Research Article
BibTex RIS Cite

Isı Alıcılarda Elektrosprey ile Mekanik Sprey Atomizasyon Soğutma Performanslarının Karşılaştırılması

Year 2023, Volume: 26 Issue: 2, 765 - 773, 05.07.2023
https://doi.org/10.2339/politeknik.1009218

Abstract

Endüstride birçok alanda kullanılmakta olan elektrosprey soğutma alanında son yıllarda keşfedilmeye başlanan bir konudur. Bu çalışmada literatürde hakkında oldukça kısıtlı çalışmalar bulunan elektrosprey soğutma ile mekanik sprey soğutmanın ısı alıcı üzerindeki soğutma performansı irdelenmiştir. Aynı şartlarda elektrosprey ile gerçekleşen ısı transferinin verileri deneyler yapılarak elde edilirken, mekanik sprey soğutma verileri Ansys Fluent CFD programı kullanılarak elde edilmiştir. Yapılan deneysel ve sayısal çalışmanın sonucunda daha küçük partikül çapı ve yüklü damlacıkların elde edildiği elektrosprey soğutmada mekanik sprey soğutmaya göre yaklaşık %15 daha iyi bir ısı transfer performansı gösterdiği belirlenmiştir. Elektrosprey metodunda, mekanik spreye göre 3,2 kW/m2 ısı akısında %13, 2,59 kW/m2 ısı akısında %14, 1,88 kW/m2 ısı akısında ise %17 daha iyi soğutma elde edildiği görülmüştür.

Supporting Institution

Atatürk Üniversitesi

Project Number

FBA-2018-6965

Thanks

Bu çalışma Atatürk Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi tarafından FBA-2018-6965 numaralı proje ile desteklenmiştir. Desteklerinden dolayı Atatürk Üniversitesi BAP Koordinatörlüğüne teşekkür ederiz.

