Research Article
BibTex RIS Cite

Tel Ark Eklemeli İmalat ile Üretilen Alüminyum Alaşımlarının Morfolojisi, Mekanik, Korozyon ve Kavitasyon Direncinin Anizotropik Olarak İncelenmesi

Year 2025, EARLY VIEW, 1 - 1
https://doi.org/10.2339/politeknik.1796012

Abstract

Tel Ark Eklemeli İmalat (WAAM), istenilen geometrik şekle yakın parçaların düşük maliyetle üretilmesini sağlayan bir yöntemdir. Farklı alüminyum alaşımlarının WAAM yöntemiyle üretilmesine yönelik birçok çalışma yapılmış olsa da, üretim yönüne bağlı özellikler üzerine yapılan araştırmalar sınırlıdır. Bu çalışmada, Soğuk Metal Transfer (CMT) kaynak ekipmanı kullanılarak AlSi5 kaynak teli ile numune parçalar üretilmiştir. Bu parçalardan hazırlanan örnekler, katman yönü (yapı yönü) ve x-y düzlemi yönünde mekanik, korozyon ve aşınma özelliklerini belirlemek amacıyla test edilmiştir. Bulgulara göre, kavitasyon direnci dışında tüm özelliklerin yapı yönünde x-y düzlemine göre daha iyi olduğu görülmüştür.

Supporting Institution

Slovenian Research Agency

Project Number

Slovenian Research Agency under grant number P2-0270 and the bilateral project Weave N2-0328 and Erasmus+ 2019-1-TR01-KA103-062825

