Research Article
BibTex RIS Cite

Sıvı Kristaller Kullanılarak Metisiline dirençli Staphyloccoccus aureus Bakterisinin Tespiti

Year 2023, Volume: 26 Issue: 3, 1103 - 1109, 01.10.2023
https://doi.org/10.2339/politeknik.934565

Abstract

Metisiline dirençli Staphylococcus aureus (MRSA), halk sağlığı için temel bir patojendir ve bu bakteri genellikle insanlarda ciddi enfeksiyonlara neden olur. Son yıllarda MRSA bakterileri, zaman alıcı ve emek yoğun olan bakteri kültür ve nükleik asit esaslı yöntemlerle tespit edilmektedir. Bu çalışmada, bu sınırlamaların üstesinden gelmek için yeni bir sıvı kristal tabanlı biyoalgılama sistemi geliştirilmiştir. Bu çalışmanın birincil amacı, izotonik su ve fosfat tamponlu salin (PBS) içinde hazırlanan MRSA bakterilerinin varlığını tespit etmekti. Bu sistemde, MRSA bakterilerinin dimetiloktadesil [3- (trimetoksisilil) propil] amonyum klorür (DMOAP) kaplı yüzeye bağlanması, LC'lerin oryantasyonunu bozarak homeotropik bir yönelimden rasgele olana geçişi tetikledi. LC'lerin yönelimindeki bu geçiş, polarize ışık mikroskobu (POM) altında karanlık bir optik LC görüntüsünden parlak bir görünüme bir değişim olarak gözlemlendi ve LC moleküllerinin yansıma değerleri bir spektrometre kullanılarak belirlendi. Bu algılama mekanizması sayesinde, izotonik su içerisinde hazırlanan MRSA bakterileri 9,2x103 CFU/mL ila 9, x107 CFU/mL konsantrasyon aralığında tespit edildi. Ayrıca bu sistem kullanılarak 7.1x104 CFU/mL ile 7.1x108 CFU/mL konsantrasyon aralığında PBS'de hazırlanan MRSA bakterileri tespit edildi. 