References

  • [1] Karabulut K., “Heat transfer improvement study of electronic component surfaces using air jet impingement”, Journal of Computational Electronics, 18 (4): 1259-1271, (2019).
  • [2] Karabulut K., Alnak D.E., “Study of cooling of the varied designed warmed surfaces with an air jet impingement”, Pamukkale University Journal of Engineering Sciences, 26 (1): 88-98, (2020).
  • [3] Karabulut K., Alnak D.E., Koca F., “Investigation of heat transfer from heated square patterned surfaces in a rectangular channel with an air jet impingement”, European Journal of Engineering and Natural Sciences, 3 (1): 78-86, (2019).
  • [4] Alnak D.E., Karabulut K., “Jet giriş genişliğinin ısı transferi ve akış yapısına olan etkisinin araştırılması”, Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 36 (2): 331-345, (2021).
  • [5] Nawani S., Subhash M., “A review on multiple liquid jet impingement onto flat plate”, Materials Today: Proceedings, 46: 11190-11197, (2021).
  • [6] Chen C., Hou F., Ma R., Su M., Li J., Cao L.,”Design, integration and performance analysis of a lid-integral microchannel cooling module for high-power chip”, Applied Thermal Engineering, 117457, (2021).
  • [7] Ma K.M., Chen B.R., Gao J.J., Lin C.Y., “Development of an OAPCP-micropump liquid cooling system in a laptop”, International Communications in Heat and Mass Transfer, 36: 225-232, (2009).
  • [8] Zhao J., Du M., Zhang Z., Ling X., “Thermal management strategy for electronic chips based on combination of a flat-plate heat pipe and spray cooling”, International Journal of Heat and Mass Transfer, 181: 121894, (2021).
  • [9] Cheng W. L., Zhang W. W., Chen H., Hu, L., “Spray cooling and flash evaporation cooling: The current development and application”, Renewable and Sustainable Energy Reviews, 55: 614-628, (2016).
  • [10] Wang H., Mamishev A., “Design methodology for the micronozzle-based electrospray evaporative cooling devices”, Journal of Electronics Cooling and Thermal Control, 2: 17-31, (2012).
  • [11] Deng W., Gomez A., “Electrospray cooling for microelectronics”, International Journal of Heat and Mass Transfer, 54: 2270-2275, (2011).
  • [12] Badıllı U., Tarımcı N., “Elektrosprey püskürtme yöntemi ve nanoteknolojideki uygulamaları”, Ankara Eczacılık Fakültesi Dergisi, 38: 117-135, (2009).
  • [13] Jaworek A., Sobczyk A., Krupa A.,”Electrospray application to powder production and surface coating”, Journal of Aerosol Science, 125: 57-92, (2018).
  • [14] Cloupeau M., Prunet-Foch B., “Electrohydrodynamic spraying functioning modes: a critical review”, Journal of Aerosol Science, 25 (6): 1021–1036, (1994).
  • [15] Jaworek A., Krupa A., “Classification of the modes of EHD spraying”, Journal of Aerosol Science, 30 (7): 873–893, (1999).
  • [16] Kabakuş A., Yakut K., Özakın A.N., Yakut R., “Experimental determination of cooling performance on heat sinks with cone-jet electrospray mode”, Engineering Science and Technology, an International Journal, 24: 665-670, (2021).
  • [17] Zhu, G., Shao, Y., Liu, Y., Pei, T., Li, L., Zhang, D., Guo, G., Wang, X., “Single-cell metabolite analysis by electrospray ionization mass spectrometry”, TrAC Trends in Analytical Chemistry, 143: 116351, (2021).
  • [18] Jaworek, A., Sobczyk, A., Krupa, A., “Electrospray application to powder production and surface coating”, Journal of Aerosol Science, 125: 57-92, (2018).
  • [19] Steipel, R., Gallovic, M., Batty, C., Bachelder, E., Ainslie, K., “Electrospray for generation of drug delivery and vaccine particles applied in vitro and in vivo”, Materials Science and Engineering: C, 105: 110070, (2019).
  • [20] Si B. Q., Byun D., Lee S., “Experimental and theoretical study of a cone-jet for an electrospray microthruster considering the interference effect in an array of nozzles”, Journal of Aerosol Science, 38: 924-934, (2007).
  • [21] Gibbons M.J., Robinson A.J., “Electrospray array heat transfer”, International Journal of Thermal Sciences, 129: 451-461, (2018).
  • [22] Yakut R., Yakut K., Sabolsky E., Kuhlman J., “Experimental determination of cooling and spray characteristics of the water electrospray”, International Communications in Heat and Mass Transfer, 120: 105046, (2021).
  • [23] Gibbons M.J., Robinson A.J., “Heat transfer characteristics of single cone-jet electrosprays”, International Journal of Heat and Mass Transfer, 113: 70-83, (2017).
  • [24] Wang H., Mamishev A.V., “Heat transfer correlation models for electrospray evaporative cooling chambers of different geometry types”, Applied Thermal Enginnering, 40: 91-101, (2012).
  • [25] Jaworek A., Krupa A., “Classification of the modes of EHD spraying”, Journal of Aerosol Science, 30: 873-893, (1999).
  • [26] Tan F., Canbolat A.S., Türkan B., Yüce B.E., “Elektronik cihazların soğutulmasının farklı türbülans modelleri ve duvar yaklaşımları ile CFD simülasyonu” 12. Ulusal Tesisat Mühendisliği Kongresi, İzmir, Türkiye. (2015).
  • [27]https://www.interlab.com.tr/assets/upload/services/document/920-026-ethanol-absolute64-17-5-en-r-1-pdf23112019075511.pdf. (2021)
  • [28] Kline S.J., McClintock F.A., “Describing uncertainties in single-sample experiments”, Mechanical Engineering, 75: 3-8, (1953).
  • [29] Yeşildal, F., “Sprey soğutmada ısı ve akış karakteristiklerinin belirlenmesi”, Atatürk Üniversitesi Fen Bilimleri Enstitüsü, Erzurum, Türkiye, (2014).
  • [30] Yeşildal F., Yakut K., “Optimization of the spray cooling parameters for a heat sink by the Taguchi method”, Atomization and Sprays, 27: 1063-1075, (2017).
  • [31] Deng W., Gomez A., “Electrospray cooling for microelectronics”, International Journal of Heat and Mass Transfer, 54: 2270-2275, (2011).

Comparison of Electrospray And Mechanical Spray Atomization Cooling Performances on Heat Sinks

Year 2023, Volume: 26 Issue: 2, 765 - 773, 05.07.2023
https://doi.org/10.2339/politeknik.1009218

Abstract

In recent years, it is a topic that has been discovered in the field of electrospray cooling, which is used in many areas in industry. In this study, the cooling performance of electrospray cooling and mechanical spray cooling on the heat sink, about which there are very limited studies in the literature, were examined. In the same conditions, the data of heat transfer with electrospray were obtained by conducting experiments, while the data of mechanical spray cooling were obtained by using Ansys Fluent CFD program. As a result of the experimental and numerical study, it was determined that electrospray cooling, in which smaller particle diameter and charged droplets were obtained, showed a heat transfer performance approximately 15% better than mechanical spray cooling. In the electrospray method, it was observed that 13% better cooling was obtained at 3,2 kW/m2 heat flux, at 2,59 kW/m2 heat flux %14 and better at 1,88 kW/m2 heat flux %17 compared to mechanical spray.