References

  • [1] Rodríguez-González P., Ruiz-Navas E. M., Gordo E., “Wire arc additive manufacturing (WAAM) for aluminum-lithium alloys: a review”, Materials, 16(4): 1375, (2023).
  • [2] Su C., Chen X., Gao C., Wang Y., “Effect of heat input on microstructure and mechanical properties of Al-Mg alloys fabricated by WAAM”, Applied Surface Science, 486: 431-440, (2019).
  • [3] Harman M., Çetinkaya C., Yılmaz O., Bol N., “Comparative process parameter optimization for wire arc additive manufacturing (WAAM) of E120C-GH4 metal cored and ER120S-G solid wire”, Journal of Polytechnic, 27(5): 2013-2028, (2024).
  • [4] Zhang X., Mao B., Mushongera L., Kundin J., Liao Y., “Laser powder bed fusion of titanium aluminides: An investigation on site-specific microstructure evolution mechanism”, Materials & Design, 201: 109501, (2021).
  • [5] Tekumalla S., Chew J. E., Tan S. W., Krishnan M., Seita M., “Towards 3-D texture control in a β titanium alloy via laser powder bed fusion and its implications on mechanical properties”, Additive Manufacturing, 59: 103111, (2022).
  • [6] Wieczorowski M., Pereira A., Carou D., Gapinski B., Ramírez I., “Characterization of 5356 Aluminum Walls Produced by Wire Arc Additive Manufacturing (WAAM)”, Materials, 16(7): 2570, (2023).
  • [7] Karakılınç U., Yalçın B., Ergene B., “Toz yataklı/beslemeli eklemeli imalatta kullanılan partiküllerin uygunluk araştırması ve partikül imalat yöntemleri”, Journal of Polytechnic, 22(4): 801-810, (2019).
  • [8] Das A., Biswas P., Kapil S., “Influence of Friction Stir Additive Manufacturing Parameters on Dry Friction and Wear Properties of Al–Mg–Si Alloy's Built Surfaces Fabricated by Sheet Lamination”, Journal of Tribology, 146(5): 051706, (2024).
  • [9] Carroll B. E., Palmer T. A., Beese A. M., “Anisotropic tensile behavior of Ti–6Al–4V components fabricated with directed energy deposition additive manufacturing”, Acta Materialia, 87: 309-320, (2015).
  • [10] Safyari M., Schnall M., Haunreiter F., Moshtaghi M., “Design of hydrogen embrittlement resistant 7xxx-T6 aluminum alloys based on wire arc additive manufacturing: Changing nanochemistry of strengthening precipitates”, Materials & Design, 243: 113030, (2024).
  • [11] Tang Z. J., Liu W. W., Wang Y. W., Saleheen K. M., Liu Z. C., Peng S. T., Zhang Z., Zhang H. C., “A review on in situ monitoring technology for directed energy deposition of metals”, The International Journal of Advanced Manufacturing Technology, 108: 3437-3463, (2020).
  • [12] Vimal K. E. K., Srinivas M. N., Rajak S., “Wire arc additive manufacturing of aluminium alloys: A review”, Materials Today: Proceedings, 41: 1139-1145, (2021).
  • [13] Li K., Yang T., Hou X., Ji C., Zhu L., Li B., Cao Y., Zhao L., Ma C., Tian Z., “Microstructure evolution and mechanical properties of Al–Cu–Mn–Cd alloy fabricated by CMT-wire arc additive manufacturing”, Materials Science and Engineering: A, 898: 146395, (2024).
  • [14] Guo X., Li H., Xue P., Pan Z., Xu R., Ni D., Ma Z., “Microstructure and mechanical properties of 600 MPa grade ultra-high strength aluminum alloy fabricated by wire-arc additive manufacturing”, Journal of Materials Science & Technology, 149: 56–66, (2023).
  • [15] Gnatenko M., Naumyk V., Matkovska M., “Influence of sources of heating and protective gases on the properties of the material obtained by the direct deposition”, Materials Science and Technology, 68-74, (2019).
  • [16] Tawfik M. M., Nemat-Alla M. M., Dewidar M. M., “Effect of travel speed on the properties of Al-Mg aluminum alloy fabricated by wire arc additive manufacturing” Journal of Materials Engineering and Performance, 30 (10): 7762-7769, (2021).
  • [17] Liu Y., Liu Z., Zhou G., He C., Zhang J., “Microstructures and properties of Al-Mg alloys manufactured by WAAM-CMT”, Materials, 15(15): 5460, (2022).
  • [18] Yang Q., Xia C., Deng Y., Li X., Wang H., “Microstructure and mechanical properties of AlSi7Mg0. 6 aluminum alloy fabricated by wire and arc additive manufacturing based on cold metal transfer (WAAM-CMT)”, Materials, 12(16): 2525, (2019).
  • [19] Qi Z., Cong B., Qi B., Sun H., Zhao G., Ding J., “Microstructure and mechanical properties of double-wire + arc additively manufactured Al-Cu-Mg alloys”, Journal of Materials Processing Technology, 255: 347–353, (2018).
  • [20] Langelandsvik G., Horgar A., Furu T., Roven H. J., Akselsen O. M., “Comparative study of eutectic Al-Si alloys manufactured by WAAM and casting”, The International Journal of Advanced Manufacturing Technology, 110(3): 935-947, (2020).
