Research Article
BibTex RIS Cite

Comparison Study in Terms of The Results of Photovoltaic Solar Energy Systems Designed with PVsyst and MATLAB Simulink Software

Year 2023, Volume: 26 Issue: 4, 1635 - 1649, 01.12.2023
https://doi.org/10.2339/politeknik.1266464

Abstract

With the advancement of technology and the increase in the global population, the need for energy is growing daily. Today, the majority of energy needs are met from fossil fuels. The limited reserves of fossil fuels have increased the tendency towards alternative energy sources due to reasons such as harming the environment and causing global warming. Some renewable energy sources are sun, wave, wind, biomass, and others. Among them are the most preferred solar energy systems. Before implementing any photovoltaic (PV) project, technological and economic feasibility is required to optimize electricity generation, reliability, and costs. As of today, various simulation tools have been created to predict and optimize a PV system. This study examined the differences between the results obtained from photovoltaic solar energy systems designed using PVsyst and MATLAB/Simulink software and how these differences affect the energy production and performance of the systems. Regression analysis was performed by comparing the output data with each other, and it was determined which direction was advantageous or disadvantageous. 75 kW PV system was designed in Ankara using PVsyst and MATLAB/Simulink software, and the simulation outputs obtained from the two software were compared. Three different PV systems were designed and numbered: Design-1: PVsyst System, Design-2: MATLAB/Simulink with MPPT Algorithm, and Design-3: MATLAB/Simulink without MPPT Algorithm. The monthly differences between the two software and the three design outcomes are highly variable. These differences are between 0.36% and 10.72% in Design-1 with Design-2. It is between 14.21% and 43.71% in the Design-1 with Design-3. It is between 17.65% and 49.32% Design-2 with Design-3. According to analysis findings, it has been determined that the sensitivity of the MATLAB/Simulink software to temperature change is higher than the PVsyst software. In addition, reasons such as the variable MPPT algorithms and the automatic or manual entry of the data are also effective in the difference.

Supporting Institution

Gazi University Scientific Research Projects Coordination Unit

Project Number

FYL-2022-7520

Thanks

This study was supported by Gazi University Scientific Research Projects Coordination Unit with the code FYL-2022-7520. In addition, We gratefully acknowledge Gazi University Directorate of Information Technologies for allowing us to use their computer and software facilities.

