Research Article
BibTex RIS Cite

Microstructure, Hardness and Thermal Properties of Al4.5Cu/TiO2 Composites Produced by Mechanical Alloying

Year 2024, Volume: 27 Issue: 1, 1 - 10, 29.02.2024
https://doi.org/10.2339/politeknik.1078287

Abstract

Al4.5Cu/TiO2 composites were fabricated from their elemental powders by the mechanical alloying method. Microstructural and thermal properties of the composites were investigated by a combination of differential thermal analysis (DTA), scanning electron microscopy with energy dispersive X-ray detection (SEM-EDX), and X-ray diffraction (XRD). Microstructural evolutions, phase transformations, and crystallite size changes were investigated depending on the milling time. XRD and SEM results showed that there were a more homogeneous structure and shrinkage in grain size due to the increased milling time. The DTA results showed an endothermic peak of around 650 oC which indicates the melting temperature of Al. Besides, the mechanical properties of the pressed and sintered composites were investigated by Vickers micro-hardness testing. The results showed that microhardness values significantly increased as milling time increased from 5h to 10h. The maximum microhardness value of 173±10 HV was obtained for Al4.5Cu with 20 wt% TiO2 composite after milling for 10h.  

Supporting Institution

TUBITAK [2209-A]

Project Number

1919B011701225

Thanks

We would like to thank TUBITAK [2209-A] for providing financial support (Project No:1919B011701225).