References

  • [1] Kim H.J., Jang C.H., “Liquid crystal-based aptasensor for the detection of interferon-γ and its application in the diagnosis of tuberculosis using human blood”, Sensors & Actuators: B. Chemical, 282: 574-579, (2019).
  • [2] Miller D.S., Carlton R.J., Mushenheim P.C., Abbott N.L., “Introduction to optical methods for characterizing liquid crystals at interfaces”, Langmuir, 29: 3154-3169, (2013).
  • [3] Yang S., Liu Y., Tan H., Wu C., Wu Z., Shen G., Yu R., “Gold nanoparticle based signal enhancement liquid crystal biosensors for DNA hybridization assays”, Chemical Communication, 48: 2861–2863, (2012).
  • [4] Li X., Li G., Yang M., Chen L.C., Xiong X.L., “Gold nanoparticle based signal enhancement liquid crystal biosensors for tyrosine assays”, Sensors and Actuators B: Chemical, 215: 152–158, (2015).
  • [5] Hu Q.Z., Jang C.H., “Imaging trypsin activity through changes in the orientation of liquid crystals coupled to the interactions between a polyelectrolyte and a phospholipid layer”, ACS Appl. Mater Interfaces, 4: 1791–1795, (2012).
  • [6] Khan M., Khan A.R., Shin J.H., Park S.Y., “A liquid-crystal-based DNA biosensor for pathogen detection”, Scientific Reports, 6: 22676, (2016).
  • [7] Suaifan G.A.R.Y., Alhogail S., Zourob M., “Rapid and low-cost biosensor for the detection of Staphylococcus aureus”, Biosensors and Bioelectronics, 90: 230-237, (2017).
  • [8] Gill1 A.A.S, Singh S., Thapliyal N., Karpoormath R., “Nanomaterial-based optical and electrochemical techniques for detection of methicillin-resistant Staphylococcus aureus: a review”, Microchimica Acta, 186, (2019).
  • [9] Deurenberg R.H., Stobberingh E.E., “The evolution of Staphylococcus aureus”, Infection Genetics and Evolution, 8: 747–763, (2008).
  • [10] Wang C.H., Lien K.Y., Wu J.J., Lee G.B., “A magnetic bead-based assay for the rapid detection of methicillin-resistant Staphylococcus aureus by using a microfluidic system with integrated loop-mediated isothermal amplification”, Lab on a Chip, 11: 1521-1531, (2011).
  • [11] Corrigan D.K., Schulze H., Henihan G., Ciani I., Giraud G., Terry J.G., Walton A.J., Pethig R., Ghazal P., Crain J., Campbell C.J., Mount A.R., Bachmann T.T., “Impedimetric detection of single-stranded PCR products derived from methicillin resistant Staphylococcus aureus (MRSA) isolates”, Biosensors & Bioelectronics, 34: 178–184, (2012).
  • [12] Watanabe K, Kuwata N, Sakamoto H, Amano Y, Satomura T., Suye S., “A smart DNA sensing system for detecting methicillin-resistant Staphylococcus aureus using modified nanoparticle probes”, Biosensors & Bioelectronics, 67: 419-423, (2014).
  • [13] Cosgrove S.E., Sakoulas G., Perencevich E.N., Schwaber M.J., Karchmer A.W., “Comparison of mortality associated with methicillin-resistant and methicillin-susceptible Staphylococcus aureus bacteremia: a meta-analysis”, Clinical Infectious Diseases, 36: 53-59, (2003).
  • [14] Bocher S., Smyth R., Kahlmeter G., Kerremans J., Vos M.C., Skov R., “Evaluation of Four Selective Agars and Two Enrichment Broths in Screening for Methicillin-Resistant Staphylococcus aureus” , Journal of Clinical Microbiolgy, 46: 3136-3138, (2008).
  • [15] Gilbert G.L., “Molecular diagnostics in infectious diseases and public health microbiology: cottage industry to postgenomics”, Trends in Molecular Medicine, 8: 280-287, (2002).
  • [16] Akyel C. & ARICI N., “Cilt Kanserinde Kıl Temizliği ve Lezyon Bölütlemesinde Yeni Bir Yaklaşım”, Politeknik Dergisi, 23(3): 821-828, (2020).
  • [17] Ataş K., Kaya A., Indrıt M., “Yapay Sinir Ağı Tabanlı Model ile X-ray Görüntülerinden Covid-19 Teşhisi”, Politeknik Dergisi, 1-1, (2021).
  • [18] Eren M., Tanaydın E., Arslanoğlu H., Çiftçi H., “Adsorpsiyon ile virüslerin giderilmesine ilişkin bir inceleme”, Politeknik Dergisi, 1-1, (2021).
  • [19] Cong Y., Yang S., & Rao X., “Vancomycin resistant Staphylococcus aureus infections: A review of case updating and clinical features”, Journal of Advanced Research, 21: 169-176 (2020).
  • [20] https://www.microbiologics.com/itemtype/product/product-format/KWIK-STIK-Plus
  • [21] Xu H., Hartono D., & Yang K. L., “Detecting and differentiating Escherichia coli strain TOP10 using optical textures of liquid crystals”, Liquid Crystals, 37(10):1269-1274 (2010).
  • [22] Zafiu C., Hussain Z., Küpcü S., Masutani A., Kilickiran P., & Sinner E K., “Liquid crystals as optical amplifiers for bacterial detection”, Biosensors and Bioelectronics, 80: 161-170 (2016).

Detection of Methicillin-Resistant Staphylococcus Aureus Bacteria Using Liquid Crystals

Year 2023, Volume: 26 Issue: 3, 1103 - 1109, 01.10.2023
https://doi.org/10.2339/politeknik.934565

Abstract

Methicillin-resistant Staphylococcus aureus (MRSA) is an essential pathogen for public health and this bacteria commonly cause serious infectious in humans. In recent years, MRSA bacteria are detected by the bacterial culture and nucleic acid-based methods which are time-consuming and labor-intensive. In this study, a novel liquid crystal (LC)-based biosensing system was developed to overcome these limitations. The objective of this study was to detect the presence of MRSA bacteria which prepared within the isotonic water and phosphate buffer saline (PBS). In this system, the binding of MRSA bacteria to the dimethyloctadecyl [3-(trimethoxysilyl) propyl] ammonium chloride (DMOAP)-coated surface disrupted the orientation of LCs, triggering a transition from a homeotropic orientation to a random one. This transition in the orientation of the LCs was observed as a change from a dark optical LC image to a bright one under a polarized light microscope (POM) and the reflection values of LC molecules were determined by using a spectrometer. Through this sensing mechanism, MRSA bacteria prepared within the isotonic water was detected ranging from the 9.2x103 CFU/mL to 9.2x107 CFU/mL concentration. Furthermore, MRSA bacteria prepared in PBS was detected in the concentration range of 7.1x104 CFU/mL to 7.1x108 CFU/mL by using this system.

