Research Article
BibTex RIS Cite

Siyam Sinir Ağları ve Yerel İkili Örüntü Kullanılarak Temassız Avuç İçi Doğrulaması

Year 2023, Volume: 26 Issue: 4, 1475 - 1483, 01.12.2023
https://doi.org/10.2339/politeknik.1143420

Abstract

Biyometrik kimlik doğrulama, kişilerin sahip olduğu fizyolojik veya davranışsal özellikler kullanılarak gerçekten iddia ettikleri kişi olup olmadığının teyit edilmesidir. Avuç içi doğrulama, biyometrik doğrulama içinde en yaygın kullanıma sahip yöntemlerden birisidir. 2019 yılının son aylarında ortaya çıkan COVID-19 (Coronavirus Disease 2019) pandemisi insanların ortak kullanıma sahip nesnelere temas konusundaki duyarlılığını artırmıştır. Bu sebeple, temassız şekilde elde edilen görüntülerin kullanıldığı avuç içi doğrulama çalışmalarının yapılması önem kazanmaktadır. Çalışmada, Hong Kong Politeknik Üniversitesi Temassız 3B/2B Veri Seti (Sürüm 1.0) (PolyU Contactless Database 1.0) kullanılmış olup doğrulama için Siyam Sinir Ağlarından (SSA) yararlanılmıştır. SSA eğitimleri 3.540 adet “benzer” ve 31.152 adet “benzemeyen” olmak üzere toplam 34.692 adet görüntü çifti kullanılarak gerçekleştirilmiştir. Çalışmanın test işlemleri ise 885 adet “gerçek” ve 31.152 adet “sahte” olmak üzere toplam 32.037 adet giriş örneği kullanılarak yapılmıştır. Çalışmada, avuç içi görüntüleri doğrudan kullanılarak elde edilen doğrulama sonuçları ile ön işlem olarak Yerel İkili Örüntü (YİÖ) kullanılarak elde edilen doğrulama sonuçları birbirleriyle karşılaştırılmıştır. Çalışma sonuçları ön işlem olarak YİÖ kullanılmasının doğrulama başarısını önemli ölçüde iyileştirdiğini göstermektedir. Çalışmada, avuç içi görüntüleri doğrudan kullanılarak elde edilen Eşit Hata Oranı (EHO) 0,1277 iken ön işlem olarak YİÖ kullanılarak elde edilen EHO 0,0938 olarak gerçekleşmiştir.

References

  • [1] Richiardi J. and Drygajlo A., “Gaussian mixture models for on-line signature verification”, Proceedings of the 2003 ACM SIGMM workshop on Biometrics methods and applications, Berkley, California, 115–122, (2003).
  • [2] Bowyer K.W., “Introduction to the special issue on recent advances in biometrics”, IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 40(3): 434–436, (2010).
  • [3] Veeramachaneni K., Osadciw L.A. and Varshney P.K., “An adaptiv multimodal biometric management algorithm”, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 35(3): 344–356, (2005).
  • [4] Hardalac F., Yaşar H., Akyel A. and Kutbay U., “A novel comparative study using multi-resolution transforms and convolutional neural network (CNN) for contactless palm print verification and identification”, Multimedia Tools and Applications, 79(31): 22929–22963, (2020).
  • [5] Cummins H. and Midlo C., “Finger Prints, Palms and Soles: An Introduction to Dermatoglyphics (Vol. 319)”, Dover Publications, New York, (1961).
  • [6] Şenalp F.M. and Ceylan M., “Termal yüz görüntülerinden oluşan yeni bir veri seti için derin öğrenme tabanlı süper çözünürlük uygulaması”, Politeknik Dergisi, Erken Görünüm, (2022).
  • [7] Korkmaz Ş. and Alkan M., “Derin öğrenme algoritmalarını kullanarak deepfake video tespiti”, Politeknik Dergisi, Erken Görünüm, (2022).
  • [8] Gençaslan S., Utku A. and Akcayol M.A., “Derin öğrenmen tabanlı video üzerinde olay sınıflandırma”, Politeknik Dergisi, Erken Görünüm, (2022).
  • [9] Zhong D., Yang Y. and Du X., “Palmprint recognition using siamese network”, Chinese Conference on Biometric Recognition, Zhuzhou, 48–55, (2018).
  • [10] Thapar D., Jaswal G., Nigam A. and Kanhangad V., “PVSNet: Palm vein authentication siamese network trained using triplet loss and adaptive hard mining by learning enforced domain specific features”, 2019 IEEE 5th International Conference on Identity, Security, and Behavior Analysis (ISBA), Hyderabad, 1–8, (2019).
  • [11] Du X., Zhong D. and Li P., “Low-shot palmprint recognition based on meta-siamese network”, 2019 IEEE International Conference on Multimedia and Expo (ICME), Shanghai, 79–84, (2019).
  • [12] Liu C., Shao H., Zhong D. and Du J., “Siamese-hashing network for few-shot palmprint recognition”, 2019 IEEE Symposium Series on Computational Intelligence (SSCI), Xiamen, 3251–3258, (2019).
  • [13] Shao H., Zhong D., Du X., Du S. and Veldhuis R.N., “Few-shot learning for palmprint recognition via meta-siamese network”, IEEE Transactions on Instrumentation and Measurement, 70: 1–12, (2021).
  • [14]https://www4.comp.polyu.edu.hk/~csajaykr/myhome/database_request/3dhand/Hand3D.htm
  • [15] Chicchón M. and Huerta R., “Semantic segmentation using convolutional neural networks for volume estimation of native potatoes at high speed”, Annual International Conference on Information Management and Big Data, Lima, 236–249, (2020).
  • [16] www.mathworks.com, “Train a Siamese Network to Compare Images”, (2022).
  • [17] Ojala T., Pietikäinen M. and Harwood D., “A comparative study of texture measures with classification based on featured distributions”, Pattern Recognition, 29 (1): 51–59, (1996).