References

  • [1] Bannaravuri P.K., Birru A.K., ‘‘Strengthening of mechanical and tribological properties of Al-4.5% Cu matrix alloy with the addition of bamboo leaf ash’’, Results in Physics, 10: 360-373, (2018)
  • [2] Abraham S.J., Dinaharan I., Selvam J.D.R., Akinlabi E.T., ‘‘Microstructural characterization and tensile behavior of rutile (TiO2)-reinforced AA6063 aluminum matrix composites prepared by friction stir processing’’, Acta Metallurgica Sinica (English Letters), 32: 52-62, (2019)
  • [3] Yousefian R., Emadoddin E., Baharnezhad S., ‘‘Manufacturing of the aluminum metal-matrix composite reinforced with micro- and nanoparticles of TiO2 through accumulative roll bonding process (ARB)’’, Reviews on Advanced Materials Science, 55: 1-11, (2018)
  • [4] Singh P.M., Lewandowski J.J. “Effects of heat treatment and reinforcement size on reinforcement fracture during tension testing of a SiCp discontinuously reinforced aluminum alloy”, Metallurgical Transactions A, 24: 2531-2543, (1993)
  • [5] Sahoo P., Koczak M.J., ‘‘Microstructure property relationships of insitu reacted TiC/Al-Cu metal matrix composites’’, Materials Science and Engineering A, 131: 69-76, (1991)
  • [6] Nukami T., Flemings M.C., ‘‘In situ synthesis of TiC particulate-reinforced aluminum matrix composites’’, Metallurgical and Materials Transactions A, 26: 1877-1884, (1995)
  • [7] Roy M., Venkataraman B., Bhanuprasad V.V., Mahajan Y.R., Sundararajan G., ‘‘The effect of particulate reinforcement on the sliding wear behavior of aluminum matrix composites’’, Metallurgical Transactions A, 23: 2833-2847, (1992)
  • [8] Wu S.Q., Zhu H.G., Tjong S.C., ‘‘Wear behavior of in situ Al-based composites containing TiB2, Al2O3, and Al3Ti particles’’, Metallurgical and Materials Transactions A, 30: 243-248, (1999)
  • [9] Chen Z., Chen Y., An G., Shu Q., Li D., Liu Y., ‘‘Microstructure and properties of in situ Al/TiB2 composite fabricated by in-melt reaction method’’, Metallurgical and Materials Transactions A, 31: 1959- 1964, (2000)
  • [10] Alpas A., Zhang J., ‘‘Effect of microstructure (particulate size and volume fraction) and counterface material on the sliding wear resistance of particulate-reinforced aluminum matrix composites’’, Metallurgical and Materials Transactions A, 25: 969-983, (1994)
  • [11] Popov V.A., Shelekhov E.V., Prosviryakov A.S., Presniakov M.Y., Senatulin B.R., Kotov A.D., Khomutov M.G., ‘‘Particulate metal matrix composites development on the basis of in situ synthesis of TiC reinforcing nanoparticles during mechanical alloying’’, Journal of Alloys and Compounds, 707: 365-370, (2017)
  • [12] Popov V.A., Burghammer M., Rosenthal M., Kotov A., ‘‘In situ synthesis of TiC nano-reinforcements in aluminum matrix composites during mechanical alloying’’, Composites Part B: Engineering, 145: 57-61, (2018)
  • [13] Wang F., Li Y., Wang X., Koizumi Y., Kenta Y., Chiba A., ‘‘In-situ fabrication and characterization of ultrafine structured Cu–TiC composites with high strength and high conductivity by mechanical milling’’, Journal of Alloys and Compounds, 657: 122-132, (2016)
  • [14] Kaftelen H., Öveçoğlu M.L., Henein H., Çimenoğlu H., ‘‘ZrC particle reinforced Al–4 wt.% Cu alloy composites fabricated by mechanical alloying and vacuum hot pressing: microstructural evaluation and mechanical properties’’, Materials Science and Engineering A, 527: 5930-5938, (2010)
  • [15] Suryanarayana C., Ivanov E., Boldyrev V.V., ‘‘The science and technology of mechanical alloying’’, Materials Science and Engineering A, 304/306: 151-158, (2001)
  • [16] Bastwros M., Kim G.Y., Zhu C., Zhang K., Wang S., Tang X., Wang X., ‘‘Effect of ball milling on graphene reinforced Al6061 composite fabricated by semi-solid sintering’’, Composites Part B: Engineering, 60: 111-118, (2014)
  • [17] Elsayed A.H., Sayed M.A., Dawood O.M., Daoush W.M., ‘‘Effect of transition metals oxides on the physical and mechanical properties of sintered tungsten heavy alloys’’, Crystals, 10(9): 825, (2020)
  • [18] Turhan H., Özel S., 2009, ‘‘Properties of Cu/Fe-Mn and Cu/Fe-Cr metal matrix composites produced by powder metallurgy’’, Materials Testing, 51(3): 141-146, (2009)
  • [19] Özel S., Çelik E., Turhan H., ‘‘The investigation of microstructure and hardness of Cu-Al/B4C composites produced by using hot press, Engineering Sciences, 4 (1): 106-112, (2009)
  • [20] Shivam V., Shadangi Y., Basu J., Mukhopadhyay N.K., ‘‘Evolution of phases, hardness and magnetic properties of AlCoCrFeNi high entropy alloy processed by mechanical alloying’’, Journal of Alloys and Compounds, 832: 154826, (2020)
  • [21] Baghani M., Aliofkhazraei M., Seyfoori A., Askari M., ‘‘Mechanical alloying of CuFe-alumina nanocomposite: study of microstructure, corrosion, and wear properties’’, Science and Engineering of Composite Materials, 25: 1085–1094, (2018)
  • [22] Baghani M., Aliofkhazraei M., Poursalehi R., ‘‘Low temperature microwave sintering of Cu0.7Ni0.3(Al2O3) nanocomposite’’, Powder Metallurgy, 60(1): 73-83, (2017)
  • [23] Shivam V., Basu J., Pandey V.K., Shadangi Y., Mukhopadhyay N.K., ‘‘Alloying behaviour, thermal stability and phase evolution in quinary AlCoCrFeNi high entropy alloy’’, Advanced Powder Technology, 29: 2221-2230, (2018)
  • [24] Singh N., Shadangi Y., Shivam V., Mukhopadhyay N.K., ‘‘MgAlSiCrFeNi low-density high entropy alloy processed by mechanical alloying and spark plasma sintering: Effect on phase evolution and thermal stability’’, Journal of Alloys and Compounds, 875: 159923, (2021)
  • [25] Anand Sekhar R., Shifin S., Kumar A.A., Nair A.H., Sudhees A., Krishnan J., ‘‘AlCoCrFeNiTi-C alloy with TiC nano precipitates processed through mechanical alloying and spark plasma sintering’’, Materials Letters, 285: 129185, (2021)
  • [26] Bhaduri A., Gopinathan V., Ramakrishnan P., Miodownik A.P., ‘‘Microstructural changes in a mechanically alloyed Al-6.2Zn-2.5Mg-1.7Cu alloy (7010) with and without particulate SiC reinforcement’’, Metallurgical and Materials Transactions A, 27: 3718-3726, (1996)
  • [27] Hong S.H., Chung K.H., ‘‘Effects of vacuum hot pressing parameters on the tensile properties and microstructures of SiC-2124 Al composites’’, Materials Science and Engineering A, 194: 165-170, (1995)
  • [28] Jha A.K., Prasad S.V., Upadhyaya G.S., ‘‘Mechanical behaviour of sintered 6061 aluminium alloy and its composites containing soft or hard particles’’, International Journal of Materials Research, 81(6): 457-462, (1990)
  • [29] Soltani M., Hoseininejad S.A., ‘‘Composite reinforcement by oxide TiO2’’, Science and Engineering of Composite Materials, 20(1): 7-14, (2013)