  • [21] Guo Y., Han Q., Hu J., Yang X., Mao P., Wang J., Sun S., He Z., Lu J., Liu, C., “Comparative study on wire-arc additive manufacturing and conventional casting of Al–Si alloys: porosity, microstructure and mechanical property”, Acta Metallurgica Sinica (English Letters), 35: 475–485, (2022).
  • [22] Zhou Y., Lin X., Kang N., Huang W., Wang J., Wang Z., “Influence of travel speed on microstructure and mechanical properties of wire + arc additively manufactured 2219 aluminum alloy”, Journal of Materials Science & Technology, 37: 143-153, (2020).
  • [23] Bellamkonda P. N., Dwivedy M., Ch K. N., “Microstructural analysis and preliminary wear assessment of wire arc additive manufactured AA 5083 aluminum alloy for lightweight structures”, International Journal of Lightweight Materials and Manufacture, 8(1): 1-13, (2025).
  • [24] Zhang C., Gao M., Zeng X., “Workpiece vibration augmented wire arc additive manufacturing of high strength aluminum alloy”, Journal of Materials Processing Technology, 271: 85–92, (2019).
  • [25] Wang C., Jiang Z., Ma X., Zhang Y., He P., Han F., “Effect of solid solution time on microstructure and corrosion property of wire arc additively manufactured 2319 aluminum alloy”, Journal of Materials Research and Technology, 26: 2749-2758, (2023).
  • [26] Vishnukumar M., Pramod R., Kannan A. R., “Wire arc additive manufacturing for repairing aluminium structures in marine applications”, Materials Letters, 299: 130112, (2021).
  • [27] Bregliozzi G., Di Schino A., Ahmed S. U., Kenny J. M., Haefke H., “Cavitation wear behaviour of austenitic stainless steels with different grain sizes”, Wear, 258(1-4): 503-510, (2005).
  • [28] Wang S., Chen S., Yuan T., Jiang X., Zhao P., Shan H., Zhang H., Ding W., “Inhomogeneity and anisotropy of Al-Zn-Mg-Cu alloy manufactured by wire arc additive manufacturing: microstructure, mechanical properties, stress corrosion cracking susceptibility”, Virtual and Physical Prototyping, 19(1): e2348038, (2024).
  • [29] Vazquez L., Rodriguez M. N., Rodriguez I., Alvarez P., “Influence of post-deposition heat treatments on the microstructure and tensile properties of Ti-6Al-4V parts manufactured by CMT-WAAM”, Metals, 11(8): 1161, (2021).
  • [30] Xiang H., Xu C., Zhan T., Wu L., Wang H., Li L., “Influence of metal transfer modes on pore formation during the welding process of AA6082/A360 dissimilar aluminum alloys”, Journal of Materials Engineering and Performance, 32(19): 8750-8766, (2023).
  • [31] Tiryakioğlu M., “The effect of hydrogen on pore formation in aluminum alloy castings: myth versus reality”, Metals, 10(3): 368, (2020).
  • [32] Olshanskaya T., Fedoseeva E. “Porosity Formation in Thin Welded Joints of Al–Mg–Li Alloys”, Materials, 15(1): 348, (2022).
  • [33] Ardika R. D., Triyono T., Muhayat N. “A review porosity in aluminum welding”, Procedia Structural Integrity, 33: 171-180, (2021).
  • [34] Dhakar P., Kumar S., Manani S., Pradhan A. K., “Effect of Zn content on microstructure and properties of hypoeutectic and near-eutectic Al-Si alloys”, IOP Conference Series: Materials Science and Engineering, 1248 (1): 012020, (2022).
  • [35] Mroczkowska K. M., Antończak A. J., Gąsiorek J., “The corrosion resistance of aluminum alloy modified by laser radiation”, Coatings, 9(10): 672, (2019).
  • [36] Sandeep O. S., Kuriachen B., Anantharam G. S., Eldose K. K., “Influence of microstructure on the anisotropic tribocorrosion behaviour of WAAM-fabricated SS304L in marine environments”, Tribology International, 209: 110668, (2025).
  • [37] Wang C., Zhu P., Wang F., Lu Y. H., Shoji T., “Anisotropy of microstructure and corrosion resistance of 316L stainless steel fabricated by wire and arc additive manufacturing”, Corrosion Science, 206: 110549, (2022).
  • [38] Wu B., Pan Z., Li S., Cuiuri D., Ding D., Li H., “The anisotropic corrosion behaviour of wire arc additive manufactured Ti-6Al-4V alloy in 3.5% NaCl solution”, Corrosion Science, 137: 176-183, (2018).
  • [39] Osório W. R., Goulart P. R., Garcia A., “Effect of silicon content on microstructure and electrochemical behavior of hypoeutectic Al–Si alloys”, Materials Letters, 62(3): 365-369, (2008).
  • [40] Krella A., “The influence of TiN coatings properties on cavitation erosion resistance”, Surface and Coatings Technology, 204(3): 263-270, (2009).
  • [41] Zakrzewska D. E., Krella A., “Cavitation erosion resistance influence of material properties”, Advances in materials science, 19: 18-34, (2019).

