Research Article
BibTex RIS Cite

Vakum Tüplü Kollektör Kullanan Güneş Enerjisi Destekli Organik Rankine Çevriminin Termodinamik Analizi

Year 2023, Volume: 26 Issue: 4, 1341 - 1347, 01.12.2023
https://doi.org/10.2339/politeknik.1053483

Abstract

Bu çalışma, güneş enerjisi destekli bir Organik Rankine Çevriminin ısıl performansını etkileyen parametreleri araştırmaktadır. Termodinamik analiz, sırasıyla aşağıdaki parametrelerin etkileri üzerine araştırmayı kapsamaktadır: türbin giriş sıcaklığı ve basıncı ile türbin ve pompa izentropik verimleri. Güneş destekli organik Rankine çevrimi, vakum tüplü güneş kollektörü için analiz edilmiştir. Çalışmada, gerekli kollektör alanı hem sabit bir güneşten yararlanma oranı (0.8) hem de çeşitli kaynak (kollektör çıkış) sıcaklıkları için aylık olarak belirlenmiştir. Çevrimin matematiksel modelini oluşturmak ve sistemin termodinamik analizini yapmak için Engineering Equation Solver (EES) yazılımı kullanılmıştır. Analizde R123 ve R600 organik akışkanları kullanılmış ve iki akışkan arasında sistem performansı açısından bir karşılaştırma yapılmıştır. Sonuçlar, R600'ün R123'ten daha iyi performans özelliklerine sahip olduğunu göstermektedir. Sonuçlar ayrıca türbin giriş sıcaklığının artmasıyla ve türbin giriş basıncının azalmasıyla sistem veriminin düştüğünü göstermektedir. Türbin verimi sistemin ısıl verimini önemli ölçüde etkilerken pompa veriminin ısıl verim üzerinde önemli bir etkisi olmadığı görülmüştür.  