Project Number

FBA-2018-6965

References

  • [1] Karabulut K., “Heat transfer improvement study of electronic component surfaces using air jet impingement”, Journal of Computational Electronics, 18 (4): 1259-1271, (2019).
  • [2] Karabulut K., Alnak D.E., “Study of cooling of the varied designed warmed surfaces with an air jet impingement”, Pamukkale University Journal of Engineering Sciences, 26 (1): 88-98, (2020).
  • [3] Karabulut K., Alnak D.E., Koca F., “Investigation of heat transfer from heated square patterned surfaces in a rectangular channel with an air jet impingement”, European Journal of Engineering and Natural Sciences, 3 (1): 78-86, (2019).
  • [4] Alnak D.E., Karabulut K., “Jet giriş genişliğinin ısı transferi ve akış yapısına olan etkisinin araştırılması”, Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 36 (2): 331-345, (2021).
  • [5] Nawani S., Subhash M., “A review on multiple liquid jet impingement onto flat plate”, Materials Today: Proceedings, 46: 11190-11197, (2021).
  • [6] Chen C., Hou F., Ma R., Su M., Li J., Cao L.,”Design, integration and performance analysis of a lid-integral microchannel cooling module for high-power chip”, Applied Thermal Engineering, 117457, (2021).
  • [7] Ma K.M., Chen B.R., Gao J.J., Lin C.Y., “Development of an OAPCP-micropump liquid cooling system in a laptop”, International Communications in Heat and Mass Transfer, 36: 225-232, (2009).
  • [8] Zhao J., Du M., Zhang Z., Ling X., “Thermal management strategy for electronic chips based on combination of a flat-plate heat pipe and spray cooling”, International Journal of Heat and Mass Transfer, 181: 121894, (2021).
  • [9] Cheng W. L., Zhang W. W., Chen H., Hu, L., “Spray cooling and flash evaporation cooling: The current development and application”, Renewable and Sustainable Energy Reviews, 55: 614-628, (2016).
  • [10] Wang H., Mamishev A., “Design methodology for the micronozzle-based electrospray evaporative cooling devices”, Journal of Electronics Cooling and Thermal Control, 2: 17-31, (2012).
  • [11] Deng W., Gomez A., “Electrospray cooling for microelectronics”, International Journal of Heat and Mass Transfer, 54: 2270-2275, (2011).
  • [12] Badıllı U., Tarımcı N., “Elektrosprey püskürtme yöntemi ve nanoteknolojideki uygulamaları”, Ankara Eczacılık Fakültesi Dergisi, 38: 117-135, (2009).
  • [13] Jaworek A., Sobczyk A., Krupa A.,”Electrospray application to powder production and surface coating”, Journal of Aerosol Science, 125: 57-92, (2018).
  • [14] Cloupeau M., Prunet-Foch B., “Electrohydrodynamic spraying functioning modes: a critical review”, Journal of Aerosol Science, 25 (6): 1021–1036, (1994).
  • [15] Jaworek A., Krupa A., “Classification of the modes of EHD spraying”, Journal of Aerosol Science, 30 (7): 873–893, (1999).
  • [16] Kabakuş A., Yakut K., Özakın A.N., Yakut R., “Experimental determination of cooling performance on heat sinks with cone-jet electrospray mode”, Engineering Science and Technology, an International Journal, 24: 665-670, (2021).
  • [17] Zhu, G., Shao, Y., Liu, Y., Pei, T., Li, L., Zhang, D., Guo, G., Wang, X., “Single-cell metabolite analysis by electrospray ionization mass spectrometry”, TrAC Trends in Analytical Chemistry, 143: 116351, (2021).
  • [18] Jaworek, A., Sobczyk, A., Krupa, A., “Electrospray application to powder production and surface coating”, Journal of Aerosol Science, 125: 57-92, (2018).
  • [19] Steipel, R., Gallovic, M., Batty, C., Bachelder, E., Ainslie, K., “Electrospray for generation of drug delivery and vaccine particles applied in vitro and in vivo”, Materials Science and Engineering: C, 105: 110070, (2019).
  • [20] Si B. Q., Byun D., Lee S., “Experimental and theoretical study of a cone-jet for an electrospray microthruster considering the interference effect in an array of nozzles”, Journal of Aerosol Science, 38: 924-934, (2007).
  • [21] Gibbons M.J., Robinson A.J., “Electrospray array heat transfer”, International Journal of Thermal Sciences, 129: 451-461, (2018).
  • [22] Yakut R., Yakut K., Sabolsky E., Kuhlman J., “Experimental determination of cooling and spray characteristics of the water electrospray”, International Communications in Heat and Mass Transfer, 120: 105046, (2021).
  • [23] Gibbons M.J., Robinson A.J., “Heat transfer characteristics of single cone-jet electrosprays”, International Journal of Heat and Mass Transfer, 113: 70-83, (2017).
  • [24] Wang H., Mamishev A.V., “Heat transfer correlation models for electrospray evaporative cooling chambers of different geometry types”, Applied Thermal Enginnering, 40: 91-101, (2012).
  • [25] Jaworek A., Krupa A., “Classification of the modes of EHD spraying”, Journal of Aerosol Science, 30: 873-893, (1999).
  • [26] Tan F., Canbolat A.S., Türkan B., Yüce B.E., “Elektronik cihazların soğutulmasının farklı türbülans modelleri ve duvar yaklaşımları ile CFD simülasyonu” 12. Ulusal Tesisat Mühendisliği Kongresi, İzmir, Türkiye. (2015).
  • [27]https://www.interlab.com.tr/assets/upload/services/document/920-026-ethanol-absolute64-17-5-en-r-1-pdf23112019075511.pdf. (2021)
  • [28] Kline S.J., McClintock F.A., “Describing uncertainties in single-sample experiments”, Mechanical Engineering, 75: 3-8, (1953).
  • [29] Yeşildal, F., “Sprey soğutmada ısı ve akış karakteristiklerinin belirlenmesi”, Atatürk Üniversitesi Fen Bilimleri Enstitüsü, Erzurum, Türkiye, (2014).
  • [30] Yeşildal F., Yakut K., “Optimization of the spray cooling parameters for a heat sink by the Taguchi method”, Atomization and Sprays, 27: 1063-1075, (2017).
  • [31] Deng W., Gomez A., “Electrospray cooling for microelectronics”, International Journal of Heat and Mass Transfer, 54: 2270-2275, (2011).
There are 31 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Abdüssamed Kabakuş 0000-0002-3049-9493