Anisotropic Investigation on Morphology, Mechanical, Corrosion, and Cavitation Resistance of Aluminum Alloys Produced by Wire Arc Additive Manufacturing

Year 2025, EARLY VIEW, 1 - 1
https://doi.org/10.2339/politeknik.1796012

Abstract

The Wire Arc Additive Manufacturing (WAAM) can produce parts that closely approximate the desired geometric shape while reducing costs. Although numerous papers have been published on WAAM manufacturing of different aluminium alloys , there are few studies on the directionality of production. In the present study, WAAM was performed using Cold Metal Transfer (CMT) welding equipment was used to produce sample parts with AlSi5 welding wire. Samples of these parts were produced to determine the mechanical, corrosion and wear properties of build-up and x-y directions. The results indicate that all properties except cavitation resistance were better in the build-up direction than in the x-y direction.

Supporting Institution

Slovenian Research Agency

Project Number

Slovenian Research Agency under grant number P2-0270 and the bilateral project Weave N2-0328 and Erasmus+ 2019-1-TR01-KA103-062825

References

  • [1] Rodríguez-González P., Ruiz-Navas E. M., Gordo E., “Wire arc additive manufacturing (WAAM) for aluminum-lithium alloys: a review”, Materials, 16(4): 1375, (2023).
  • [2] Su C., Chen X., Gao C., Wang Y., “Effect of heat input on microstructure and mechanical properties of Al-Mg alloys fabricated by WAAM”, Applied Surface Science, 486: 431-440, (2019).
  • [3] Harman M., Çetinkaya C., Yılmaz O., Bol N., “Comparative process parameter optimization for wire arc additive manufacturing (WAAM) of E120C-GH4 metal cored and ER120S-G solid wire”, Journal of Polytechnic, 27(5): 2013-2028, (2024).
  • [4] Zhang X., Mao B., Mushongera L., Kundin J., Liao Y., “Laser powder bed fusion of titanium aluminides: An investigation on site-specific microstructure evolution mechanism”, Materials & Design, 201: 109501, (2021).
  • [5] Tekumalla S., Chew J. E., Tan S. W., Krishnan M., Seita M., “Towards 3-D texture control in a β titanium alloy via laser powder bed fusion and its implications on mechanical properties”, Additive Manufacturing, 59: 103111, (2022).
  • [6] Wieczorowski M., Pereira A., Carou D., Gapinski B., Ramírez I., “Characterization of 5356 Aluminum Walls Produced by Wire Arc Additive Manufacturing (WAAM)”, Materials, 16(7): 2570, (2023).
  • [7] Karakılınç U., Yalçın B., Ergene B., “Toz yataklı/beslemeli eklemeli imalatta kullanılan partiküllerin uygunluk araştırması ve partikül imalat yöntemleri”, Journal of Polytechnic, 22(4): 801-810, (2019).
  • [8] Das A., Biswas P., Kapil S., “Influence of Friction Stir Additive Manufacturing Parameters on Dry Friction and Wear Properties of Al–Mg–Si Alloy's Built Surfaces Fabricated by Sheet Lamination”, Journal of Tribology, 146(5): 051706, (2024).
  • [9] Carroll B. E., Palmer T. A., Beese A. M., “Anisotropic tensile behavior of Ti–6Al–4V components fabricated with directed energy deposition additive manufacturing”, Acta Materialia, 87: 309-320, (2015).
  • [10] Safyari M., Schnall M., Haunreiter F., Moshtaghi M., “Design of hydrogen embrittlement resistant 7xxx-T6 aluminum alloys based on wire arc additive manufacturing: Changing nanochemistry of strengthening precipitates”, Materials & Design, 243: 113030, (2024).