  • [30] Avar B., Simsek T., Ozcan S., Chattopadhyay A. K., Kalkan B., ‘‘Structural stability of mechanically alloyed amorphous (FeCoNi)70Ti10B20 under high-temperature and high-pressure’’, Journal of Alloys and Compounds, 860: 158528, (2021)
  • [31] Shin J.H., Choi H.J., Cho M.K., Bae D.H., ‘‘Effect of the interface layer on the mechanical behavior of TiO2 nanoparticle reinforced aluminum matrix composites’’, Journal of Composite Materials, 48(1): 99-106, (2014)
  • [32] Das S., ‘‘The Al-O-Ti (Aluminum-oxygen-titanium) system’’, Journal of Phase Equilibria, 23: 525-536, (2002)
  • [33] Schuster J.C., Palm M., ‘‘Reassessment of the binary aluminum–titanium phase diagram’’, Journal of Phase Equilibria and Diffusion, 27: 255-277, (2006)
  • [34] Mostaed E., Saghafian H., Mostaed A., Shokuhfar A., Rezaie H.R., ‘‘Investigation on preparation of Al-4.5%Cu/SiCp nanocomposite powder via mechanical milling’’, Powder Technology, 221: 278- 283, (2012)
  • [35] El-Kady O., Fathy A., ‘‘Effect of SiC particle size on the physical and mechanical properties of extruded Al matrix nanocomposites’’, Materials & Design, 54: 348-353, (2014)
  • [36] Nageswaran G., Natarajan S., Ramkumar K.R., ‘‘Synthesis, structural characterization, mechanical and wear behaviour of Cu–TiO2–Gr hybrid composite through stir casting technique’’, Journal of Alloys and Compounds, 768: 733-741, (2018)
  • [37] Kumar C.A.V., Rajadurai J.S., ‘‘Influence of rutile (TiO2) content on wear and microhardness characteristics of aluminium-based hybrid composites synthesized by powder metallurgy’’, Transactions of Nonferrous Metals Society of China, 26: 63-73, (2016)
  • [38] Ravichandran M. Naveen S.A., Anandakrishnan V., ‘‘Synthesis and forming characteristics of Al–TiO2 powder metallurgy composites during cold upsetting under plane stress state conditions’’, Journal of Sandwich Structures and Materials, 17: 278294, (2015)
  • [39] Suryanarayana C., ‘‘Mechanical alloying and milling’’, Progress in Materials Science, 46: 1-184, (2001)
  • [40] Suryanarayana C., Norton M.G., ‘‘X-ray Diffraction, A Practical Approach’’, Plenum Press, New York, (1998)
  • [41] Avar B., Ozcan S., ‘‘Structural evolutions in Ti and TiO2 powders by ball milling and subsequent heat-treatments’’, Ceramics International, 40: 11123-11130, (2014)
  • [42] Kursun C., Gogebakan M., ‘‘Characterization of nanostructured Mg–Cu–Ni powders prepared by mechanical alloying’’, Journal of Alloys and Compounds, 619: 138-144, (2015)
  • [43] Kursun C., Gogebakan M., Eskalen H., Uruş S., Perepezko J.H., ‘‘Microstructural evaluation and highly efficient photocatalytic degradation characteristic of nanostructured Mg65Ni20Y15−xLax (X = 1, 2, 3) alloys’’, Journal of Inorganic and Organometallic Polymers and Materials, 30: 494-503, (2020)
  • [44] Faruqui A.N., Manikandan P., Sato T., Mitsuno Y., Hokamoto K., ‘‘Mechanical milling and synthesis of Mg-SiC composites using underwater shock consolidation’’, Metals and Materials International, 18: 157-163, (2012)
  • [45] Suryanarayana C., ‘‘Mechanical Alloying and Milling’’, Marcel Dekker, New York, (2004)
  • [46] Mostaed A., Mostaed E., Shokuhfar A., Saghafian H., Rezaie H.R., ‘‘The influence of milling time and impact force on the mutual diffusion of Al and Cu during synthesis of Al-4.5wt%Cu alloy via mechanical alloying’’, Defect and Diffusion Forum, 283-286: 494-498, (2009)
  • [47] Mostaed E., Mostaed A., Saghafian H., Shokuhfar A., Rezaie H.R., ‘‘Effect of SiC particles volume fraction on the mutual diffusion of Al and Cu during fabrication of Al-4.5wt% Cu/SiC via mechanical alloying’’, Defect and Diffusion Forum, 283-286: 499-503, (2009)
  • [48] Bülbül B., Okumuş M., ‘‘Microstructure, hardness, thermal and wear behaviours in Al–10Ni/TiO2 composites fabricated by mechanical alloying’’, Materials Chemistry and Physics, 125908, (2022)
  • [49] Siddesha S., Jagannath T.D., Punith T.R., Rakshith N.S., ‘‘Effects of fabrication of aluminium 2024/TiO2 metal matrix composite’’, International Journal of Innovative Research & Development, 5(11): 174-177, (2016)
  • [50] Veeresh Kumar G.B., Shivakumar Gouda P.S., Pramod R., Rao C.S.P., ‘‘Synthesis and characterization of TiO2 reinforced Al6061 composites’’, Advanced Composites Letters, 26(1): 168-173, (2017)
  • [51] Baskaran G., Lawrence I.D., Kannan C.R., Stalin B., ‘‘Characterization of aluminium based metal matrix composite reinforced with TiC and TiO2’’, International Journal of Applied Engineering Research, 10(51): 682-687, (2015)
  • [52] Chandrasekhar G.L., Vijayakumar Y., Nagaral M., ‘‘Investigations on mechanical properties of Al-4.5% Cu-SiC and Al-4.5%Cu-Graphite composites’’, European Journal of Engineering Research and Science, 1(1): 30-33, (2016)
  • [53] Ramesh C.S., Keshavamurthy R., Channabasappa B.H., Ahmed, A., ‘‘Microstructure and mechanical properties of Ni–P coated Si3N4 reinforced Al6061 composites’’, Materials Science and Engineering A, 502: 99-106, (2009)
  • [54] Okumuş M., Bülbül B., ‘‘Mekanik alaşımlama metodu ile üretilen Al-4.5Cu/SiC kompozitin termal ve mikroyapısal özelliklerinin incelenmesi’’, Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji, 8(2): 405-417, (2020)
  • [55] Okumuş M., Demir F., Gögebakan M., ‘‘Characterization of complex Al60Cu20Ni15Ti5 alloy produced by mechanical alloying and sintering’’, Kovove Materialy-Metallic Materials, 58(5): 331-339, (2020)
  • [56] Mostaed A., Saghafian H., Mostaed E., Shokuhfar A., Rezaie H.R., ‘‘Effect of reinforcing particle type on morphology and age-hardening behavior of Al–4.5 wt.% Cu based nanocomposites synthesized through mechanical milling’’, Materials Characterization, 76: 76-82, (2013)
  • [57] Arakawa S., Hatayama T., Matsugi K., Yanagisawa O., ‘‘Effect of heterogeneous precipitation on age-hardening of Al2O3 particle dispersion Al-4mass%Cu composite produced by mechanical alloying’’, Scripta Materialia, 42: 755-760, (2000)
  • [58] Taha M.A., Elkomy G.M., Mostafa H.A., Gouda E.S., ‘‘Effect of ZrO2 contents and ageing times on mechanical and electrical properties of Al–4.5 wt.% Cu nanocomposites prepared by mechanical alloying’’, Material Chemistry and Physics, 206: 116-123, (2018)
  • [59] Gogebakan M., Avar B., "Structural evolutions of the mechanically alloyed Al70Cu20Fe10 powders", Pramana, 77: 735-747, (2011)
  • [60] Gogebakan M., Avar B., "Quasicrystalline phase formation during heat treatment in mechanically alloyed Al65Cu20Fe15 alloy", Materials Science and Technology, 26: 920-924, (2010)
  • [61] Avar B., Gogebakan M., "Synthesis of the quasi-crystalline phase in Al63Cu25Fe12 powders prepared by mechanical alloying", Journal of Optoelectronics and Advanced Materials, 11(10): 1460-1463, (2009)

