Research Article
BibTex RIS Cite

Islak Kar Sebebiyle İçten Besleme Tipi Mikroşerit Dikdörtgensel Yama Antenden Yayılan EM Dalgalarının Zayıflaması

Year 2024, Volume: 27 Issue: 2, 455 - 459, 27.03.2024
https://doi.org/10.2339/politeknik.1118193

Abstract

Mikroşerit yama antenler, düşük maliyetleri, küçük boyutları ve kolay imalatları nedeniyle öne çıkmaktadır. Bu çalışma, 2.6 GHz frekansında işlev gören bir mikroşerit dikdörtgensel yama antenin tasarımını ve farklı hava koşullarının anten üzerindeki etkisini göstermektedir. CST programında anten tasarımı ve laboratuvarda antenin imalatı sonrasında istenilen frekans ve desibel seviyesinde ölçüm yapılmıştır. Bu uygulama, VNA ile yapılan normal ölçümlerin dışında, farklı kar tipleri ile birlikte yapılan deneyleri ve sonuçları da içermektedir. Tasarlanan mikroşerit yama antenin, merkez frekansta, -18.48 dB olarak iyi bir S11 saçılma parametresi değeri elde edilmiştir. Anten üzerinde zayıflama ve termal etkiler nedeniyle ıslak kar olduğu durumlarda bu değer -5 dB civarına düşmüştür. Antenden kar kaldırılsa da karın bıraktığı ıslaklık nedeniyle eski S11 değeri tekrar elde edilememiştir ve yaklaşık -14 dB'ye ulaşılmıştır. Sonuç olarak, elektromanyetik dalgaların zayıflaması ıslak kar gibi farklı koşullar altında nano VNA ile yapılan araştırmalara göre ilk kez test edilmiş ve literatürdeki bilgilere göre uyumlu sonuçlar alınmıştır. Islak kar ve su ile olan zayıflama, içinde boşluklar bulunan kuru kara göre daha fazladır.

References

  • [1] Balanis C.A., “Antenna Theory: Analysis and Design”, 4th ed. In John Wiley & Sons, Inc., (2016).
  • [2] Pozar D.M., “Microwave Engineering”, 4th ed. In John Wiley &Sons, Inc., (2012).
  • [3] Kumar M., Sujith N., “Enhancement of Bandwidth and Gain of a Rectangular Microstrip Patch Antenna”, Department of Electronics and Communication Eng., National Institute of Technology, Thesis, Rourkela, (2010).
  • [4] Belen A., Güneş F., “Design and Realization of Dual Band Microstrip SIW Antenna”, Sigma J. Eng. & Nat. Sci., 38(1), (2020).
  • [5] Ramesh M., Yip K.B., “Design formula for inset fed microstrip patch antenna”, J. of Microwaves and Optoelectronics, 3(3), (2003).
  • [6] Matin M.A., Sayeed A.I., “A design rule for inset-fed rectangular microstrip patch antenna”, WSEAS Transactions on Communication, 9(1), (2010).
  • [7] Abdulhussein A.M., Khidhir A.H., Naser A.A., “Design and Implementation of Microstrip Patch Antenna Using Inset Feed Technique for 2.4 GHz Applications”, Int. J. of Microwave and Optical Technology, 16(4), (2021).
  • [8] Ahamed M., Bhowmik K., Suman A.A., “Analysis And Design of Rectangular Microstrip Patch Antenna On Different Resonant Frequencies For Pervasive Wireless Communication”, Int. J. of Scientific & Tech. Research, 1(5), (2012).
  • [9] Farooq W., Ur-Rehman M., Abbasi Q.H., Maqbool K.Q., Qaraqe K., “Study of a microstrip patch antenna with multiple circular slots for portable devices”, IEEE 8th GCC Conference and Exhibition, GCCCE, (2015). https://doi.org/10.1109/IEEEGCC.2015.7060037
  • [10] Marhoon H. M., “Design and Optimisation of Microstrip Bowtie Antenna Based on Graphene Material for Terahertz Applications”, J. of Polytechnic, 1-1, (2022).
  • [11] Han C., Duan S., “Impact of atmospheric parameters on the propagated signal power of millimeter-wave bands based on real measurement data”, IEEE Access, 7, (2019). https://doi.org/10.1109/ACCESS.2019.2933025
  • [12] Yujiri L., Shoucri M., Moffa P., “Passive millimeter wave imaging”, IEEE microwave magazine, 4(3): 39-50, (2003).
  • [13] Chen C., “Attenuation of EM Radiation by Haze, Fog, Clouds and Rain”, United States Air Force Project Rand, Santa Monica, CA, (1975).
  • [14] Dikun J., Jankunas V., Guseinoviene E., Galdikas L., Akinci T.C., “Effects of weather conditions on electromagnetic field parameters”, 10th Int. Conference on Ecological Vehicles and Renewable Energies, EVER, (2015). https://doi.org/10.1109/EVER.2015.7112935
  • [15] Tamoiunaite M., Tamoiunas S., Ilinskas M., Tamoiuniene M., “Atmospheric Attenuation due to Humidity”, Electromagnetic Waves, (2011). https://doi.org/10.5772/21430
  • [16] Fares M.A., Fares S.C., Ventrice C.A., “Attenuation of the electromagnetic waves due to moist and wet snow”, Proc. IEEE SoutheastCon, 99-104, (2007).
  • [17] Şeker Ş.S., Kunter F., “Simulation of discrete electromagnetic propagation model for atmospheric effects on mobile communication”, Turkish J. of Electrical Engineering and Computer Sci., 21(1): 1944-1955, (2013). https://doi.org/10.3906/elk-1204-12
  • [18] Amaya C., García-Rubia J.-M., Bouchard P., Nguyen T., “Experimental assessment of snow-induced attenuation on an Earth-space link operating at Ka-band”, Radio Sci., 49: 933-944, (2014).
  • [19] Renaud D.L., Federici J.F., “Terahertz Attenuation in Snow and Sleet”, J. of Infrared, 40(8): 868–877, (2019).

