Abstract
In this study, the melting process of the cylindrically encapsulated Phase Change Material (PCM) used in thermal energy storage systems and the effects of fin placement in the cylinder were numerically investigated. For the analysis, a three-dimensional, transient Computational Fluid Dynamics (CFD) model was developed and the model was validated with experimental and numerical data in the literature. In order to examine the effects of the fins on the melting process, three different fin widths, 6, 9, and 12 millimeters, were selected. The effects of the fins were analyzed when the difference between the FDM melting temperature and the outer wall temperature of the cylinder was 10, 20, and 30°C. It has been observed that the fins placed in the PCM have a significant effect on the melting process, and the melting time becomes shorter as the fin width increases. The maximum decrease in melting time due to the fin effect was obtained with a fin width of 12 mm at a temperature difference of 10 °C. In this case, while the melting time is 14.8 minutes, the melting time of FDM without fins is 43.5 minutes.