Research Article
BibTex RIS Cite

Endüstriyel Atıkların Kil Tabanlı Tuğlalarda Kullanımı

Year 2023, Volume: 26 Issue: 2, 871 - 874, 05.07.2023
https://doi.org/10.2339/politeknik.1080435

Abstract

Endüstriyel atıkların çevreye belirgin bir şekilde zararlı olduğu çok iyi bilinmektedir, bu sebeple atıkların geri dönüşümü yapı malzemeleri ile birleştirilerek kullanılması uygun bir çözümdür. Bu araştırma atık döküm kumu ve atık borun, kil tabanlı tuğla üretiminde kullanılabilirliğini incelemiştir. Bu amaçla, uygun miktarda atık ve çeşitli kimyasal ilaveler çimento içermeyen kile eklenerek kompozit tuğlalar üretilmiştir. Tuğlaların pişirme sıcaklığı 800ºC’dir. Standart veriler deneysel çalışma sonuçları ile kıyaslandığında; atık fabrika kumu ilave edilen tuğlaların dayanım ve yığın yoğunluk değerleri yükselmiştir. Ek olarak, kompozit tuğlaların hacim küçülmesi ve su emme değerlerinde düşüş görülmüştür. Atık fabrika kumu ve atık borun kil tuğlalarında kullanılması basınç dayanımını iyileştirmiş ve bu değer standart tuğlalar ile kıyasla daha yüksek çıkmıştır.

References

  • 1. Joshi, D., and Modi, Y., “Evaluating environmental impacts of sand cast products using life cycle assessment”, In ICORD 11: Proceedings of the 3rd International Conference on Research into Design Engineering, Bangalore, India, 551-558, (2011).
  • 2. Algin, H. M., and Turgut, P. “Cotton and limestone powder wastes as brick material”, Construction and Building Materials, 22: 1074-1080, (2008).
  • 3. Abdul Kadir, A., and Mohajerani, A., “Bricks: an excellent building material for recycling wastes–a review”, Proceedings of the IASTED International Conference. Environmental Management and Engineering, 4-6, (2011).
  • 4. Mohammed, M. S., Ahmed, A. E. S. I., Osman, R. M., and Khattab, I., “Combinations of organic and inorganic wastes for brick production”, Polymer composites, 35: 174-179, (2014).
  • 5. Codispoti, R., Oliveira, D. V., Fangueiro, R., Lourenço, P. B., and Olivito, R. S., “Experimental behavior of natural fiber-based composites used for strengthening masonry structures”, In Conference Papers in Science, Hindawi, 104-109, (2013).
  • 6. Freeda Christy, C., Tensing, D., and Mercy Shanthi, R., “Experimental study on axial compressive strength and elastic modulus of the clay and fly ash brick masonry”, Journal of Civil Engineering and Construction Technology, 4: 134-141, (2013).
  • 7. Ibrahim, J. E. F., Kotova, O. B., Sun, S., Kurovics, E., Tihtih, M., & Gömze, L. A., “Preparation of innovative eco-efficient composite bricks based on zeolite-poor rock and Hen's eggshell”, Journal of Building Engineering, 45, 103491, (2022).
  • 8. Başar, H. M., and Aksoy, N. D., “Investigation of usability of waste foundry sand in ready-mixed concrete”, Sigma, 31: 517-528, (2013).
  • 9. Aggarwal, Y., and Siddique, R., “Microstructure and properties of concrete using bottom ash and waste foundry sand as partial replacement of fine aggregates”. Construction and Building Materials, 54: 210-223, (2014).
  • 10. Pérez-Villarejo, L., Martínez-Martínez, S., Carrasco-Hurtado, B., Eliche-Quesada, D., Ureña-Nieto, C., and Sánchez-Soto, P. J., “Valorization and inertization of galvanic sludge waste in clay bricks”, Applied Clay Science, 105: 89-99, (2015).
  • 11. EN 771-1, “Specification for masonry units - Part 1: Clay masonry units”, (2012).
  • 12. Pérez-Villarejo, L., Eliche-Quesada, D., Iglesias-Godino, F. J., Martínez-García, C., and Corpas-Iglesias, F. A., “Recycling of ash from biomass incinerator in clay matrix to produce ceramic bricks”, Journal of Environmental Management, 95: 349-354, (2012).
  • 13. Kavas, T., “Use of boron waste as a fluxing agent in production of red mud brick”, Building and Environment, 41: 1779-1783, (2006).
  • 14. Binici, H., Aksogan, O., Temiz, H., Kaplan, H., and Ulusoy, A., “The use of fly ash and basaltic pumice as additives in the production of clay fired brick in Turkey”. International journal of materials research, 101: 887-893, (2010).
  • 15. Raut, S. P., Ralegaonkar, R. V., and Mandavgane, S. A., “Development of sustainable construction material using industrial and agricultural solid waste: A review of waste-create bricks”, Construction and building materials, 25: 4037-4042, (2011).
  • 16. Siddique, R., “Utilization of industrial by-products in concrete”, Procedia Engineering, 95: 335-347, (2014).
  • 17. Turgut, P., “Manufacturing of building bricks without Portland cement”, Journal of Cleaner Production, 37: 361-367, (2012).
  • 18. Sutcu, M., and Akkurt, S., “The use of recycled paper processing residues in making porous brick with reduced thermal conductivity”, Ceramics international, 35: 2625-2631, (2009).
  • 19. Abdul Kadir, A., Mohajerani, A., Roddick, F., and Buckeridge, J., “Density, strength, thermal conductivity and leachate characteristics of light-weight fired clay bricks incorporating cigarette butts”. Proceedings of the World Academy of Science, Engineering and Technology, 53: 1035-1040, (2009).
  • 20. Yaras, A., “Combined effects of paper mill sludge and carbonation sludge on characteristics of fired clay bricks”, Construction and Building Materials, 249, 118722, (2020).
  • 21. Sutcu, M., Alptekin, H., Erdogmus, E., Er, Y., and Gencel, O., “Characteristics of fired clay bricks with waste marble powder addition as building materials”, Construction and Building Materials, 82: 1-8, (2015).