References

  • [1] Gümüş Z. and Demirtaş M., “Fotovoltaik sistemlerde maksimum güç noktası takibinde kullanılan algoritmaların kısmi gölgeleme koşulları altında karşılaştırılması”, Politeknik Dergisi, 24(3): 853-865, (2021).
  • [2] Ünvar S. and Menlik T., “Effects of using nanofluids in solar collectors”, Journal of Polytechnic, 24(3): 1073-1091, (2021).
  • [3] Yelmen B., Dagtekin M. and Çakır T. M., “The effect of organic waste potential of Mersin province on biogas energy production”, Journal of Polytechnic, 23(2): 587-595, (2020).
  • [4] Koç Y and Yağlı H., “Isı-Güç kombine sistemlerinde kullanılan Kalina çevriminin enerji ve ekserji analizi”, Politeknik Dergisi, 23(1): 181-188, (2020).
  • [5] Loni R., Najafi G., Bellos E., Rajaee F., Said Z. and Mazlan M., “A review of industrial waste heat recovery system for power generation with Organic Rankine Cycle: Recent challenges and future outlook”, Journal of Cleaner Production, 287:125070, (2021).
  • [6] Xu W., Zhao L., Mao S. S. and Deng S., “Towards novel low temperature thermodynamic cycle: A critical review originated from organic Rankine cycle”, Applied Energy, 270: 115186, (2020).
  • [7] Cataldo F., Mastrullo R., Mauro A. W. and Vanoli G. P., “Fluid selection of Organic Rankine Cycle for low-temperature waste heat recovery based on thermal optimization”, Energy, 72: 159-167, (2014).
  • [8] Herath H. M. D. P., Wijewardane M. A., Ranasinghe R. A. C. P. and Jayasekera, J. G. A. S., “Working fluid selection of Organic Rankine Cycles”, Energy Reports, 6(S9): 680-686, (2020). [9] Chacartegui R., Vigna L., Becerra J. A. and Verda V., “Analysis of two heat storage integrations for an Organic Rankine cycle parabolic though solar power plant”, Energy Conversion and Management, 125: 353-367, (2016).
  • [10] Toffolo A., Lazzaretto A., Manente G. and Paci M., “A multi-criteria approach for the optimal selection of working fluid and design parameters in Organic Rankine Cycle systems”, Applied Energy, 121: 219-232, (2014).
  • [11] Zhar R., Allouhi A., Jamil A. and Lahrech K., “A comparative study and sensitivity analysis of different ORC configurations for waste heat recovery”, Case Studies in Thermal Engineering, 28: 101608, (2021).
  • [12] Nondy J. and Gogoi T. K., “Exergoeconomic investigation and multi-objective optimization of different ORC configurations for waste heat recovery: A comparative study”, Energy Conversion and Management, 245: 114593, (2021).
  • [13] Heberle F. and Brüggemann D., “Exergy based fluid selection for a geothermal Organic Rankine Cycle for combined heat and power generation”, Applied Thermal Engineering, 30(11-12): 1326-1332, (2010).
  • [14] Altun A. F. and Kilic M., “Thermodynamic performance evaluation of a geothermal ORC power plant”, Renewable Energy, 148: 261-274, (2020).
  • [15] Algieri A. and Morrone P., “Comparative energetic analysis of high-temperature sub-critical and transcritical Organic Rankine cycle (ORC). A biomass application in the Sibari district”, Applied Thermal Engineering, 36: 236-244, (2012).
  • [16] Wei D., Lu X., Lu Z. and Gu J., “Performance analysis and optimization of Organic Rankine Cycle (ORC) for waste heat recovery”, Energy Conversion and Management, 48: 1113-1119, (2007).
  • [17] Gupta P. R., Tiwari A. K. and Said Z., “Solar organic Rankine cycle and its poly-generation applications – A review”, Sustainable Energy Technologies and Assessments, 49: 101732, (2022).
  • [18] Loni R., Mahian O., Markides C. N., Bellos E., Le Roux W. G., Kasaeian A., Najafi G. and Rajaee F., “A review of solar-driven organic Rankine cycles: Recent challenges and future outlook”, Renewable and Sustainable Energy Reviews, 150: 111410, (2021).
  • [19] Jing L., Gang P. and Jie J., “Optimization of low temperature solar thermal electric generation with Organic Rankine cycle in different areas”, Applied Energy, 87(11): 3355-3365, (2010).
  • [20] Man W., Jiangfeng W., Yuzhu Z., Pan Z. and Yiping D., “Thermodynamic analysis and optimization of a solar-driven regenerative Organic Rankine cycle (ORC) basen on flat plate solar collector”, Applied Thermal Engineering, 50: 816-825, (2013).
  • [21] Desai N. B. and Bandyopadhyay S., “Thermo-economic comparisons between solar steam Rankine and Organic Rankine cycles”, Applied Thermal Engineering, 105: 862-875, (2016).
  • [22] Önal A. S., Etemoğlu A. B. and Can M., “Optimization of Organic Rankine Cycle Systems Driven by the Low-Temperature Waste Heat Sources”, Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 22: 35-52, (2017).
  • [23] Nouman J., “Comparative Studies and Analysis of Working Fluids for Organic Rankine Cycles – ORC”, MSc Thesis, KTH School of Industrial Engineering and Management, Stockholm, (2012).
  • [24] Sethi M., Tripathi R. K., Pattnaik B., Kumar S., Khargotra R., Chand S. and Thakur A., “Recent developments in design of evacuated tube solar collectors integrated with thermal energy storage: A review”, Materials Today: Proceedings, 52(3): 1689-1696, (2022).
  • [25] Çağlar A. and Bahadır M. B., “Bir güneş ışınımı hesaplama programının geliştirilmesi ve elde edilen verilerin ölçülen verilerle kıyaslanması”, In: Proceedings of the 1st International Mediterranean Science and Engineering Congress (IMSEC-2016), Adana, 3216-3221, (2016).
  • [26] Tchanche B. F., Papadakis G., Lambrinos G. and Frangoudakis A., “Fluid selection for a low-temperature solar Organic Rankine cycle”, Applied Thermal Engineering, 29: 2468-2476, (2009).
  • [27] Yang J., Li J., Yang Z. and Duan Y., “Thermodynamic analysis and optimization of a solar organic Rankine cycle operating with stable output”, Energy Conversion and Management, 187: 459-471, (2019).
  • [28] Baral S., Kim D., Yun E. and Kim K. C., “Experimental and Thermoeconomic Analysis of Small-Scale Solar Organic Rankine Cycle (SORC) System”, Entropy, 17(4): 2039-2061, (2015).

Thermodynamic Analysis of Solar Organic Rankine Cycle Using Evacuated Tubular Collector

Year 2023, Volume: 26 Issue: 4, 1341 - 1347, 01.12.2023
https://doi.org/10.2339/politeknik.1053483

Abstract

This study investigates the affecting parameters for the thermal performance of a Solar Organic Rankine Cycle. The thermodynamic analysis covers the research on the effects of the following parameters: the pressure and temperature of the working fluid at the turbine entrance, and the turbine and pump isentropic efficiencies. The solar organic Rankine cycle is analyzed for an evacuated tubular solar collector. The required collector area for both a fixed value (0.8) of solar fraction and several source (solar collector output) temperatures is also determined for different months of the year in the study. The computer software of Engineering Equation Solver (EES) is used to construct the mathematical model of the cycle and to perform the thermodynamic analysis of the system. In the analysis, R123 and R600 organic fluids are used, and a comparison is made between the two fluids in terms of their effects on the system performance. The results show that R600 has better performance characteristics than R123. The results also show that the system efficiency decreases with increasing temperature at turbine entrance, but with decreasing pressure at turbine entrance. The turbine efficiency influences the system thermal efficiency significantly while the pump efficiency does not have a significant effect on the system thermal efficiency.