Mekanik alaşımlama ile üretilen Al4.5Cu/TiO2 kompozitlerinin mikroyapı, sertlik ve termal özellikleri

Year 2024, Volume: 27 Issue: 1, 1 - 10, 29.02.2024
https://doi.org/10.2339/politeknik.1078287

Abstract

Al4.5Cu/TiO2 kompozitleri, mekanik alaşımlama yöntemiyle elemental tozlarından üretilmiştir. Kompozitlerin mikroyapısal ve termal özellikleri, diferansiyel termal analiz (DTA), enerji dağılımlı X-ışını algılamalı taramalı elektron mikroskobu (SEM-EDX) ve X-ışını kırınımının (XRD) bir kombinasyonu ile araştırıldı. Öğütme süresine bağlı olarak mikroyapısal evrimler, faz dönüşümleri ve kristalit boyutu değişiklikleri incelenmiştir. XRD ve SEM sonuçları, öğütme süresinin artması nedeniyle daha homojen bir yapı ve tane boyutunda küçülme olduğunu göstermiştir. DTA sonuçları, Al'nin erime sıcaklığını gösteren yaklaşık 650 oC’de bir endotermik pik gösterdi. Ayrıca, preslenmiş ve sinterlenmiş kompozitlerin mekanik özellikleri Vickers mikro sertlik testi ile incelenmiştir. Sonuçlar, öğütme süresinin 5 saatten 10 saate çıktığında mikrosertlik değerlerinin önemli ölçüde arttığını göstermiştir. 10 saat öğütme sonrasında maksimum mikrosertlik değeri, ağırlıkça %20 TiO2'li Al4.5Cu kompozit için 173±10 HV elde edilmiştir.