  • [11] Tang Z. J., Liu W. W., Wang Y. W., Saleheen K. M., Liu Z. C., Peng S. T., Zhang Z., Zhang H. C., “A review on in situ monitoring technology for directed energy deposition of metals”, The International Journal of Advanced Manufacturing Technology, 108: 3437-3463, (2020).
  • [12] Vimal K. E. K., Srinivas M. N., Rajak S., “Wire arc additive manufacturing of aluminium alloys: A review”, Materials Today: Proceedings, 41: 1139-1145, (2021).
  • [13] Li K., Yang T., Hou X., Ji C., Zhu L., Li B., Cao Y., Zhao L., Ma C., Tian Z., “Microstructure evolution and mechanical properties of Al–Cu–Mn–Cd alloy fabricated by CMT-wire arc additive manufacturing”, Materials Science and Engineering: A, 898: 146395, (2024).
  • [14] Guo X., Li H., Xue P., Pan Z., Xu R., Ni D., Ma Z., “Microstructure and mechanical properties of 600 MPa grade ultra-high strength aluminum alloy fabricated by wire-arc additive manufacturing”, Journal of Materials Science & Technology, 149: 56–66, (2023).
  • [15] Gnatenko M., Naumyk V., Matkovska M., “Influence of sources of heating and protective gases on the properties of the material obtained by the direct deposition”, Materials Science and Technology, 68-74, (2019).
  • [16] Tawfik M. M., Nemat-Alla M. M., Dewidar M. M., “Effect of travel speed on the properties of Al-Mg aluminum alloy fabricated by wire arc additive manufacturing” Journal of Materials Engineering and Performance, 30 (10): 7762-7769, (2021).
  • [17] Liu Y., Liu Z., Zhou G., He C., Zhang J., “Microstructures and properties of Al-Mg alloys manufactured by WAAM-CMT”, Materials, 15(15): 5460, (2022).
  • [18] Yang Q., Xia C., Deng Y., Li X., Wang H., “Microstructure and mechanical properties of AlSi7Mg0. 6 aluminum alloy fabricated by wire and arc additive manufacturing based on cold metal transfer (WAAM-CMT)”, Materials, 12(16): 2525, (2019).
  • [19] Qi Z., Cong B., Qi B., Sun H., Zhao G., Ding J., “Microstructure and mechanical properties of double-wire + arc additively manufactured Al-Cu-Mg alloys”, Journal of Materials Processing Technology, 255: 347–353, (2018).
  • [20] Langelandsvik G., Horgar A., Furu T., Roven H. J., Akselsen O. M., “Comparative study of eutectic Al-Si alloys manufactured by WAAM and casting”, The International Journal of Advanced Manufacturing Technology, 110(3): 935-947, (2020).
  • [21] Guo Y., Han Q., Hu J., Yang X., Mao P., Wang J., Sun S., He Z., Lu J., Liu, C., “Comparative study on wire-arc additive manufacturing and conventional casting of Al–Si alloys: porosity, microstructure and mechanical property”, Acta Metallurgica Sinica (English Letters), 35: 475–485, (2022).
  • [22] Zhou Y., Lin X., Kang N., Huang W., Wang J., Wang Z., “Influence of travel speed on microstructure and mechanical properties of wire + arc additively manufactured 2219 aluminum alloy”, Journal of Materials Science & Technology, 37: 143-153, (2020).
  • [23] Bellamkonda P. N., Dwivedy M., Ch K. N., “Microstructural analysis and preliminary wear assessment of wire arc additive manufactured AA 5083 aluminum alloy for lightweight structures”, International Journal of Lightweight Materials and Manufacture, 8(1): 1-13, (2025).
  • [24] Zhang C., Gao M., Zeng X., “Workpiece vibration augmented wire arc additive manufacturing of high strength aluminum alloy”, Journal of Materials Processing Technology, 271: 85–92, (2019).