References

  • [1] Khan, M. A., Islam, N., Abdul Mateen Khan, M., Irshad, K., Hanzala, M., Ali Pasha, A., and Mursaleen, M. “Experimental and simulation analysis of grid-connected rooftop photovoltaic system for a large-scale facility,” Sustainable Energy Technologies and Assessments, 53(1): 102773, (2022).
  • [2] J. Morales Pedraza, “Solar energy for electricity generation,” Non-Conventional Energy in North America,137–174, (2022).
  • [3] M. A. Hanif, F. Nadeem, R. Tariq, and U. Rashid, “Solar thermal energy and photovoltaic systems,” Renewable and Alternative Energy Resources, 171–261, (2022).
  • [4] T. Selmi, H. Dhouibi, and J. Ghabi, “MATLAB/Simulink and PVSyst Based Modeling and Validation of Photovoltaic Cells,” European Journal of Engineering Research and Science, 4(11):11–16, (2019).
  • [5] T. Khatib, A. Mohamed, and K. Sopian, “A software tool for optimal sizing of PV systems in Malaysia,” Modelling and Simulation in Engineering, 2012(1):969248, (2012).
  • [6] M. Baqir and H. K. Channi, “Analysis and design of solar PV system using Pvsyst software,” Mater Today Proc, 48:1332–1338, (2022).
  • [7] G. S. Reddy, T. B. Reddy, and M. V. Kumar, “A MATLAB based PV Module Models analysis under Conditions of Nonuniform Irradiance,” Energy Procedia, 117: 974–983, (2017).
  • [8] I. Koç and K. Başaran, “PV/T Tabanlı Bir Sistemde MATLAB/Simulink Kullanılarak Yapılan Performans Analizi,” Journal of Polytechnic, 22(1): 229–236, (2018).
  • [9] Molina, V., Cuadra, M. Martínez, L. J., Robles, H. V., “Sizing and Study of the Energy Production of a Grid-tied Photovoltaic System Using PVsyst Software”, Tecciencia, 12(22): 27-32, (2017).
  • [10] Krismadinata, N. Abd. Rahim, H. W. Ping, and J. Selvaraj, “Photovoltaic Module Modeling using Simulink/MATLAB,” Procedia Environ Sci, 17(1): 537–546, (2013).
  • [11] O. Ceylan and K. Taşdelen, “Isparta İli için Fotovoltaik Programlarının Simülasyon Sonuçlarının Doğruluğunun İncelenmesi.” Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 18(3):895-903, (2018).
  • [12] V. Kumar Vashishtha, A. Yadav, A. Kumar, and V. Kumar Shukla, “An overview of software tools for the photovoltaic industry,” Mater Today Proc, 64(3): 1450–1454, (2022).
  • [13] B. F. Towler. “Solar Power.” The Future of Energy,161–185, (2014).
  • [14] P. Denholm, E. Drury, R. Margolis, and M. Mehos. “Solar Energy: The Largest Energy Resource” Generating Electricity in a Carbon-Constrained World, 271–302, (2010).
  • [15] “PVsyst – Logiciel Photovoltaïque.” https://www.pvsyst.com/ (accessed Mar. 08, 2023).
  • [16] “MATLAB - MathWorks.” https://www.mathworks.com/products/matlab.html (accessed Mar. 08, 2023).
  • [17] V. Keskin, S. H. P. R. Khalejan, and R. Çıkla, “Investigation of the Shading Effect on the Performance of a grid-connected PV Plant in Samsun/Turkey,” Journal of Polytechnic, 24(2):553–563, (2020).
  • [18] R. B. Bollipo, S. Mikkili, and P. K. Bonthagorla, “Hybrid, optimal, intelligent and classical PV MPPT techniques: A review,” CSEE Journal of Power and Energy Systems,7(1): 9–33, (2021).
  • [19] Z. Gümüş and M. Demirtaş, “Fotovoltaik Sistemlerde Maksimum Güç Noktası Takibinde Kullanılan Algoritmaların Kısmi Gölgeleme Koşulları Altında Karşılaştırılması,” Journal of Polytechnic, vol. 24(3):853–865, (2021).
  • [20] “Perturb and Observe (P&O) Algorithm for PV MPPT - File Exchange - MATLAB Central.” https://www.mathworks.com/matlabcentral/fileexchange/39641-perturb-and-observe-p-o-algorithm-for-pv-mppt (accessed Mar. 08, 2023).
  • [21] V. Kumar and R. K. Bindal, “MPPT technique used with perturb and observe to enhance the efficiency of a photovoltaic system,” Mater Today Proc, 69(2): A6–A11, (2022).
  • [22] A. Banik, A. Shrivastava, R. Manohar Potdar, S. Kumar Jain, S. Gopal Nagpure, and M. Soni, “Design, Modelling, and Analysis of Novel Solar PV System using MATLAB,” Mater Today Proc, 51(1):756–763, (2022).
  • [23] “Products - CSUN Solar Tech Co., Ltd.” https://www.csunsolartech.com/products (accessed Mar. 12, 2023).
  • [24] Khare, V., Khare, C., Nema, S., & Baredar, P. “Application of regression analysis and forecasting techniques in solar energy system.” Decision Science and Operations Management of Solar Energy Systems, 181-234, (2023).

PVsyst ve MATLAB Simulink Yazılımı ile Tasarlanan Fotovoltaik Güneş Enerjisi Sistemlerinin Sonuçları Açısından Karşılaştırma Çalışması

Year 2023, Volume: 26 Issue: 4, 1635 - 1649, 01.12.2023
https://doi.org/10.2339/politeknik.1266464

Abstract

Günümüzde enerji ihtiyacının büyük bir kısmı fosil yakıtlardan karşılanmaktadır. Fosil yakıtların rezervlerinin sınırlı olması, çevreye zarar vermesi ve küresel ısınmaya neden olması gibi nedenlerden dolayı alternatif enerji kaynaklarına olan eğilimi artırmıştır. Alternatif enerji kaynakları arasında en çok tercih edilen güneş enerjisi sistemleridir. Herhangi bir fotovoltaik (PV) projeyi hayata geçirmeden önce elektrik üretimini, güvenilirliği ve maliyetleri optimize etmek için teknolojik ve ekonomik fizibilite gereklidir. Günümüzde bir PV sistemini tahmin etmek ve optimize etmek için çeşitli simülasyon araçları oluşturulmuştur. Bu çalışmada PVsyst ve MATLAB Simulink yazılımı kullanılarak tasarlanan fotovoltaik güneş enerjisi sistemlerinden elde edilen sonuçlar arasındaki farklılıklar ve bu farklılıkların sistemlerin enerji üretimi ve performansını nasıl etkilediği incelenmiştir. Çıktı verileri birbiriyle karşılaştırılarak regresyon analizi yapıldı ve hangi yönün avantajlı veya dezavantajlı olduğu belirlendi. PVsyst ve Matlab/Simulink yazılımları kullanılarak Ankara'da 75 kW'lık PV sistemi tasarlandı ve iki yazılımdan elde edilen simülasyon çıktıları karşılaştırıldı. Üç farklı PV sistemi tasarlanıp numaralandırılmıştır: Tasarım-1: PVsyst Sistemi, Tasarım-2: MPPT Algoritmalı Matlab/Simulink ve Tasarım-3: MPPT Algoritmasız Matlab/Simulink. İki yazılım ile üç tasarım sonucu arasındaki aylık farklar oldukça değişkendir. Bu farklar Tasarım-1 ile Tasarım-2'de %0,36 ile %10,72 arasındadır. Tasarım-1 ile Tasarım-3'te ise %14,21 ile %43,71 arasındadır. Tasarım-3 ile %17,65 ile %49,32 Tasarım-2 arasındadır. Analiz bulgularına göre MATLAB/Simulink yazılımının sıcaklık değişimine duyarlılığının PVsyst yazılımına göre daha yüksek olduğu tespit edilmiştir. Ayrıca MPPT algoritmalarının değişken olması ve verilerin otomatik ya da manuel olarak girilmesi gibi nedenler de farklılıkta etkilidir.