Project Number

1919B011701225

References

  • [1] Bannaravuri P.K., Birru A.K., ‘‘Strengthening of mechanical and tribological properties of Al-4.5% Cu matrix alloy with the addition of bamboo leaf ash’’, Results in Physics, 10: 360-373, (2018)
  • [2] Abraham S.J., Dinaharan I., Selvam J.D.R., Akinlabi E.T., ‘‘Microstructural characterization and tensile behavior of rutile (TiO2)-reinforced AA6063 aluminum matrix composites prepared by friction stir processing’’, Acta Metallurgica Sinica (English Letters), 32: 52-62, (2019)
  • [3] Yousefian R., Emadoddin E., Baharnezhad S., ‘‘Manufacturing of the aluminum metal-matrix composite reinforced with micro- and nanoparticles of TiO2 through accumulative roll bonding process (ARB)’’, Reviews on Advanced Materials Science, 55: 1-11, (2018)
  • [4] Singh P.M., Lewandowski J.J. “Effects of heat treatment and reinforcement size on reinforcement fracture during tension testing of a SiCp discontinuously reinforced aluminum alloy”, Metallurgical Transactions A, 24: 2531-2543, (1993)
  • [5] Sahoo P., Koczak M.J., ‘‘Microstructure property relationships of insitu reacted TiC/Al-Cu metal matrix composites’’, Materials Science and Engineering A, 131: 69-76, (1991)
  • [6] Nukami T., Flemings M.C., ‘‘In situ synthesis of TiC particulate-reinforced aluminum matrix composites’’, Metallurgical and Materials Transactions A, 26: 1877-1884, (1995)
  • [7] Roy M., Venkataraman B., Bhanuprasad V.V., Mahajan Y.R., Sundararajan G., ‘‘The effect of particulate reinforcement on the sliding wear behavior of aluminum matrix composites’’, Metallurgical Transactions A, 23: 2833-2847, (1992)
  • [8] Wu S.Q., Zhu H.G., Tjong S.C., ‘‘Wear behavior of in situ Al-based composites containing TiB2, Al2O3, and Al3Ti particles’’, Metallurgical and Materials Transactions A, 30: 243-248, (1999)
  • [9] Chen Z., Chen Y., An G., Shu Q., Li D., Liu Y., ‘‘Microstructure and properties of in situ Al/TiB2 composite fabricated by in-melt reaction method’’, Metallurgical and Materials Transactions A, 31: 1959- 1964, (2000)
  • [10] Alpas A., Zhang J., ‘‘Effect of microstructure (particulate size and volume fraction) and counterface material on the sliding wear resistance of particulate-reinforced aluminum matrix composites’’, Metallurgical and Materials Transactions A, 25: 969-983, (1994)
  • [11] Popov V.A., Shelekhov E.V., Prosviryakov A.S., Presniakov M.Y., Senatulin B.R., Kotov A.D., Khomutov M.G., ‘‘Particulate metal matrix composites development on the basis of in situ synthesis of TiC reinforcing nanoparticles during mechanical alloying’’, Journal of Alloys and Compounds, 707: 365-370, (2017)
  • [12] Popov V.A., Burghammer M., Rosenthal M., Kotov A., ‘‘In situ synthesis of TiC nano-reinforcements in aluminum matrix composites during mechanical alloying’’, Composites Part B: Engineering, 145: 57-61, (2018)
  • [13] Wang F., Li Y., Wang X., Koizumi Y., Kenta Y., Chiba A., ‘‘In-situ fabrication and characterization of ultrafine structured Cu–TiC composites with high strength and high conductivity by mechanical milling’’, Journal of Alloys and Compounds, 657: 122-132, (2016)
  • [14] Kaftelen H., Öveçoğlu M.L., Henein H., Çimenoğlu H., ‘‘ZrC particle reinforced Al–4 wt.% Cu alloy composites fabricated by mechanical alloying and vacuum hot pressing: microstructural evaluation and mechanical properties’’, Materials Science and Engineering A, 527: 5930-5938, (2010)
  • [15] Suryanarayana C., Ivanov E., Boldyrev V.V., ‘‘The science and technology of mechanical alloying’’, Materials Science and Engineering A, 304/306: 151-158, (2001)
  • [16] Bastwros M., Kim G.Y., Zhu C., Zhang K., Wang S., Tang X., Wang X., ‘‘Effect of ball milling on graphene reinforced Al6061 composite fabricated by semi-solid sintering’’, Composites Part B: Engineering, 60: 111-118, (2014)
  • [17] Elsayed A.H., Sayed M.A., Dawood O.M., Daoush W.M., ‘‘Effect of transition metals oxides on the physical and mechanical properties of sintered tungsten heavy alloys’’, Crystals, 10(9): 825, (2020)
  • [18] Turhan H., Özel S., 2009, ‘‘Properties of Cu/Fe-Mn and Cu/Fe-Cr metal matrix composites produced by powder metallurgy’’, Materials Testing, 51(3): 141-146, (2009)
  • [19] Özel S., Çelik E., Turhan H., ‘‘The investigation of microstructure and hardness of Cu-Al/B4C composites produced by using hot press, Engineering Sciences, 4 (1): 106-112, (2009)
