Research Article
BibTex RIS Cite

Experimental Study on Magnetorheological Damper Prototype and Obtaining Its Equivalent Damping Coefficients

Year 2023, Volume: 26 Issue: 2, 863 - 870, 05.07.2023
https://doi.org/10.2339/politeknik.1078651

Abstract

In this work, a magnetorheological (MR) damper prototype that provides controllable damping force was designed, manufactured and tested. The design and dimensions of the MR damper piston were determined according to the static magnetic analysis results made in ANSYS/Emag (Electromagnetics) software. The MR damper’s damping performance was tested in laboratory by utilizing a damper testing device. The tests were carried out under different currents applied to coil of the MR damper. According to the test results, the equivalent damping coefficients of the MR damper were calculated for different currents. The test results show that the highest damping force is 169.4 N with frequency of 3.18 Hz and applied current of 2 A. In this case, the equivalent damping coefficient is 302 Ns/m. The equivalent damping coefficient is 181 Ns/m when no current is supplied to the coil. The area of the dynamic force range also becomes larger with increasing the applied current. In addition, according to the quarter car model based simulation results in MATLAB/Simulink, it was seen that the semi-active suspension system using MR damper was more effective and successful in vibration mitigation.  

Supporting Institution

Gazi Üniversitesi

Project Number

07/2010-29, 2010

Thanks

This work was supported by Gazi University Scientific Research Projects Unit.

References

  • [1] G. Bossis, S. Lacis, A. Meunier, O. Volkova, “Magnetorheological fluids”, Journal of Magnetism and Magnetic Materials, 252: 224-228, (2002).
  • [2] Y. D. Liu, F. F. Fang, H. J. Choi, “Core-shell-structured silica-coated magnetic carbonyl iron microbead and its magnetorheology with anti-acidic characteristics”, Colloid Polym Sci., 289: 1295-1298, (2011).
  • [3] M. Kciuk, S. Kciuk, R. Turczyn, “Magnetorheological characterisation of carbonyl iron based suspension”, Journal of Achievements in Materials and Manufacturing Engineering, 33: (2) 135-141, (2009).
  • [4] P. B. Nguyen, X. P. Do, J. Jeon, S. B. Choi, Y. D. Liu, H. J. Choi, “Brake performance of core-shell structured carbonyl iron/silica based magnetorheological suspension”, Journal of Magnetism and Magnetic Materials, 367: 69-74, (2014).
  • [5] M. N. Aruna, M. R. Rahman, S. Joladarashi, H. Kumar, B. P. Devadas, “Influence of different fumed silica as thixotropic additive on carbonyl particles magnetorheological fluids for sedimentation effects”, Journal of Magnetism and Magnetic Materials, 529: 167910, (2021).
  • [6] H. Pang, F. Liu, Z. Xu, “Variable universe fuzzy control for vehicle semi-active suspension system with MR damper combining fuzzy neural network and particle swarm optimization”, Neurocomputing, 306: 130-140, (2018).
  • [7] M. Yu, X. M. Dong, S. B. Choi, C. R. Liao, “Human simulated intelligent control of vehicle suspension system with MR dampers”, Journal of Sound and Vibration, 319: 753-767, (2009).
  • [8] J. Yang, D. Ning, S. S. Sun, J. Zheng, H. Lu, M. Nakano, S. Zhang, H. Du, W. H. Li, “A semi-active suspension using a magnetorheological damper with nonlinear negative-stiffness component”, Mechanical Systems and Signal Processing, 147: 107071, (2021).
  • [9] S. Acharya, R. S. Saini Tak, S. B. Singh, H. Kumar, “Characterization of magnetorheological brake utilizing synthesized and commercial fluids”, Materials Today: Proceedings, https://doi.org/10.1016/j.matpr.2020.03.061 , (2020).
  • [10] S. M. Kalikate, S. R. Patil, S. M. Sawant, “Simulation-based estimation of an automotive magnetorheological brake system performance”, Journal of Advanced Research, 14: 43-51, (2018).
  • [11] E. J. Park, D. Stoikov, L. F. Luz, A. Süleman, “A performance evaluation of an automotive magnetorheological brake design with a sliding mode controller”, Mechatronics, 16: 405-416, (2006).
  • [12] K. H. Latha, P. U. Sri, N. Seetharamaiah, “Design and Manufacturing Aspects of Magneto-rheological Fluid (MRF) Clutch”, Materials Today: Proceedings, 4: 1525-1534, (2017).
  • [13] J. Y. Park, G. W. Kim, J. S. Oh, Y. C. Kim, “Hybrid multi-plate magnetorheological clutch featuring two operating modes: Fluid coupling and mechanical friction”, Journal of Intelligent Material Systems and Structures, 1-13, https://doi.org/10.1177/1045389X20988086 , (2021).
  • [14] X. X. Bai, D. H. Wang, H. Fu, “Principle, modeling, and testing of an annular-radial-duct magnetorheological damper”, Sensors and Actuators A: Physical, 201: 302-309, (2013).
  • [15] F. Tu, Q. Yang, C. He, L. Wang, “Experimental Study and Design on Automobile Suspension Made of Magneto-Rheological Damper”, Energy Procedia, 16: 417-425, (2012).
  • [16] G. Hu, Y. Lu, S. Sun, W. Li, “Development of a self-sensing magnetorheological damper with magnets in-line coil mechanism”, Sensors and Actuators A: Physical, 255: 71-78, (2017).
  • [17] M. Mao, W. Hu, Y. T. Choi, N. M. Wereley, “A magnetorheological damper with bifold valves for shock and vibration mitigation”, Journal of Intelligent Material Systems and Structures, 18: 1227-1232, (2007).
  • [18] G. Z. Yao, F. F. Yap, G. Chen, W. H. Li, S. H. Yeo, “MR damper and its application for semi-active control of vehicle suspension system”, Mechatronics, 12: 963-973, (2002).
  • [19] R. Jeyasenthil, S. B. Choi, “A novel semi-active control strategy based on the quantitative feedback theory for a vehicle suspension system with magneto-rheological damper saturation”, Mechatronics, 54: 36-51, (2018).
  • [20] J. Wu, H. Zhou, Z. Liu, M. Gu, “A load-dependent PWA-H∞ controller for semi-active suspensions to exploit the performance of MR dampers”, Mechanical Systems and Signal Processing, 127: 441-462, (2019).
  • [21] I. I. M. Yazid, S. A. Mazlan, T. Kikuchi, H. Zamzuri, F. Imaduddin, “Design of magnetorheological damper with a combination of shear and squeeze modes”, Materials and Design, 54: 87-95, (2014).
  • [22] G. Hu, H. Liu, J. Duan, L. Yu, “Damping performance analysis of magnetorheological damper with serial-type flow channels”, Advances in Mechanical Engineering, 11: (1) https://doi.org/10.1177/1687814018816842 , (2019).
  • [23] I. Bahiuddin, F. Imaduddin, S. A. Mazlan, M. H. M. Ariff, K. B. Mohmad, Ubaidillah, S. B. Choi, “Accurate and fast estimation for field-dependent nonlinear damping force of meandering valve- based magnetorheological damper using extreme learning machine method”, Sensors and Actuators A: Physical, 318: 1-12, https://doi.org/10.1016/j.sna.2020.112479 , (2021).
  • [24] M. H. Jamadar, R. M. Desai, H. Kumar, S. Joladarashi, “Analyzing quarter car model with magneto-rheological (MR) damper using equivalent damping and magic formula models”, Materials Today: Proceedings, 1-6, https://doi.org/10.1016/j.matpr.2021.02.706 , (2021).
  • [25] T. Ergin, D. Altıparmak, “Damping performance of carbonyl iron and magnetite-based magnetorheological fluids and usage of fumed silica as an additive”, Journal of the Faculty of Engineering and Architecture of Gazi University, 28: (4) 695-703, (2013).
  • [26] J. C. Dixon, “The Shock Absorber Handbook”, John Wiley & Sons Ltd., Chp-7, England, (2007).