References

  • [1] Kim H.J., Jang C.H., “Liquid crystal-based aptasensor for the detection of interferon-γ and its application in the diagnosis of tuberculosis using human blood”, Sensors & Actuators: B. Chemical, 282: 574-579, (2019).
  • [2] Miller D.S., Carlton R.J., Mushenheim P.C., Abbott N.L., “Introduction to optical methods for characterizing liquid crystals at interfaces”, Langmuir, 29: 3154-3169, (2013).
  • [3] Yang S., Liu Y., Tan H., Wu C., Wu Z., Shen G., Yu R., “Gold nanoparticle based signal enhancement liquid crystal biosensors for DNA hybridization assays”, Chemical Communication, 48: 2861–2863, (2012).
  • [4] Li X., Li G., Yang M., Chen L.C., Xiong X.L., “Gold nanoparticle based signal enhancement liquid crystal biosensors for tyrosine assays”, Sensors and Actuators B: Chemical, 215: 152–158, (2015).
  • [5] Hu Q.Z., Jang C.H., “Imaging trypsin activity through changes in the orientation of liquid crystals coupled to the interactions between a polyelectrolyte and a phospholipid layer”, ACS Appl. Mater Interfaces, 4: 1791–1795, (2012).
  • [6] Khan M., Khan A.R., Shin J.H., Park S.Y., “A liquid-crystal-based DNA biosensor for pathogen detection”, Scientific Reports, 6: 22676, (2016).
  • [7] Suaifan G.A.R.Y., Alhogail S., Zourob M., “Rapid and low-cost biosensor for the detection of Staphylococcus aureus”, Biosensors and Bioelectronics, 90: 230-237, (2017).
  • [8] Gill1 A.A.S, Singh S., Thapliyal N., Karpoormath R., “Nanomaterial-based optical and electrochemical techniques for detection of methicillin-resistant Staphylococcus aureus: a review”, Microchimica Acta, 186, (2019).
  • [9] Deurenberg R.H., Stobberingh E.E., “The evolution of Staphylococcus aureus”, Infection Genetics and Evolution, 8: 747–763, (2008).
  • [10] Wang C.H., Lien K.Y., Wu J.J., Lee G.B., “A magnetic bead-based assay for the rapid detection of methicillin-resistant Staphylococcus aureus by using a microfluidic system with integrated loop-mediated isothermal amplification”, Lab on a Chip, 11: 1521-1531, (2011).
  • [11] Corrigan D.K., Schulze H., Henihan G., Ciani I., Giraud G., Terry J.G., Walton A.J., Pethig R., Ghazal P., Crain J., Campbell C.J., Mount A.R., Bachmann T.T., “Impedimetric detection of single-stranded PCR products derived from methicillin resistant Staphylococcus aureus (MRSA) isolates”, Biosensors & Bioelectronics, 34: 178–184, (2012).
  • [12] Watanabe K, Kuwata N, Sakamoto H, Amano Y, Satomura T., Suye S., “A smart DNA sensing system for detecting methicillin-resistant Staphylococcus aureus using modified nanoparticle probes”, Biosensors & Bioelectronics, 67: 419-423, (2014).
  • [13] Cosgrove S.E., Sakoulas G., Perencevich E.N., Schwaber M.J., Karchmer A.W., “Comparison of mortality associated with methicillin-resistant and methicillin-susceptible Staphylococcus aureus bacteremia: a meta-analysis”, Clinical Infectious Diseases, 36: 53-59, (2003).
  • [14] Bocher S., Smyth R., Kahlmeter G., Kerremans J., Vos M.C., Skov R., “Evaluation of Four Selective Agars and Two Enrichment Broths in Screening for Methicillin-Resistant Staphylococcus aureus” , Journal of Clinical Microbiolgy, 46: 3136-3138, (2008).
  • [15] Gilbert G.L., “Molecular diagnostics in infectious diseases and public health microbiology: cottage industry to postgenomics”, Trends in Molecular Medicine, 8: 280-287, (2002).
  • [16] Akyel C. & ARICI N., “Cilt Kanserinde Kıl Temizliği ve Lezyon Bölütlemesinde Yeni Bir Yaklaşım”, Politeknik Dergisi, 23(3): 821-828, (2020).
  • [17] Ataş K., Kaya A., Indrıt M., “Yapay Sinir Ağı Tabanlı Model ile X-ray Görüntülerinden Covid-19 Teşhisi”, Politeknik Dergisi, 1-1, (2021).
  • [18] Eren M., Tanaydın E., Arslanoğlu H., Çiftçi H., “Adsorpsiyon ile virüslerin giderilmesine ilişkin bir inceleme”, Politeknik Dergisi, 1-1, (2021).
  • [19] Cong Y., Yang S., & Rao X., “Vancomycin resistant Staphylococcus aureus infections: A review of case updating and clinical features”, Journal of Advanced Research, 21: 169-176 (2020).
  • [20] https://www.microbiologics.com/itemtype/product/product-format/KWIK-STIK-Plus
  • [21] Xu H., Hartono D., & Yang K. L., “Detecting and differentiating Escherichia coli strain TOP10 using optical textures of liquid crystals”, Liquid Crystals, 37(10):1269-1274 (2010).
  • [22] Zafiu C., Hussain Z., Küpcü S., Masutani A., Kilickiran P., & Sinner E K., “Liquid crystals as optical amplifiers for bacterial detection”, Biosensors and Bioelectronics, 80: 161-170 (2016).
There are 22 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Emine Kemiklioglu 0000-0002-7827-2423