Use of Industrial Wastes in Clay Based Brick

Year 2023, Volume: 26 Issue: 2, 871 - 874, 05.07.2023
https://doi.org/10.2339/politeknik.1080435

Abstract

It is well known that industrial wastes are considerably hazardous to the environment therefore recycling wastes by merging them into the building materials is an appropriate solution. This research reviews usability of waste casting sand (WCS) and waste boron (WB) in clay based bricks. For this purpose, composite bricks produced by adding appropriate mixtures of wastes and various chemical additives in cement free clay. Firing temperature of the composite bricks was 800ºC. When compared with standard specifications, experimental results showed that with the addition of WCS into the bricks, strength and bulk density improved. Moreover, drying shrinkage and water absorption values decreased. The presence of WCS and WB in clay bricks enhanced the compression strength which is higher than standard bricks.

References

  • 1. Joshi, D., and Modi, Y., “Evaluating environmental impacts of sand cast products using life cycle assessment”, In ICORD 11: Proceedings of the 3rd International Conference on Research into Design Engineering, Bangalore, India, 551-558, (2011).
  • 2. Algin, H. M., and Turgut, P. “Cotton and limestone powder wastes as brick material”, Construction and Building Materials, 22: 1074-1080, (2008).
  • 3. Abdul Kadir, A., and Mohajerani, A., “Bricks: an excellent building material for recycling wastes–a review”, Proceedings of the IASTED International Conference. Environmental Management and Engineering, 4-6, (2011).
  • 4. Mohammed, M. S., Ahmed, A. E. S. I., Osman, R. M., and Khattab, I., “Combinations of organic and inorganic wastes for brick production”, Polymer composites, 35: 174-179, (2014).
  • 5. Codispoti, R., Oliveira, D. V., Fangueiro, R., Lourenço, P. B., and Olivito, R. S., “Experimental behavior of natural fiber-based composites used for strengthening masonry structures”, In Conference Papers in Science, Hindawi, 104-109, (2013).
  • 6. Freeda Christy, C., Tensing, D., and Mercy Shanthi, R., “Experimental study on axial compressive strength and elastic modulus of the clay and fly ash brick masonry”, Journal of Civil Engineering and Construction Technology, 4: 134-141, (2013).
  • 7. Ibrahim, J. E. F., Kotova, O. B., Sun, S., Kurovics, E., Tihtih, M., & Gömze, L. A., “Preparation of innovative eco-efficient composite bricks based on zeolite-poor rock and Hen's eggshell”, Journal of Building Engineering, 45, 103491, (2022).
  • 8. Başar, H. M., and Aksoy, N. D., “Investigation of usability of waste foundry sand in ready-mixed concrete”, Sigma, 31: 517-528, (2013).
  • 9. Aggarwal, Y., and Siddique, R., “Microstructure and properties of concrete using bottom ash and waste foundry sand as partial replacement of fine aggregates”. Construction and Building Materials, 54: 210-223, (2014).
  • 10. Pérez-Villarejo, L., Martínez-Martínez, S., Carrasco-Hurtado, B., Eliche-Quesada, D., Ureña-Nieto, C., and Sánchez-Soto, P. J., “Valorization and inertization of galvanic sludge waste in clay bricks”, Applied Clay Science, 105: 89-99, (2015).
  • 11. EN 771-1, “Specification for masonry units - Part 1: Clay masonry units”, (2012).
  • 12. Pérez-Villarejo, L., Eliche-Quesada, D., Iglesias-Godino, F. J., Martínez-García, C., and Corpas-Iglesias, F. A., “Recycling of ash from biomass incinerator in clay matrix to produce ceramic bricks”, Journal of Environmental Management, 95: 349-354, (2012).