Manyetoreolojik Amortisör Prototipinin Deneysel Çalışması ve Eşdeğer Sönüm Katsayılarının Elde Edilmesi

Year 2023, Volume: 26 Issue: 2, 863 - 870, 05.07.2023
https://doi.org/10.2339/politeknik.1078651

Abstract

Bu çalışmada, kontrol edilebilir sönümleme kuvveti sağlayan manyetoreolojik (MR) bir amortisör prototipi tasarlanmış, üretilmiş ve test edilmiştir. MR amortisör pistonunun tasarımı ve boyutları ANSYS/Emag (Elektromanyetik) yazılımında yapılan statik manyetik analiz sonuçlarına göre belirlenmiştir. MR amortisörün sönümleme performansı, bir amortisör test cihazı kullanılarak laboratuvarda test edilmiştir. Testler, MR amortisörün bobinine uygulanan farklı akımlar altında gerçekleştirilmiştir. Test sonuçlarına göre farklı akımlar için MR amortisörün eşdeğer sönüm katsayıları hesaplanmıştır. Test sonuçları, 3,18 Hz frekans ve uygulanan 2 A akım değeri için, en yüksek sönümleme kuvvetinin 169,4 N olduğunu göstermektedir. Bu durumda, eşdeğer sönümleme katsayısı 302 Ns/m'dir. Bobine akım verilmediğinde eşdeğer sönümleme katsayısı 181 Ns/m'dir. Dinamik kuvvet aralığının alanı da uygulanan akımın artmasıyla büyümüştür. Ayrıca MATLAB/Simulink'te çeyrek taşıt modeli tabanlı simülasyon sonuçlarına göre MR amortisör kullanan yarı aktif süspansiyon sisteminin titreşim azaltmada daha etkili ve başarılı olduğu görülmüştür.