  • [25] Wang C., Jiang Z., Ma X., Zhang Y., He P., Han F., “Effect of solid solution time on microstructure and corrosion property of wire arc additively manufactured 2319 aluminum alloy”, Journal of Materials Research and Technology, 26: 2749-2758, (2023).
  • [26] Vishnukumar M., Pramod R., Kannan A. R., “Wire arc additive manufacturing for repairing aluminium structures in marine applications”, Materials Letters, 299: 130112, (2021).
  • [27] Bregliozzi G., Di Schino A., Ahmed S. U., Kenny J. M., Haefke H., “Cavitation wear behaviour of austenitic stainless steels with different grain sizes”, Wear, 258(1-4): 503-510, (2005).
  • [28] Wang S., Chen S., Yuan T., Jiang X., Zhao P., Shan H., Zhang H., Ding W., “Inhomogeneity and anisotropy of Al-Zn-Mg-Cu alloy manufactured by wire arc additive manufacturing: microstructure, mechanical properties, stress corrosion cracking susceptibility”, Virtual and Physical Prototyping, 19(1): e2348038, (2024).
  • [29] Vazquez L., Rodriguez M. N., Rodriguez I., Alvarez P., “Influence of post-deposition heat treatments on the microstructure and tensile properties of Ti-6Al-4V parts manufactured by CMT-WAAM”, Metals, 11(8): 1161, (2021).
  • [30] Xiang H., Xu C., Zhan T., Wu L., Wang H., Li L., “Influence of metal transfer modes on pore formation during the welding process of AA6082/A360 dissimilar aluminum alloys”, Journal of Materials Engineering and Performance, 32(19): 8750-8766, (2023).
  • [31] Tiryakioğlu M., “The effect of hydrogen on pore formation in aluminum alloy castings: myth versus reality”, Metals, 10(3): 368, (2020).
  • [32] Olshanskaya T., Fedoseeva E. “Porosity Formation in Thin Welded Joints of Al–Mg–Li Alloys”, Materials, 15(1): 348, (2022).
  • [33] Ardika R. D., Triyono T., Muhayat N. “A review porosity in aluminum welding”, Procedia Structural Integrity, 33: 171-180, (2021).
  • [34] Dhakar P., Kumar S., Manani S., Pradhan A. K., “Effect of Zn content on microstructure and properties of hypoeutectic and near-eutectic Al-Si alloys”, IOP Conference Series: Materials Science and Engineering, 1248 (1): 012020, (2022).
  • [35] Mroczkowska K. M., Antończak A. J., Gąsiorek J., “The corrosion resistance of aluminum alloy modified by laser radiation”, Coatings, 9(10): 672, (2019).
  • [36] Sandeep O. S., Kuriachen B., Anantharam G. S., Eldose K. K., “Influence of microstructure on the anisotropic tribocorrosion behaviour of WAAM-fabricated SS304L in marine environments”, Tribology International, 209: 110668, (2025).
  • [37] Wang C., Zhu P., Wang F., Lu Y. H., Shoji T., “Anisotropy of microstructure and corrosion resistance of 316L stainless steel fabricated by wire and arc additive manufacturing”, Corrosion Science, 206: 110549, (2022).
  • [38] Wu B., Pan Z., Li S., Cuiuri D., Ding D., Li H., “The anisotropic corrosion behaviour of wire arc additive manufactured Ti-6Al-4V alloy in 3.5% NaCl solution”, Corrosion Science, 137: 176-183, (2018).
  • [39] Osório W. R., Goulart P. R., Garcia A., “Effect of silicon content on microstructure and electrochemical behavior of hypoeutectic Al–Si alloys”, Materials Letters, 62(3): 365-369, (2008).
  • [40] Krella A., “The influence of TiN coatings properties on cavitation erosion resistance”, Surface and Coatings Technology, 204(3): 263-270, (2009).
  • [41] Zakrzewska D. E., Krella A., “Cavitation erosion resistance influence of material properties”, Advances in materials science, 19: 18-34, (2019).
There are 41 citations in total.