  • 13. Kavas, T., “Use of boron waste as a fluxing agent in production of red mud brick”, Building and Environment, 41: 1779-1783, (2006).
  • 14. Binici, H., Aksogan, O., Temiz, H., Kaplan, H., and Ulusoy, A., “The use of fly ash and basaltic pumice as additives in the production of clay fired brick in Turkey”. International journal of materials research, 101: 887-893, (2010).
  • 15. Raut, S. P., Ralegaonkar, R. V., and Mandavgane, S. A., “Development of sustainable construction material using industrial and agricultural solid waste: A review of waste-create bricks”, Construction and building materials, 25: 4037-4042, (2011).
  • 16. Siddique, R., “Utilization of industrial by-products in concrete”, Procedia Engineering, 95: 335-347, (2014).
  • 17. Turgut, P., “Manufacturing of building bricks without Portland cement”, Journal of Cleaner Production, 37: 361-367, (2012).
  • 18. Sutcu, M., and Akkurt, S., “The use of recycled paper processing residues in making porous brick with reduced thermal conductivity”, Ceramics international, 35: 2625-2631, (2009).
  • 19. Abdul Kadir, A., Mohajerani, A., Roddick, F., and Buckeridge, J., “Density, strength, thermal conductivity and leachate characteristics of light-weight fired clay bricks incorporating cigarette butts”. Proceedings of the World Academy of Science, Engineering and Technology, 53: 1035-1040, (2009).
  • 20. Yaras, A., “Combined effects of paper mill sludge and carbonation sludge on characteristics of fired clay bricks”, Construction and Building Materials, 249, 118722, (2020).
  • 21. Sutcu, M., Alptekin, H., Erdogmus, E., Er, Y., and Gencel, O., “Characteristics of fired clay bricks with waste marble powder addition as building materials”, Construction and Building Materials, 82: 1-8, (2015).
There are 21 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Ömer Faruk Murathan 0000-0002-3636-2164

Publication Date July 5, 2023
Submission Date February 28, 2022
Published in Issue Year 2023 Volume: 26 Issue: 2

Cite

APA Murathan, Ö. F. (2023). Use of Industrial Wastes in Clay Based Brick. Politeknik Dergisi, 26(2), 871-874. https://doi.org/10.2339/politeknik.1080435
AMA Murathan ÖF. Use of Industrial Wastes in Clay Based Brick. Politeknik Dergisi. July 2023;26(2):871-874. doi:10.2339/politeknik.1080435
Chicago Murathan, Ömer Faruk. “Use of Industrial Wastes in Clay Based Brick”. Politeknik Dergisi 26, no. 2 (July 2023): 871-74. https://doi.org/10.2339/politeknik.1080435.
EndNote Murathan ÖF (July 1, 2023) Use of Industrial Wastes in Clay Based Brick. Politeknik Dergisi 26 2 871–874.
IEEE Ö. F. Murathan, “Use of Industrial Wastes in Clay Based Brick”, Politeknik Dergisi, vol. 26, no. 2, pp. 871–874, 2023, doi: 10.2339/politeknik.1080435.
ISNAD Murathan, Ömer Faruk. “Use of Industrial Wastes in Clay Based Brick”. Politeknik Dergisi 26/2 (July 2023), 871-874. https://doi.org/10.2339/politeknik.1080435.
JAMA Murathan ÖF. Use of Industrial Wastes in Clay Based Brick. Politeknik Dergisi. 2023;26:871–874.
MLA Murathan, Ömer Faruk. “Use of Industrial Wastes in Clay Based Brick”. Politeknik Dergisi, vol. 26, no. 2, 2023, pp. 871-4, doi:10.2339/politeknik.1080435.
Vancouver Murathan ÖF. Use of Industrial Wastes in Clay Based Brick. Politeknik Dergisi. 2023;26(2):871-4.