Kenan Yakut 0000-0001-7822-2445

Ahmet Numan Özakın 0000-0002-2083-8703

Project Number FBA-2018-6965
Publication Date July 5, 2023
Submission Date October 13, 2021
Published in Issue Year 2023 Volume: 26 Issue: 2

Cite

APA Kabakuş, A., Yakut, K., & Özakın, A. N. (2023). Isı Alıcılarda Elektrosprey ile Mekanik Sprey Atomizasyon Soğutma Performanslarının Karşılaştırılması. Politeknik Dergisi, 26(2), 765-773. https://doi.org/10.2339/politeknik.1009218
AMA Kabakuş A, Yakut K, Özakın AN. Isı Alıcılarda Elektrosprey ile Mekanik Sprey Atomizasyon Soğutma Performanslarının Karşılaştırılması. Politeknik Dergisi. July 2023;26(2):765-773. doi:10.2339/politeknik.1009218
Chicago Kabakuş, Abdüssamed, Kenan Yakut, and Ahmet Numan Özakın. “Isı Alıcılarda Elektrosprey Ile Mekanik Sprey Atomizasyon Soğutma Performanslarının Karşılaştırılması”. Politeknik Dergisi 26, no. 2 (July 2023): 765-73. https://doi.org/10.2339/politeknik.1009218.
EndNote Kabakuş A, Yakut K, Özakın AN (July 1, 2023) Isı Alıcılarda Elektrosprey ile Mekanik Sprey Atomizasyon Soğutma Performanslarının Karşılaştırılması. Politeknik Dergisi 26 2 765–773.
IEEE A. Kabakuş, K. Yakut, and A. N. Özakın, “Isı Alıcılarda Elektrosprey ile Mekanik Sprey Atomizasyon Soğutma Performanslarının Karşılaştırılması”, Politeknik Dergisi, vol. 26, no. 2, pp. 765–773, 2023, doi: 10.2339/politeknik.1009218.
ISNAD Kabakuş, Abdüssamed et al. “Isı Alıcılarda Elektrosprey Ile Mekanik Sprey Atomizasyon Soğutma Performanslarının Karşılaştırılması”. Politeknik Dergisi 26/2 (July 2023), 765-773. https://doi.org/10.2339/politeknik.1009218.
JAMA Kabakuş A, Yakut K, Özakın AN. Isı Alıcılarda Elektrosprey ile Mekanik Sprey Atomizasyon Soğutma Performanslarının Karşılaştırılması. Politeknik Dergisi. 2023;26:765–773.
MLA Kabakuş, Abdüssamed et al. “Isı Alıcılarda Elektrosprey Ile Mekanik Sprey Atomizasyon Soğutma Performanslarının Karşılaştırılması”. Politeknik Dergisi, vol. 26, no. 2, 2023, pp. 765-73, doi:10.2339/politeknik.1009218.
Vancouver Kabakuş A, Yakut K, Özakın AN. Isı Alıcılarda Elektrosprey ile Mekanik Sprey Atomizasyon Soğutma Performanslarının Karşılaştırılması. Politeknik Dergisi. 2023;26(2):765-73.