Project Number

FYL-2022-7520

References

  • [1] Khan, M. A., Islam, N., Abdul Mateen Khan, M., Irshad, K., Hanzala, M., Ali Pasha, A., and Mursaleen, M. “Experimental and simulation analysis of grid-connected rooftop photovoltaic system for a large-scale facility,” Sustainable Energy Technologies and Assessments, 53(1): 102773, (2022).
  • [2] J. Morales Pedraza, “Solar energy for electricity generation,” Non-Conventional Energy in North America,137–174, (2022).
  • [3] M. A. Hanif, F. Nadeem, R. Tariq, and U. Rashid, “Solar thermal energy and photovoltaic systems,” Renewable and Alternative Energy Resources, 171–261, (2022).
  • [4] T. Selmi, H. Dhouibi, and J. Ghabi, “MATLAB/Simulink and PVSyst Based Modeling and Validation of Photovoltaic Cells,” European Journal of Engineering Research and Science, 4(11):11–16, (2019).
  • [5] T. Khatib, A. Mohamed, and K. Sopian, “A software tool for optimal sizing of PV systems in Malaysia,” Modelling and Simulation in Engineering, 2012(1):969248, (2012).
  • [6] M. Baqir and H. K. Channi, “Analysis and design of solar PV system using Pvsyst software,” Mater Today Proc, 48:1332–1338, (2022).
  • [7] G. S. Reddy, T. B. Reddy, and M. V. Kumar, “A MATLAB based PV Module Models analysis under Conditions of Nonuniform Irradiance,” Energy Procedia, 117: 974–983, (2017).
  • [8] I. Koç and K. Başaran, “PV/T Tabanlı Bir Sistemde MATLAB/Simulink Kullanılarak Yapılan Performans Analizi,” Journal of Polytechnic, 22(1): 229–236, (2018).
  • [9] Molina, V., Cuadra, M. Martínez, L. J., Robles, H. V., “Sizing and Study of the Energy Production of a Grid-tied Photovoltaic System Using PVsyst Software”, Tecciencia, 12(22): 27-32, (2017).
  • [10] Krismadinata, N. Abd. Rahim, H. W. Ping, and J. Selvaraj, “Photovoltaic Module Modeling using Simulink/MATLAB,” Procedia Environ Sci, 17(1): 537–546, (2013).
  • [11] O. Ceylan and K. Taşdelen, “Isparta İli için Fotovoltaik Programlarının Simülasyon Sonuçlarının Doğruluğunun İncelenmesi.” Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 18(3):895-903, (2018).
  • [12] V. Kumar Vashishtha, A. Yadav, A. Kumar, and V. Kumar Shukla, “An overview of software tools for the photovoltaic industry,” Mater Today Proc, 64(3): 1450–1454, (2022).
  • [13] B. F. Towler. “Solar Power.” The Future of Energy,161–185, (2014).
  • [14] P. Denholm, E. Drury, R. Margolis, and M. Mehos. “Solar Energy: The Largest Energy Resource” Generating Electricity in a Carbon-Constrained World, 271–302, (2010).
  • [15] “PVsyst – Logiciel Photovoltaïque.” https://www.pvsyst.com/ (accessed Mar. 08, 2023).
  • [16] “MATLAB - MathWorks.” https://www.mathworks.com/products/matlab.html (accessed Mar. 08, 2023).
  • [17] V. Keskin, S. H. P. R. Khalejan, and R. Çıkla, “Investigation of the Shading Effect on the Performance of a grid-connected PV Plant in Samsun/Turkey,” Journal of Polytechnic, 24(2):553–563, (2020).
  • [18] R. B. Bollipo, S. Mikkili, and P. K. Bonthagorla, “Hybrid, optimal, intelligent and classical PV MPPT techniques: A review,” CSEE Journal of Power and Energy Systems,7(1): 9–33, (2021).
  • [19] Z. Gümüş and M. Demirtaş, “Fotovoltaik Sistemlerde Maksimum Güç Noktası Takibinde Kullanılan Algoritmaların Kısmi Gölgeleme Koşulları Altında Karşılaştırılması,” Journal of Polytechnic, vol. 24(3):853–865, (2021).
  • [20] “Perturb and Observe (P&O) Algorithm for PV MPPT - File Exchange - MATLAB Central.” https://www.mathworks.com/matlabcentral/fileexchange/39641-perturb-and-observe-p-o-algorithm-for-pv-mppt (accessed Mar. 08, 2023).
  • [21] V. Kumar and R. K. Bindal, “MPPT technique used with perturb and observe to enhance the efficiency of a photovoltaic system,” Mater Today Proc, 69(2): A6–A11, (2022).
  • [22] A. Banik, A. Shrivastava, R. Manohar Potdar, S. Kumar Jain, S. Gopal Nagpure, and M. Soni, “Design, Modelling, and Analysis of Novel Solar PV System using MATLAB,” Mater Today Proc, 51(1):756–763, (2022).
  • [23] “Products - CSUN Solar Tech Co., Ltd.” https://www.csunsolartech.com/products (accessed Mar. 12, 2023).
  • [24] Khare, V., Khare, C., Nema, S., & Baredar, P. “Application of regression analysis and forecasting techniques in solar energy system.” Decision Science and Operations Management of Solar Energy Systems, 181-234, (2023).
There are 24 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Oğuz Kaan Çinici 0000-0001-5260-623X