Attenuation of EM Waves Emitted From Inset Feed Type Microstrip Rectangular Patch Antenna by Wet Snow

Year 2024, Volume: 27 Issue: 2, 455 - 459, 27.03.2024
https://doi.org/10.2339/politeknik.1118193

Abstract

Microstrip patch antennas stand out because of their low cost, smaller size and easy fabrication. The study presents the design of a microstrip rectangular patch antenna operating at 2.6 GHz frequency and the effect of different weather conditions on the antenna. During the antenna design on CST program and manufacturing in the laboratory, it is aimed to perform the measurement at the desired frequency and decibel level. The study includes experiments and results made on different types of snow, apart from the normal measurement with the VNA. A good S11 scattering value was obtained at the desired frequency in the designed microstrip patch antenna as -18.48 dB. This value decreased to around -5 dB when there was wet snow on the antenna due to attenuation and thermal effects. If the snow was removed from the antenna, the old S11 value could not be returned because of the wetness left by the snow, and it remained at approximately -14 dB. Consequently, the attenuation of the electromagnetic waves have been confirmed by the literature under different conditions as wet snow with nano VNA for the first time. Attenuation by wet snow and water is greater than dry snow with voids.

References

  • [1] Balanis C.A., “Antenna Theory: Analysis and Design”, 4th ed. In John Wiley & Sons, Inc., (2016).
  • [2] Pozar D.M., “Microwave Engineering”, 4th ed. In John Wiley &Sons, Inc., (2012).
  • [3] Kumar M., Sujith N., “Enhancement of Bandwidth and Gain of a Rectangular Microstrip Patch Antenna”, Department of Electronics and Communication Eng., National Institute of Technology, Thesis, Rourkela, (2010).
  • [4] Belen A., Güneş F., “Design and Realization of Dual Band Microstrip SIW Antenna”, Sigma J. Eng. & Nat. Sci., 38(1), (2020).
  • [5] Ramesh M., Yip K.B., “Design formula for inset fed microstrip patch antenna”, J. of Microwaves and Optoelectronics, 3(3), (2003).
  • [6] Matin M.A., Sayeed A.I., “A design rule for inset-fed rectangular microstrip patch antenna”, WSEAS Transactions on Communication, 9(1), (2010).
  • [7] Abdulhussein A.M., Khidhir A.H., Naser A.A., “Design and Implementation of Microstrip Patch Antenna Using Inset Feed Technique for 2.4 GHz Applications”, Int. J. of Microwave and Optical Technology, 16(4), (2021).
  • [8] Ahamed M., Bhowmik K., Suman A.A., “Analysis And Design of Rectangular Microstrip Patch Antenna On Different Resonant Frequencies For Pervasive Wireless Communication”, Int. J. of Scientific & Tech. Research, 1(5), (2012).
  • [9] Farooq W., Ur-Rehman M., Abbasi Q.H., Maqbool K.Q., Qaraqe K., “Study of a microstrip patch antenna with multiple circular slots for portable devices”, IEEE 8th GCC Conference and Exhibition, GCCCE, (2015). https://doi.org/10.1109/IEEEGCC.2015.7060037
  • [10] Marhoon H. M., “Design and Optimisation of Microstrip Bowtie Antenna Based on Graphene Material for Terahertz Applications”, J. of Polytechnic, 1-1, (2022).
  • [11] Han C., Duan S., “Impact of atmospheric parameters on the propagated signal power of millimeter-wave bands based on real measurement data”, IEEE Access, 7, (2019). https://doi.org/10.1109/ACCESS.2019.2933025
  • [12] Yujiri L., Shoucri M., Moffa P., “Passive millimeter wave imaging”, IEEE microwave magazine, 4(3): 39-50, (2003).
  • [13] Chen C., “Attenuation of EM Radiation by Haze, Fog, Clouds and Rain”, United States Air Force Project Rand, Santa Monica, CA, (1975).
  • [14] Dikun J., Jankunas V., Guseinoviene E., Galdikas L., Akinci T.C., “Effects of weather conditions on electromagnetic field parameters”, 10th Int. Conference on Ecological Vehicles and Renewable Energies, EVER, (2015). https://doi.org/10.1109/EVER.2015.7112935
  • [15] Tamoiunaite M., Tamoiunas S., Ilinskas M., Tamoiuniene M., “Atmospheric Attenuation due to Humidity”, Electromagnetic Waves, (2011). https://doi.org/10.5772/21430
  • [16] Fares M.A., Fares S.C., Ventrice C.A., “Attenuation of the electromagnetic waves due to moist and wet snow”, Proc. IEEE SoutheastCon, 99-104, (2007).
  • [17] Şeker Ş.S., Kunter F., “Simulation of discrete electromagnetic propagation model for atmospheric effects on mobile communication”, Turkish J. of Electrical Engineering and Computer Sci., 21(1): 1944-1955, (2013). https://doi.org/10.3906/elk-1204-12
  • [18] Amaya C., García-Rubia J.-M., Bouchard P., Nguyen T., “Experimental assessment of snow-induced attenuation on an Earth-space link operating at Ka-band”, Radio Sci., 49: 933-944, (2014).
  • [19] Renaud D.L., Federici J.F., “Terahertz Attenuation in Snow and Sleet”, J. of Infrared, 40(8): 868–877, (2019).
There are 19 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Rabia Özkan This is me 0000-0001-5804-4143