  • [20] Shivam V., Shadangi Y., Basu J., Mukhopadhyay N.K., ‘‘Evolution of phases, hardness and magnetic properties of AlCoCrFeNi high entropy alloy processed by mechanical alloying’’, Journal of Alloys and Compounds, 832: 154826, (2020)
  • [21] Baghani M., Aliofkhazraei M., Seyfoori A., Askari M., ‘‘Mechanical alloying of CuFe-alumina nanocomposite: study of microstructure, corrosion, and wear properties’’, Science and Engineering of Composite Materials, 25: 1085–1094, (2018)
  • [22] Baghani M., Aliofkhazraei M., Poursalehi R., ‘‘Low temperature microwave sintering of Cu0.7Ni0.3(Al2O3) nanocomposite’’, Powder Metallurgy, 60(1): 73-83, (2017)
  • [23] Shivam V., Basu J., Pandey V.K., Shadangi Y., Mukhopadhyay N.K., ‘‘Alloying behaviour, thermal stability and phase evolution in quinary AlCoCrFeNi high entropy alloy’’, Advanced Powder Technology, 29: 2221-2230, (2018)
  • [24] Singh N., Shadangi Y., Shivam V., Mukhopadhyay N.K., ‘‘MgAlSiCrFeNi low-density high entropy alloy processed by mechanical alloying and spark plasma sintering: Effect on phase evolution and thermal stability’’, Journal of Alloys and Compounds, 875: 159923, (2021)
  • [25] Anand Sekhar R., Shifin S., Kumar A.A., Nair A.H., Sudhees A., Krishnan J., ‘‘AlCoCrFeNiTi-C alloy with TiC nano precipitates processed through mechanical alloying and spark plasma sintering’’, Materials Letters, 285: 129185, (2021)
  • [26] Bhaduri A., Gopinathan V., Ramakrishnan P., Miodownik A.P., ‘‘Microstructural changes in a mechanically alloyed Al-6.2Zn-2.5Mg-1.7Cu alloy (7010) with and without particulate SiC reinforcement’’, Metallurgical and Materials Transactions A, 27: 3718-3726, (1996)
  • [27] Hong S.H., Chung K.H., ‘‘Effects of vacuum hot pressing parameters on the tensile properties and microstructures of SiC-2124 Al composites’’, Materials Science and Engineering A, 194: 165-170, (1995)
  • [28] Jha A.K., Prasad S.V., Upadhyaya G.S., ‘‘Mechanical behaviour of sintered 6061 aluminium alloy and its composites containing soft or hard particles’’, International Journal of Materials Research, 81(6): 457-462, (1990)
  • [29] Soltani M., Hoseininejad S.A., ‘‘Composite reinforcement by oxide TiO2’’, Science and Engineering of Composite Materials, 20(1): 7-14, (2013)
  • [30] Avar B., Simsek T., Ozcan S., Chattopadhyay A. K., Kalkan B., ‘‘Structural stability of mechanically alloyed amorphous (FeCoNi)70Ti10B20 under high-temperature and high-pressure’’, Journal of Alloys and Compounds, 860: 158528, (2021)
  • [31] Shin J.H., Choi H.J., Cho M.K., Bae D.H., ‘‘Effect of the interface layer on the mechanical behavior of TiO2 nanoparticle reinforced aluminum matrix composites’’, Journal of Composite Materials, 48(1): 99-106, (2014)
  • [32] Das S., ‘‘The Al-O-Ti (Aluminum-oxygen-titanium) system’’, Journal of Phase Equilibria, 23: 525-536, (2002)
  • [33] Schuster J.C., Palm M., ‘‘Reassessment of the binary aluminum–titanium phase diagram’’, Journal of Phase Equilibria and Diffusion, 27: 255-277, (2006)
  • [34] Mostaed E., Saghafian H., Mostaed A., Shokuhfar A., Rezaie H.R., ‘‘Investigation on preparation of Al-4.5%Cu/SiCp nanocomposite powder via mechanical milling’’, Powder Technology, 221: 278- 283, (2012)
  • [35] El-Kady O., Fathy A., ‘‘Effect of SiC particle size on the physical and mechanical properties of extruded Al matrix nanocomposites’’, Materials & Design, 54: 348-353, (2014)
  • [36] Nageswaran G., Natarajan S., Ramkumar K.R., ‘‘Synthesis, structural characterization, mechanical and wear behaviour of Cu–TiO2–Gr hybrid composite through stir casting technique’’, Journal of Alloys and Compounds, 768: 733-741, (2018)
  • [37] Kumar C.A.V., Rajadurai J.S., ‘‘Influence of rutile (TiO2) content on wear and microhardness characteristics of aluminium-based hybrid composites synthesized by powder metallurgy’’, Transactions of Nonferrous Metals Society of China, 26: 63-73, (2016)
  • [38] Ravichandran M. Naveen S.A., Anandakrishnan V., ‘‘Synthesis and forming characteristics of Al–TiO2 powder metallurgy composites during cold upsetting under plane stress state conditions’’, Journal of Sandwich Structures and Materials, 17: 278294, (2015)
  • [39] Suryanarayana C., ‘‘Mechanical alloying and milling’’, Progress in Materials Science, 46: 1-184, (2001)
  • [40] Suryanarayana C., Norton M.G., ‘‘X-ray Diffraction, A Practical Approach’’, Plenum Press, New York, (1998)
  • [41] Avar B., Ozcan S., ‘‘Structural evolutions in Ti and TiO2 powders by ball milling and subsequent heat-treatments’’, Ceramics International, 40: 11123-11130, (2014)