References

  • [1] Gümüş Z. and Demirtaş M., “Fotovoltaik sistemlerde maksimum güç noktası takibinde kullanılan algoritmaların kısmi gölgeleme koşulları altında karşılaştırılması”, Politeknik Dergisi, 24(3): 853-865, (2021).
  • [2] Ünvar S. and Menlik T., “Effects of using nanofluids in solar collectors”, Journal of Polytechnic, 24(3): 1073-1091, (2021).
  • [3] Yelmen B., Dagtekin M. and Çakır T. M., “The effect of organic waste potential of Mersin province on biogas energy production”, Journal of Polytechnic, 23(2): 587-595, (2020).
  • [4] Koç Y and Yağlı H., “Isı-Güç kombine sistemlerinde kullanılan Kalina çevriminin enerji ve ekserji analizi”, Politeknik Dergisi, 23(1): 181-188, (2020).
  • [5] Loni R., Najafi G., Bellos E., Rajaee F., Said Z. and Mazlan M., “A review of industrial waste heat recovery system for power generation with Organic Rankine Cycle: Recent challenges and future outlook”, Journal of Cleaner Production, 287:125070, (2021).
  • [6] Xu W., Zhao L., Mao S. S. and Deng S., “Towards novel low temperature thermodynamic cycle: A critical review originated from organic Rankine cycle”, Applied Energy, 270: 115186, (2020).
  • [7] Cataldo F., Mastrullo R., Mauro A. W. and Vanoli G. P., “Fluid selection of Organic Rankine Cycle for low-temperature waste heat recovery based on thermal optimization”, Energy, 72: 159-167, (2014).
  • [8] Herath H. M. D. P., Wijewardane M. A., Ranasinghe R. A. C. P. and Jayasekera, J. G. A. S., “Working fluid selection of Organic Rankine Cycles”, Energy Reports, 6(S9): 680-686, (2020). [9] Chacartegui R., Vigna L., Becerra J. A. and Verda V., “Analysis of two heat storage integrations for an Organic Rankine cycle parabolic though solar power plant”, Energy Conversion and Management, 125: 353-367, (2016).
  • [10] Toffolo A., Lazzaretto A., Manente G. and Paci M., “A multi-criteria approach for the optimal selection of working fluid and design parameters in Organic Rankine Cycle systems”, Applied Energy, 121: 219-232, (2014).
  • [11] Zhar R., Allouhi A., Jamil A. and Lahrech K., “A comparative study and sensitivity analysis of different ORC configurations for waste heat recovery”, Case Studies in Thermal Engineering, 28: 101608, (2021).
  • [12] Nondy J. and Gogoi T. K., “Exergoeconomic investigation and multi-objective optimization of different ORC configurations for waste heat recovery: A comparative study”, Energy Conversion and Management, 245: 114593, (2021).
  • [13] Heberle F. and Brüggemann D., “Exergy based fluid selection for a geothermal Organic Rankine Cycle for combined heat and power generation”, Applied Thermal Engineering, 30(11-12): 1326-1332, (2010).
  • [14] Altun A. F. and Kilic M., “Thermodynamic performance evaluation of a geothermal ORC power plant”, Renewable Energy, 148: 261-274, (2020).
  • [15] Algieri A. and Morrone P., “Comparative energetic analysis of high-temperature sub-critical and transcritical Organic Rankine cycle (ORC). A biomass application in the Sibari district”, Applied Thermal Engineering, 36: 236-244, (2012).
  • [16] Wei D., Lu X., Lu Z. and Gu J., “Performance analysis and optimization of Organic Rankine Cycle (ORC) for waste heat recovery”, Energy Conversion and Management, 48: 1113-1119, (2007).
  • [17] Gupta P. R., Tiwari A. K. and Said Z., “Solar organic Rankine cycle and its poly-generation applications – A review”, Sustainable Energy Technologies and Assessments, 49: 101732, (2022).
  • [18] Loni R., Mahian O., Markides C. N., Bellos E., Le Roux W. G., Kasaeian A., Najafi G. and Rajaee F., “A review of solar-driven organic Rankine cycles: Recent challenges and future outlook”, Renewable and Sustainable Energy Reviews, 150: 111410, (2021).
  • [19] Jing L., Gang P. and Jie J., “Optimization of low temperature solar thermal electric generation with Organic Rankine cycle in different areas”, Applied Energy, 87(11): 3355-3365, (2010).
  • [20] Man W., Jiangfeng W., Yuzhu Z., Pan Z. and Yiping D., “Thermodynamic analysis and optimization of a solar-driven regenerative Organic Rankine cycle (ORC) basen on flat plate solar collector”, Applied Thermal Engineering, 50: 816-825, (2013).
  • [21] Desai N. B. and Bandyopadhyay S., “Thermo-economic comparisons between solar steam Rankine and Organic Rankine cycles”, Applied Thermal Engineering, 105: 862-875, (2016).
  • [22] Önal A. S., Etemoğlu A. B. and Can M., “Optimization of Organic Rankine Cycle Systems Driven by the Low-Temperature Waste Heat Sources”, Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 22: 35-52, (2017).
  • [23] Nouman J., “Comparative Studies and Analysis of Working Fluids for Organic Rankine Cycles – ORC”, MSc Thesis, KTH School of Industrial Engineering and Management, Stockholm, (2012).
  • [24] Sethi M., Tripathi R. K., Pattnaik B., Kumar S., Khargotra R., Chand S. and Thakur A., “Recent developments in design of evacuated tube solar collectors integrated with thermal energy storage: A review”, Materials Today: Proceedings, 52(3): 1689-1696, (2022).
  • [25] Çağlar A. and Bahadır M. B., “Bir güneş ışınımı hesaplama programının geliştirilmesi ve elde edilen verilerin ölçülen verilerle kıyaslanması”, In: Proceedings of the 1st International Mediterranean Science and Engineering Congress (IMSEC-2016), Adana, 3216-3221, (2016).
  • [26] Tchanche B. F., Papadakis G., Lambrinos G. and Frangoudakis A., “Fluid selection for a low-temperature solar Organic Rankine cycle”, Applied Thermal Engineering, 29: 2468-2476, (2009).
  • [27] Yang J., Li J., Yang Z. and Duan Y., “Thermodynamic analysis and optimization of a solar organic Rankine cycle operating with stable output”, Energy Conversion and Management, 187: 459-471, (2019).
  • [28] Baral S., Kim D., Yun E. and Kim K. C., “Experimental and Thermoeconomic Analysis of Small-Scale Solar Organic Rankine Cycle (SORC) System”, Entropy, 17(4): 2039-2061, (2015).
There are 27 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Ahmet Çağlar 0000-0003-2788-2659