Ebru Tuncgovde This is me 0000-0002-0167-765X

Publication Date October 1, 2023
Submission Date May 7, 2021
Published in Issue Year 2023 Volume: 26 Issue: 3

Cite

APA Kemiklioglu, E., & Tuncgovde, E. (2023). Detection of Methicillin-Resistant Staphylococcus Aureus Bacteria Using Liquid Crystals. Politeknik Dergisi, 26(3), 1103-1109. https://doi.org/10.2339/politeknik.934565
AMA Kemiklioglu E, Tuncgovde E. Detection of Methicillin-Resistant Staphylococcus Aureus Bacteria Using Liquid Crystals. Politeknik Dergisi. October 2023;26(3):1103-1109. doi:10.2339/politeknik.934565
Chicago Kemiklioglu, Emine, and Ebru Tuncgovde. “Detection of Methicillin-Resistant Staphylococcus Aureus Bacteria Using Liquid Crystals”. Politeknik Dergisi 26, no. 3 (October 2023): 1103-9. https://doi.org/10.2339/politeknik.934565.
EndNote Kemiklioglu E, Tuncgovde E (October 1, 2023) Detection of Methicillin-Resistant Staphylococcus Aureus Bacteria Using Liquid Crystals. Politeknik Dergisi 26 3 1103–1109.
IEEE E. Kemiklioglu and E. Tuncgovde, “Detection of Methicillin-Resistant Staphylococcus Aureus Bacteria Using Liquid Crystals”, Politeknik Dergisi, vol. 26, no. 3, pp. 1103–1109, 2023, doi: 10.2339/politeknik.934565.
ISNAD Kemiklioglu, Emine - Tuncgovde, Ebru. “Detection of Methicillin-Resistant Staphylococcus Aureus Bacteria Using Liquid Crystals”. Politeknik Dergisi 26/3 (October 2023), 1103-1109. https://doi.org/10.2339/politeknik.934565.
JAMA Kemiklioglu E, Tuncgovde E. Detection of Methicillin-Resistant Staphylococcus Aureus Bacteria Using Liquid Crystals. Politeknik Dergisi. 2023;26:1103–1109.
MLA Kemiklioglu, Emine and Ebru Tuncgovde. “Detection of Methicillin-Resistant Staphylococcus Aureus Bacteria Using Liquid Crystals”. Politeknik Dergisi, vol. 26, no. 3, 2023, pp. 1103-9, doi:10.2339/politeknik.934565.
Vancouver Kemiklioglu E, Tuncgovde E. Detection of Methicillin-Resistant Staphylococcus Aureus Bacteria Using Liquid Crystals. Politeknik Dergisi. 2023;26(3):1103-9.