  • [42] Kursun C., Gogebakan M., ‘‘Characterization of nanostructured Mg–Cu–Ni powders prepared by mechanical alloying’’, Journal of Alloys and Compounds, 619: 138-144, (2015)
  • [43] Kursun C., Gogebakan M., Eskalen H., Uruş S., Perepezko J.H., ‘‘Microstructural evaluation and highly efficient photocatalytic degradation characteristic of nanostructured Mg65Ni20Y15−xLax (X = 1, 2, 3) alloys’’, Journal of Inorganic and Organometallic Polymers and Materials, 30: 494-503, (2020)
  • [44] Faruqui A.N., Manikandan P., Sato T., Mitsuno Y., Hokamoto K., ‘‘Mechanical milling and synthesis of Mg-SiC composites using underwater shock consolidation’’, Metals and Materials International, 18: 157-163, (2012)
  • [45] Suryanarayana C., ‘‘Mechanical Alloying and Milling’’, Marcel Dekker, New York, (2004)
  • [46] Mostaed A., Mostaed E., Shokuhfar A., Saghafian H., Rezaie H.R., ‘‘The influence of milling time and impact force on the mutual diffusion of Al and Cu during synthesis of Al-4.5wt%Cu alloy via mechanical alloying’’, Defect and Diffusion Forum, 283-286: 494-498, (2009)
  • [47] Mostaed E., Mostaed A., Saghafian H., Shokuhfar A., Rezaie H.R., ‘‘Effect of SiC particles volume fraction on the mutual diffusion of Al and Cu during fabrication of Al-4.5wt% Cu/SiC via mechanical alloying’’, Defect and Diffusion Forum, 283-286: 499-503, (2009)
  • [48] Bülbül B., Okumuş M., ‘‘Microstructure, hardness, thermal and wear behaviours in Al–10Ni/TiO2 composites fabricated by mechanical alloying’’, Materials Chemistry and Physics, 125908, (2022)
  • [49] Siddesha S., Jagannath T.D., Punith T.R., Rakshith N.S., ‘‘Effects of fabrication of aluminium 2024/TiO2 metal matrix composite’’, International Journal of Innovative Research & Development, 5(11): 174-177, (2016)
  • [50] Veeresh Kumar G.B., Shivakumar Gouda P.S., Pramod R., Rao C.S.P., ‘‘Synthesis and characterization of TiO2 reinforced Al6061 composites’’, Advanced Composites Letters, 26(1): 168-173, (2017)
  • [51] Baskaran G., Lawrence I.D., Kannan C.R., Stalin B., ‘‘Characterization of aluminium based metal matrix composite reinforced with TiC and TiO2’’, International Journal of Applied Engineering Research, 10(51): 682-687, (2015)
  • [52] Chandrasekhar G.L., Vijayakumar Y., Nagaral M., ‘‘Investigations on mechanical properties of Al-4.5% Cu-SiC and Al-4.5%Cu-Graphite composites’’, European Journal of Engineering Research and Science, 1(1): 30-33, (2016)
  • [53] Ramesh C.S., Keshavamurthy R., Channabasappa B.H., Ahmed, A., ‘‘Microstructure and mechanical properties of Ni–P coated Si3N4 reinforced Al6061 composites’’, Materials Science and Engineering A, 502: 99-106, (2009)
  • [54] Okumuş M., Bülbül B., ‘‘Mekanik alaşımlama metodu ile üretilen Al-4.5Cu/SiC kompozitin termal ve mikroyapısal özelliklerinin incelenmesi’’, Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji, 8(2): 405-417, (2020)
  • [55] Okumuş M., Demir F., Gögebakan M., ‘‘Characterization of complex Al60Cu20Ni15Ti5 alloy produced by mechanical alloying and sintering’’, Kovove Materialy-Metallic Materials, 58(5): 331-339, (2020)
  • [56] Mostaed A., Saghafian H., Mostaed E., Shokuhfar A., Rezaie H.R., ‘‘Effect of reinforcing particle type on morphology and age-hardening behavior of Al–4.5 wt.% Cu based nanocomposites synthesized through mechanical milling’’, Materials Characterization, 76: 76-82, (2013)
  • [57] Arakawa S., Hatayama T., Matsugi K., Yanagisawa O., ‘‘Effect of heterogeneous precipitation on age-hardening of Al2O3 particle dispersion Al-4mass%Cu composite produced by mechanical alloying’’, Scripta Materialia, 42: 755-760, (2000)
  • [58] Taha M.A., Elkomy G.M., Mostafa H.A., Gouda E.S., ‘‘Effect of ZrO2 contents and ageing times on mechanical and electrical properties of Al–4.5 wt.% Cu nanocomposites prepared by mechanical alloying’’, Material Chemistry and Physics, 206: 116-123, (2018)
  • [59] Gogebakan M., Avar B., "Structural evolutions of the mechanically alloyed Al70Cu20Fe10 powders", Pramana, 77: 735-747, (2011)
  • [60] Gogebakan M., Avar B., "Quasicrystalline phase formation during heat treatment in mechanically alloyed Al65Cu20Fe15 alloy", Materials Science and Technology, 26: 920-924, (2010)
  • [61] Avar B., Gogebakan M., "Synthesis of the quasi-crystalline phase in Al63Cu25Fe12 powders prepared by mechanical alloying", Journal of Optoelectronics and Advanced Materials, 11(10): 1460-1463, (2009)
There are 61 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Mustafa Okumuş 0000-0003-0369-7686