Contactless Palm Verification Using Siamese Neural Networks and Local Binary Pattern

Year 2023, Volume: 26 Issue: 4, 1475 - 1483, 01.12.2023
https://doi.org/10.2339/politeknik.1143420

Abstract

Biometric authentication is the confirmation of whether people are really the person they claim by using their physiological or behavioral characteristics. Palm verification is one of the most widely used methods in biometric verification. The COVID-19 (Coronavirus Disease 2019) pandemic emerging in the last months of 2019 has increased people's sensitivity to contact with objects of common use. In the study, Hong Kong Polytechnic University Contactless 3D/2D Dataset (Version 1.0) (PolyU Contactless Database 1.0) and Siamese Neural Networks (SNN) were used for validation. SNN trainings were carried out using a total of 34,692 pairs of images, of which 3,540 were "similar" and 31,152 were "dissimilar". Testing of the study was carried out using a total of 32,037 input samples, 885 of which were "real" and 31,152 were "fake". In the present study, the validation results were obtained using the palm images directly and the validation results were obtained by using Local Binary Pattern (LBP) as a pre-process. Then, these results were compared with each other. The results of the study show that the use of LBP as a pre-process significantly improves the validation success. In the study, while the Equal Error Rate (EER) obtained by using the palm images directly was 0.1277, the EER obtained by using the LBP as a pre-process was 0.0938.

References

  • [1] Richiardi J. and Drygajlo A., “Gaussian mixture models for on-line signature verification”, Proceedings of the 2003 ACM SIGMM workshop on Biometrics methods and applications, Berkley, California, 115–122, (2003).
  • [2] Bowyer K.W., “Introduction to the special issue on recent advances in biometrics”, IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 40(3): 434–436, (2010).
  • [3] Veeramachaneni K., Osadciw L.A. and Varshney P.K., “An adaptiv multimodal biometric management algorithm”, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 35(3): 344–356, (2005).
  • [4] Hardalac F., Yaşar H., Akyel A. and Kutbay U., “A novel comparative study using multi-resolution transforms and convolutional neural network (CNN) for contactless palm print verification and identification”, Multimedia Tools and Applications, 79(31): 22929–22963, (2020).
  • [5] Cummins H. and Midlo C., “Finger Prints, Palms and Soles: An Introduction to Dermatoglyphics (Vol. 319)”, Dover Publications, New York, (1961).
  • [6] Şenalp F.M. and Ceylan M., “Termal yüz görüntülerinden oluşan yeni bir veri seti için derin öğrenme tabanlı süper çözünürlük uygulaması”, Politeknik Dergisi, Erken Görünüm, (2022).
  • [7] Korkmaz Ş. and Alkan M., “Derin öğrenme algoritmalarını kullanarak deepfake video tespiti”, Politeknik Dergisi, Erken Görünüm, (2022).
  • [8] Gençaslan S., Utku A. and Akcayol M.A., “Derin öğrenmen tabanlı video üzerinde olay sınıflandırma”, Politeknik Dergisi, Erken Görünüm, (2022).
  • [9] Zhong D., Yang Y. and Du X., “Palmprint recognition using siamese network”, Chinese Conference on Biometric Recognition, Zhuzhou, 48–55, (2018).
  • [10] Thapar D., Jaswal G., Nigam A. and Kanhangad V., “PVSNet: Palm vein authentication siamese network trained using triplet loss and adaptive hard mining by learning enforced domain specific features”, 2019 IEEE 5th International Conference on Identity, Security, and Behavior Analysis (ISBA), Hyderabad, 1–8, (2019).
  • [11] Du X., Zhong D. and Li P., “Low-shot palmprint recognition based on meta-siamese network”, 2019 IEEE International Conference on Multimedia and Expo (ICME), Shanghai, 79–84, (2019).
  • [12] Liu C., Shao H., Zhong D. and Du J., “Siamese-hashing network for few-shot palmprint recognition”, 2019 IEEE Symposium Series on Computational Intelligence (SSCI), Xiamen, 3251–3258, (2019).
  • [13] Shao H., Zhong D., Du X., Du S. and Veldhuis R.N., “Few-shot learning for palmprint recognition via meta-siamese network”, IEEE Transactions on Instrumentation and Measurement, 70: 1–12, (2021).
  • [14]https://www4.comp.polyu.edu.hk/~csajaykr/myhome/database_request/3dhand/Hand3D.htm
  • [15] Chicchón M. and Huerta R., “Semantic segmentation using convolutional neural networks for volume estimation of native potatoes at high speed”, Annual International Conference on Information Management and Big Data, Lima, 236–249, (2020).
  • [16] www.mathworks.com, “Train a Siamese Network to Compare Images”, (2022).
  • [17] Ojala T., Pietikäinen M. and Harwood D., “A comparative study of texture measures with classification based on featured distributions”, Pattern Recognition, 29 (1): 51–59, (1996).
There are 17 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