Mustafa Burak Bahadır 0000-0003-3076-969X

Publication Date December 1, 2023
Submission Date January 4, 2022
Published in Issue Year 2023 Volume: 26 Issue: 4

Cite

APA Çağlar, A., & Bahadır, M. B. (2023). Thermodynamic Analysis of Solar Organic Rankine Cycle Using Evacuated Tubular Collector. Politeknik Dergisi, 26(4), 1341-1347. https://doi.org/10.2339/politeknik.1053483
AMA Çağlar A, Bahadır MB. Thermodynamic Analysis of Solar Organic Rankine Cycle Using Evacuated Tubular Collector. Politeknik Dergisi. December 2023;26(4):1341-1347. doi:10.2339/politeknik.1053483
Chicago Çağlar, Ahmet, and Mustafa Burak Bahadır. “Thermodynamic Analysis of Solar Organic Rankine Cycle Using Evacuated Tubular Collector”. Politeknik Dergisi 26, no. 4 (December 2023): 1341-47. https://doi.org/10.2339/politeknik.1053483.
EndNote Çağlar A, Bahadır MB (December 1, 2023) Thermodynamic Analysis of Solar Organic Rankine Cycle Using Evacuated Tubular Collector. Politeknik Dergisi 26 4 1341–1347.
IEEE A. Çağlar and M. B. Bahadır, “Thermodynamic Analysis of Solar Organic Rankine Cycle Using Evacuated Tubular Collector”, Politeknik Dergisi, vol. 26, no. 4, pp. 1341–1347, 2023, doi: 10.2339/politeknik.1053483.
ISNAD Çağlar, Ahmet - Bahadır, Mustafa Burak. “Thermodynamic Analysis of Solar Organic Rankine Cycle Using Evacuated Tubular Collector”. Politeknik Dergisi 26/4 (December 2023), 1341-1347. https://doi.org/10.2339/politeknik.1053483.
JAMA Çağlar A, Bahadır MB. Thermodynamic Analysis of Solar Organic Rankine Cycle Using Evacuated Tubular Collector. Politeknik Dergisi. 2023;26:1341–1347.
MLA Çağlar, Ahmet and Mustafa Burak Bahadır. “Thermodynamic Analysis of Solar Organic Rankine Cycle Using Evacuated Tubular Collector”. Politeknik Dergisi, vol. 26, no. 4, 2023, pp. 1341-7, doi:10.2339/politeknik.1053483.
Vancouver Çağlar A, Bahadır MB. Thermodynamic Analysis of Solar Organic Rankine Cycle Using Evacuated Tubular Collector. Politeknik Dergisi. 2023;26(4):1341-7.