Esma Kaya This is me 0000-0002-9008-0168

Musa Gögebakan This is me 0000-0001-5104-2874

Project Number 1919B011701225
Publication Date February 29, 2024
Submission Date February 24, 2022
Published in Issue Year 2024 Volume: 27 Issue: 1

Cite

APA Okumuş, M., Kaya, E., & Gögebakan, M. (2024). Microstructure, Hardness and Thermal Properties of Al4.5Cu/TiO2 Composites Produced by Mechanical Alloying. Politeknik Dergisi, 27(1), 1-10. https://doi.org/10.2339/politeknik.1078287
AMA Okumuş M, Kaya E, Gögebakan M. Microstructure, Hardness and Thermal Properties of Al4.5Cu/TiO2 Composites Produced by Mechanical Alloying. Politeknik Dergisi. February 2024;27(1):1-10. doi:10.2339/politeknik.1078287
Chicago Okumuş, Mustafa, Esma Kaya, and Musa Gögebakan. “Microstructure, Hardness and Thermal Properties of Al4.5Cu/TiO2 Composites Produced by Mechanical Alloying”. Politeknik Dergisi 27, no. 1 (February 2024): 1-10. https://doi.org/10.2339/politeknik.1078287.
EndNote Okumuş M, Kaya E, Gögebakan M (February 1, 2024) Microstructure, Hardness and Thermal Properties of Al4.5Cu/TiO2 Composites Produced by Mechanical Alloying. Politeknik Dergisi 27 1 1–10.
IEEE M. Okumuş, E. Kaya, and M. Gögebakan, “Microstructure, Hardness and Thermal Properties of Al4.5Cu/TiO2 Composites Produced by Mechanical Alloying”, Politeknik Dergisi, vol. 27, no. 1, pp. 1–10, 2024, doi: 10.2339/politeknik.1078287.
ISNAD Okumuş, Mustafa et al. “Microstructure, Hardness and Thermal Properties of Al4.5Cu/TiO2 Composites Produced by Mechanical Alloying”. Politeknik Dergisi 27/1 (February 2024), 1-10. https://doi.org/10.2339/politeknik.1078287.
JAMA Okumuş M, Kaya E, Gögebakan M. Microstructure, Hardness and Thermal Properties of Al4.5Cu/TiO2 Composites Produced by Mechanical Alloying. Politeknik Dergisi. 2024;27:1–10.
MLA Okumuş, Mustafa et al. “Microstructure, Hardness and Thermal Properties of Al4.5Cu/TiO2 Composites Produced by Mechanical Alloying”. Politeknik Dergisi, vol. 27, no. 1, 2024, pp. 1-10, doi:10.2339/politeknik.1078287.
Vancouver Okumuş M, Kaya E, Gögebakan M. Microstructure, Hardness and Thermal Properties of Al4.5Cu/TiO2 Composites Produced by Mechanical Alloying. Politeknik Dergisi. 2024;27(1):1-10.