Büşra Karaca 0000-0002-3953-9578

Adem Acır 0000-0002-9856-3623

Project Number FYL-2022-7520
Early Pub Date November 25, 2023
Publication Date December 1, 2023
Submission Date March 17, 2023
Published in Issue Year 2023 Volume: 26 Issue: 4

Cite

APA Çinici, O. K., Karaca, B., & Acır, A. (2023). Comparison Study in Terms of The Results of Photovoltaic Solar Energy Systems Designed with PVsyst and MATLAB Simulink Software. Politeknik Dergisi, 26(4), 1635-1649. https://doi.org/10.2339/politeknik.1266464
AMA Çinici OK, Karaca B, Acır A. Comparison Study in Terms of The Results of Photovoltaic Solar Energy Systems Designed with PVsyst and MATLAB Simulink Software. Politeknik Dergisi. December 2023;26(4):1635-1649. doi:10.2339/politeknik.1266464
Chicago Çinici, Oğuz Kaan, Büşra Karaca, and Adem Acır. “Comparison Study in Terms of The Results of Photovoltaic Solar Energy Systems Designed With PVsyst and MATLAB Simulink Software”. Politeknik Dergisi 26, no. 4 (December 2023): 1635-49. https://doi.org/10.2339/politeknik.1266464.
EndNote Çinici OK, Karaca B, Acır A (December 1, 2023) Comparison Study in Terms of The Results of Photovoltaic Solar Energy Systems Designed with PVsyst and MATLAB Simulink Software. Politeknik Dergisi 26 4 1635–1649.
IEEE O. K. Çinici, B. Karaca, and A. Acır, “Comparison Study in Terms of The Results of Photovoltaic Solar Energy Systems Designed with PVsyst and MATLAB Simulink Software”, Politeknik Dergisi, vol. 26, no. 4, pp. 1635–1649, 2023, doi: 10.2339/politeknik.1266464.
ISNAD Çinici, Oğuz Kaan et al. “Comparison Study in Terms of The Results of Photovoltaic Solar Energy Systems Designed With PVsyst and MATLAB Simulink Software”. Politeknik Dergisi 26/4 (December 2023), 1635-1649. https://doi.org/10.2339/politeknik.1266464.
JAMA Çinici OK, Karaca B, Acır A. Comparison Study in Terms of The Results of Photovoltaic Solar Energy Systems Designed with PVsyst and MATLAB Simulink Software. Politeknik Dergisi. 2023;26:1635–1649.
MLA Çinici, Oğuz Kaan et al. “Comparison Study in Terms of The Results of Photovoltaic Solar Energy Systems Designed With PVsyst and MATLAB Simulink Software”. Politeknik Dergisi, vol. 26, no. 4, 2023, pp. 1635-49, doi:10.2339/politeknik.1266464.
Vancouver Çinici OK, Karaca B, Acır A. Comparison Study in Terms of The Results of Photovoltaic Solar Energy Systems Designed with PVsyst and MATLAB Simulink Software. Politeknik Dergisi. 2023;26(4):1635-49.