İmren Daşdemir Yaşar 0000-0002-3562-9242

Hüseyin Çakır 0000-0001-9424-2323

Aysun Coşkun 0000-0002-8541-9497

Publication Date December 1, 2023
Submission Date July 29, 2022
Published in Issue Year 2023 Volume: 26 Issue: 4

Cite

APA Daşdemir Yaşar, İ., Çakır, H., & Coşkun, A. (2023). Siyam Sinir Ağları ve Yerel İkili Örüntü Kullanılarak Temassız Avuç İçi Doğrulaması. Politeknik Dergisi, 26(4), 1475-1483. https://doi.org/10.2339/politeknik.1143420
AMA Daşdemir Yaşar İ, Çakır H, Coşkun A. Siyam Sinir Ağları ve Yerel İkili Örüntü Kullanılarak Temassız Avuç İçi Doğrulaması. Politeknik Dergisi. December 2023;26(4):1475-1483. doi:10.2339/politeknik.1143420
Chicago Daşdemir Yaşar, İmren, Hüseyin Çakır, and Aysun Coşkun. “Siyam Sinir Ağları Ve Yerel İkili Örüntü Kullanılarak Temassız Avuç İçi Doğrulaması”. Politeknik Dergisi 26, no. 4 (December 2023): 1475-83. https://doi.org/10.2339/politeknik.1143420.
EndNote Daşdemir Yaşar İ, Çakır H, Coşkun A (December 1, 2023) Siyam Sinir Ağları ve Yerel İkili Örüntü Kullanılarak Temassız Avuç İçi Doğrulaması. Politeknik Dergisi 26 4 1475–1483.
IEEE İ. Daşdemir Yaşar, H. Çakır, and A. Coşkun, “Siyam Sinir Ağları ve Yerel İkili Örüntü Kullanılarak Temassız Avuç İçi Doğrulaması”, Politeknik Dergisi, vol. 26, no. 4, pp. 1475–1483, 2023, doi: 10.2339/politeknik.1143420.
ISNAD Daşdemir Yaşar, İmren et al. “Siyam Sinir Ağları Ve Yerel İkili Örüntü Kullanılarak Temassız Avuç İçi Doğrulaması”. Politeknik Dergisi 26/4 (December 2023), 1475-1483. https://doi.org/10.2339/politeknik.1143420.
JAMA Daşdemir Yaşar İ, Çakır H, Coşkun A. Siyam Sinir Ağları ve Yerel İkili Örüntü Kullanılarak Temassız Avuç İçi Doğrulaması. Politeknik Dergisi. 2023;26:1475–1483.
MLA Daşdemir Yaşar, İmren et al. “Siyam Sinir Ağları Ve Yerel İkili Örüntü Kullanılarak Temassız Avuç İçi Doğrulaması”. Politeknik Dergisi, vol. 26, no. 4, 2023, pp. 1475-83, doi:10.2339/politeknik.1143420.
Vancouver Daşdemir Yaşar İ, Çakır H, Coşkun A. Siyam Sinir Ağları ve Yerel İkili Örüntü Kullanılarak Temassız Avuç İçi Doğrulaması. Politeknik Dergisi. 2023;26(4):1475-83.