Oğuzhan Mert 0000-0002-0555-6898

Yusuf Yılmaz This is me 0000-0001-9452-745X

Feyza Ramazan This is me 0000-0002-5090-0598

Mehmet Duman 0000-0002-0831-0172

Publication Date March 27, 2024
Submission Date May 18, 2022
Published in Issue Year 2024 Volume: 27 Issue: 2

Cite

APA Özkan, R., Mert, O., Yılmaz, Y., Ramazan, F., et al. (2024). Attenuation of EM Waves Emitted From Inset Feed Type Microstrip Rectangular Patch Antenna by Wet Snow. Politeknik Dergisi, 27(2), 455-459. https://doi.org/10.2339/politeknik.1118193
AMA Özkan R, Mert O, Yılmaz Y, Ramazan F, Duman M. Attenuation of EM Waves Emitted From Inset Feed Type Microstrip Rectangular Patch Antenna by Wet Snow. Politeknik Dergisi. March 2024;27(2):455-459. doi:10.2339/politeknik.1118193
Chicago Özkan, Rabia, Oğuzhan Mert, Yusuf Yılmaz, Feyza Ramazan, and Mehmet Duman. “Attenuation of EM Waves Emitted From Inset Feed Type Microstrip Rectangular Patch Antenna by Wet Snow”. Politeknik Dergisi 27, no. 2 (March 2024): 455-59. https://doi.org/10.2339/politeknik.1118193.
EndNote Özkan R, Mert O, Yılmaz Y, Ramazan F, Duman M (March 1, 2024) Attenuation of EM Waves Emitted From Inset Feed Type Microstrip Rectangular Patch Antenna by Wet Snow. Politeknik Dergisi 27 2 455–459.
IEEE R. Özkan, O. Mert, Y. Yılmaz, F. Ramazan, and M. Duman, “Attenuation of EM Waves Emitted From Inset Feed Type Microstrip Rectangular Patch Antenna by Wet Snow”, Politeknik Dergisi, vol. 27, no. 2, pp. 455–459, 2024, doi: 10.2339/politeknik.1118193.
ISNAD Özkan, Rabia et al. “Attenuation of EM Waves Emitted From Inset Feed Type Microstrip Rectangular Patch Antenna by Wet Snow”. Politeknik Dergisi 27/2 (March 2024), 455-459. https://doi.org/10.2339/politeknik.1118193.
JAMA Özkan R, Mert O, Yılmaz Y, Ramazan F, Duman M. Attenuation of EM Waves Emitted From Inset Feed Type Microstrip Rectangular Patch Antenna by Wet Snow. Politeknik Dergisi. 2024;27:455–459.
MLA Özkan, Rabia et al. “Attenuation of EM Waves Emitted From Inset Feed Type Microstrip Rectangular Patch Antenna by Wet Snow”. Politeknik Dergisi, vol. 27, no. 2, 2024, pp. 455-9, doi:10.2339/politeknik.1118193.
Vancouver Özkan R, Mert O, Yılmaz Y, Ramazan F, Duman M. Attenuation of EM Waves Emitted From Inset Feed Type Microstrip Rectangular Patch Antenna by Wet Snow. Politeknik Dergisi. 2024;27(2):455-9.