Project Number

07/2010-29, 2010

References

  • [1] G. Bossis, S. Lacis, A. Meunier, O. Volkova, “Magnetorheological fluids”, Journal of Magnetism and Magnetic Materials, 252: 224-228, (2002).
  • [2] Y. D. Liu, F. F. Fang, H. J. Choi, “Core-shell-structured silica-coated magnetic carbonyl iron microbead and its magnetorheology with anti-acidic characteristics”, Colloid Polym Sci., 289: 1295-1298, (2011).
  • [3] M. Kciuk, S. Kciuk, R. Turczyn, “Magnetorheological characterisation of carbonyl iron based suspension”, Journal of Achievements in Materials and Manufacturing Engineering, 33: (2) 135-141, (2009).
  • [4] P. B. Nguyen, X. P. Do, J. Jeon, S. B. Choi, Y. D. Liu, H. J. Choi, “Brake performance of core-shell structured carbonyl iron/silica based magnetorheological suspension”, Journal of Magnetism and Magnetic Materials, 367: 69-74, (2014).
  • [5] M. N. Aruna, M. R. Rahman, S. Joladarashi, H. Kumar, B. P. Devadas, “Influence of different fumed silica as thixotropic additive on carbonyl particles magnetorheological fluids for sedimentation effects”, Journal of Magnetism and Magnetic Materials, 529: 167910, (2021).
  • [6] H. Pang, F. Liu, Z. Xu, “Variable universe fuzzy control for vehicle semi-active suspension system with MR damper combining fuzzy neural network and particle swarm optimization”, Neurocomputing, 306: 130-140, (2018).
  • [7] M. Yu, X. M. Dong, S. B. Choi, C. R. Liao, “Human simulated intelligent control of vehicle suspension system with MR dampers”, Journal of Sound and Vibration, 319: 753-767, (2009).
  • [8] J. Yang, D. Ning, S. S. Sun, J. Zheng, H. Lu, M. Nakano, S. Zhang, H. Du, W. H. Li, “A semi-active suspension using a magnetorheological damper with nonlinear negative-stiffness component”, Mechanical Systems and Signal Processing, 147: 107071, (2021).
  • [9] S. Acharya, R. S. Saini Tak, S. B. Singh, H. Kumar, “Characterization of magnetorheological brake utilizing synthesized and commercial fluids”, Materials Today: Proceedings, https://doi.org/10.1016/j.matpr.2020.03.061 , (2020).
  • [10] S. M. Kalikate, S. R. Patil, S. M. Sawant, “Simulation-based estimation of an automotive magnetorheological brake system performance”, Journal of Advanced Research, 14: 43-51, (2018).
  • [11] E. J. Park, D. Stoikov, L. F. Luz, A. Süleman, “A performance evaluation of an automotive magnetorheological brake design with a sliding mode controller”, Mechatronics, 16: 405-416, (2006).
  • [12] K. H. Latha, P. U. Sri, N. Seetharamaiah, “Design and Manufacturing Aspects of Magneto-rheological Fluid (MRF) Clutch”, Materials Today: Proceedings, 4: 1525-1534, (2017).
  • [13] J. Y. Park, G. W. Kim, J. S. Oh, Y. C. Kim, “Hybrid multi-plate magnetorheological clutch featuring two operating modes: Fluid coupling and mechanical friction”, Journal of Intelligent Material Systems and Structures, 1-13, https://doi.org/10.1177/1045389X20988086 , (2021).
  • [14] X. X. Bai, D. H. Wang, H. Fu, “Principle, modeling, and testing of an annular-radial-duct magnetorheological damper”, Sensors and Actuators A: Physical, 201: 302-309, (2013).
  • [15] F. Tu, Q. Yang, C. He, L. Wang, “Experimental Study and Design on Automobile Suspension Made of Magneto-Rheological Damper”, Energy Procedia, 16: 417-425, (2012).
  • [16] G. Hu, Y. Lu, S. Sun, W. Li, “Development of a self-sensing magnetorheological damper with magnets in-line coil mechanism”, Sensors and Actuators A: Physical, 255: 71-78, (2017).
  • [17] M. Mao, W. Hu, Y. T. Choi, N. M. Wereley, “A magnetorheological damper with bifold valves for shock and vibration mitigation”, Journal of Intelligent Material Systems and Structures, 18: 1227-1232, (2007).
  • [18] G. Z. Yao, F. F. Yap, G. Chen, W. H. Li, S. H. Yeo, “MR damper and its application for semi-active control of vehicle suspension system”, Mechatronics, 12: 963-973, (2002).
  • [19] R. Jeyasenthil, S. B. Choi, “A novel semi-active control strategy based on the quantitative feedback theory for a vehicle suspension system with magneto-rheological damper saturation”, Mechatronics, 54: 36-51, (2018).
  • [20] J. Wu, H. Zhou, Z. Liu, M. Gu, “A load-dependent PWA-H∞ controller for semi-active suspensions to exploit the performance of MR dampers”, Mechanical Systems and Signal Processing, 127: 441-462, (2019).
  • [21] I. I. M. Yazid, S. A. Mazlan, T. Kikuchi, H. Zamzuri, F. Imaduddin, “Design of magnetorheological damper with a combination of shear and squeeze modes”, Materials and Design, 54: 87-95, (2014).
  • [22] G. Hu, H. Liu, J. Duan, L. Yu, “Damping performance analysis of magnetorheological damper with serial-type flow channels”, Advances in Mechanical Engineering, 11: (1) https://doi.org/10.1177/1687814018816842 , (2019).
  • [23] I. Bahiuddin, F. Imaduddin, S. A. Mazlan, M. H. M. Ariff, K. B. Mohmad, Ubaidillah, S. B. Choi, “Accurate and fast estimation for field-dependent nonlinear damping force of meandering valve- based magnetorheological damper using extreme learning machine method”, Sensors and Actuators A: Physical, 318: 1-12, https://doi.org/10.1016/j.sna.2020.112479 , (2021).
  • [24] M. H. Jamadar, R. M. Desai, H. Kumar, S. Joladarashi, “Analyzing quarter car model with magneto-rheological (MR) damper using equivalent damping and magic formula models”, Materials Today: Proceedings, 1-6, https://doi.org/10.1016/j.matpr.2021.02.706 , (2021).
  • [25] T. Ergin, D. Altıparmak, “Damping performance of carbonyl iron and magnetite-based magnetorheological fluids and usage of fumed silica as an additive”, Journal of the Faculty of Engineering and Architecture of Gazi University, 28: (4) 695-703, (2013).
  • [26] J. C. Dixon, “The Shock Absorber Handbook”, John Wiley & Sons Ltd., Chp-7, England, (2007).
There are 26 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Turgay Ergin 0000-0002-6396-1277

