Published in Issue Year 2025 EARLY VIEW

Cite

APA Şenol, Ü., & Boran, F. E. (2025). Primer Frekans Kontrol Hizmeti Veren Batarya Enerji Depolama Sistemlerinin Kontrolü. Politeknik Dergisi1-1. https://doi.org/10.2339/politeknik.1742465
AMA Şenol Ü, Boran FE. Primer Frekans Kontrol Hizmeti Veren Batarya Enerji Depolama Sistemlerinin Kontrolü. Politeknik Dergisi. Published online August 1, 2025:1-1. doi:10.2339/politeknik.1742465
Chicago Şenol, Ümit, and Fatih Emre Boran. “Primer Frekans Kontrol Hizmeti Veren Batarya Enerji Depolama Sistemlerinin Kontrolü”. Politeknik Dergisi, August (August 2025), 1-1. https://doi.org/10.2339/politeknik.1742465.
EndNote Şenol Ü, Boran FE (August 1, 2025) Primer Frekans Kontrol Hizmeti Veren Batarya Enerji Depolama Sistemlerinin Kontrolü. Politeknik Dergisi 1–1.
IEEE Ü. Şenol and F. E. Boran, “Primer Frekans Kontrol Hizmeti Veren Batarya Enerji Depolama Sistemlerinin Kontrolü”, Politeknik Dergisi, pp. 1–1, August2025, doi: 10.2339/politeknik.1742465.
ISNAD Şenol, Ümit - Boran, Fatih Emre. “Primer Frekans Kontrol Hizmeti Veren Batarya Enerji Depolama Sistemlerinin Kontrolü”. Politeknik Dergisi. August2025. 1-1. https://doi.org/10.2339/politeknik.1742465.
JAMA Şenol Ü, Boran FE. Primer Frekans Kontrol Hizmeti Veren Batarya Enerji Depolama Sistemlerinin Kontrolü. Politeknik Dergisi. 2025;:1–1.
MLA Şenol, Ümit and Fatih Emre Boran. “Primer Frekans Kontrol Hizmeti Veren Batarya Enerji Depolama Sistemlerinin Kontrolü”. Politeknik Dergisi, 2025, pp. 1-1, doi:10.2339/politeknik.1742465.
Vancouver Şenol Ü, Boran FE. Primer Frekans Kontrol Hizmeti Veren Batarya Enerji Depolama Sistemlerinin Kontrolü. Politeknik Dergisi. 2025:1-.