Details

Primary Language English
Subjects Materials Science and Technologies, Resource Technologies
Journal Section Research Article
Authors

Hülya Durmuş 0000-0002-7270-562X

Nilay Çömez 0000-0002-6432-6582

Damjan Klobcar 0000-0002-6130-0328

Canser Gül 0000-0002-1339-936X

Project Number Slovenian Research Agency under grant number P2-0270 and the bilateral project Weave N2-0328 and Erasmus+ 2019-1-TR01-KA103-062825
Early Pub Date October 29, 2025
Publication Date November 18, 2025
Submission Date October 5, 2025
Acceptance Date October 22, 2025
Published in Issue Year 2025 EARLY VIEW

Cite

APA Durmuş, H., Çömez, N., Klobcar, D., Gül, C. (2025). Anisotropic Investigation on Morphology, Mechanical, Corrosion, and Cavitation Resistance of Aluminum Alloys Produced by Wire Arc Additive Manufacturing. Politeknik Dergisi1-1. https://doi.org/10.2339/politeknik.1796012
AMA Durmuş H, Çömez N, Klobcar D, Gül C. Anisotropic Investigation on Morphology, Mechanical, Corrosion, and Cavitation Resistance of Aluminum Alloys Produced by Wire Arc Additive Manufacturing. Politeknik Dergisi. Published online October 1, 2025:1-1. doi:10.2339/politeknik.1796012
Chicago Durmuş, Hülya, Nilay Çömez, Damjan Klobcar, and Canser Gül. “Anisotropic Investigation on Morphology, Mechanical, Corrosion, and Cavitation Resistance of Aluminum Alloys Produced by Wire Arc Additive Manufacturing”. Politeknik Dergisi, October (October 2025), 1-1. https://doi.org/10.2339/politeknik.1796012.
EndNote Durmuş H, Çömez N, Klobcar D, Gül C (October 1, 2025) Anisotropic Investigation on Morphology, Mechanical, Corrosion, and Cavitation Resistance of Aluminum Alloys Produced by Wire Arc Additive Manufacturing. Politeknik Dergisi 1–1.
IEEE H. Durmuş, N. Çömez, D. Klobcar, and C. Gül, “Anisotropic Investigation on Morphology, Mechanical, Corrosion, and Cavitation Resistance of Aluminum Alloys Produced by Wire Arc Additive Manufacturing”, Politeknik Dergisi, pp. 1–1, October2025, doi: 10.2339/politeknik.1796012.
ISNAD Durmuş, Hülya et al. “Anisotropic Investigation on Morphology, Mechanical, Corrosion, and Cavitation Resistance of Aluminum Alloys Produced by Wire Arc Additive Manufacturing”. Politeknik Dergisi. October2025. 1-1. https://doi.org/10.2339/politeknik.1796012.
JAMA Durmuş H, Çömez N, Klobcar D, Gül C. Anisotropic Investigation on Morphology, Mechanical, Corrosion, and Cavitation Resistance of Aluminum Alloys Produced by Wire Arc Additive Manufacturing. Politeknik Dergisi. 2025;:1–1.
MLA Durmuş, Hülya et al. “Anisotropic Investigation on Morphology, Mechanical, Corrosion, and Cavitation Resistance of Aluminum Alloys Produced by Wire Arc Additive Manufacturing”. Politeknik Dergisi, 2025, pp. 1-1, doi:10.2339/politeknik.1796012.
Vancouver Durmuş H, Çömez N, Klobcar D, Gül C. Anisotropic Investigation on Morphology, Mechanical, Corrosion, and Cavitation Resistance of Aluminum Alloys Produced by Wire Arc Additive Manufacturing. Politeknik Dergisi. 2025:1-.