Duran Altıparmak 0000-0002-8597-7923

Project Number 07/2010-29, 2010
Publication Date July 5, 2023
Submission Date February 24, 2022
Published in Issue Year 2023 Volume: 26 Issue: 2

Cite

APA Ergin, T., & Altıparmak, D. (2023). Experimental Study on Magnetorheological Damper Prototype and Obtaining Its Equivalent Damping Coefficients. Politeknik Dergisi, 26(2), 863-870. https://doi.org/10.2339/politeknik.1078651
AMA Ergin T, Altıparmak D. Experimental Study on Magnetorheological Damper Prototype and Obtaining Its Equivalent Damping Coefficients. Politeknik Dergisi. July 2023;26(2):863-870. doi:10.2339/politeknik.1078651
Chicago Ergin, Turgay, and Duran Altıparmak. “Experimental Study on Magnetorheological Damper Prototype and Obtaining Its Equivalent Damping Coefficients”. Politeknik Dergisi 26, no. 2 (July 2023): 863-70. https://doi.org/10.2339/politeknik.1078651.
EndNote Ergin T, Altıparmak D (July 1, 2023) Experimental Study on Magnetorheological Damper Prototype and Obtaining Its Equivalent Damping Coefficients. Politeknik Dergisi 26 2 863–870.
IEEE T. Ergin and D. Altıparmak, “Experimental Study on Magnetorheological Damper Prototype and Obtaining Its Equivalent Damping Coefficients”, Politeknik Dergisi, vol. 26, no. 2, pp. 863–870, 2023, doi: 10.2339/politeknik.1078651.
ISNAD Ergin, Turgay - Altıparmak, Duran. “Experimental Study on Magnetorheological Damper Prototype and Obtaining Its Equivalent Damping Coefficients”. Politeknik Dergisi 26/2 (July 2023), 863-870. https://doi.org/10.2339/politeknik.1078651.
JAMA Ergin T, Altıparmak D. Experimental Study on Magnetorheological Damper Prototype and Obtaining Its Equivalent Damping Coefficients. Politeknik Dergisi. 2023;26:863–870.
MLA Ergin, Turgay and Duran Altıparmak. “Experimental Study on Magnetorheological Damper Prototype and Obtaining Its Equivalent Damping Coefficients”. Politeknik Dergisi, vol. 26, no. 2, 2023, pp. 863-70, doi:10.2339/politeknik.1078651.
Vancouver Ergin T, Altıparmak D. Experimental Study on Magnetorheological Damper Prototype and Obtaining Its Equivalent Damping Coefficients. Politeknik Dergisi. 2023;26(2):863-70.