Elektronik Bileşenlerin Bir Çift Slot Jet ile Soğutulmasında Nozül Konumunun Soğutma Performansına Etkisi
Yıl 2024,
Cilt: 27 Sayı: 2, 559 - 574, 27.03.2024
Buğra Sarper
,
Nida Emin Kirişçi
,
Melisa Albayrak
Öz
Bu çalışmada, elektronik bileşenlerin bir çift slot jet ile soğutulmasında nozül konumunun akış yapısı ve taşınımla ısı transfer karakteristiklerine etkileri sayısal olarak incelenmiştir. Nozül genişlikleri ve jet Reynolds sayıları eşit alınarak dört farklı nozül konumu (JK 1-2, JK 1-3, JK 1-4 ve JK 1-5) için Reynolds sayısının 100 ile 500 değerleri arasında, laminer rejimde iki-boyutlu hesaplamalar gerçekleştirilmiştir. Sayısal hesaplamalar ANSYS Fluent yazılımı ile yürütülürken, farklı Reynolds sayıları ve jet konumları için hız ve sıcaklık konturları, ısı kaynaklarının yüzeylerinde yerel ve ortalama Nusselt sayılarının değişimi ve genel ortalama Nusselt sayısının değişimi incelenmiştir. Çalışma sonucunda, akış yapısı ve taşınımla ısı transfer karakteristiklerinin nozül konumundan oldukça etkilendiği, sistemin geneli için taşınımla ısı transfer hızının JK 1-2’de diğer durumlara oranla daha yüksek olduğu ve ikinci nozülün çıkışa doğru kayması ile birlikte taşınımla ısı transfer hızının sistemin geneli için azaldığı belirlenmiştir.
Kaynakça
- [1] Sarper, B., Birinci, S., Saglam, M. and Aydin, O., “Constructal Enhancement of Cooling Performance of Local Heating Elements with Different Heat Generation Rates under Free and Mixed Convection”, International Communications in Heat and Mass Transfer, 135: 106145, (2022).
- [2] Yeh, L. T., “Review of Heat Transfer Technologies in Electronic Equipment”, Journal of Electronic Packaging, 117, 333-339, (1995).
- [3] Bar Cohen, A., Watye, A. A., Prasher, R. S., “Heat Transfer in Electronic Equipment”, in: Bejan, A., Kraus, A. D. (Eds.), Heat Transfer Handbook, John Wiley & Sons Inc., New York, 947-1028, (2003).
- [4] Barik, A. K., Rout, S. and Mukherjee, A., “Numerical Investigation of Heat Transfer Enhancement from a Protruded Surface by Cross-flow Jet using Al2O3–water Nanofluid”, International Journal of Heat and Mass Transfer, 101: 550–561, (2016).
- [5] Dutta, S. and Singh, P., “Opportunities in Jet-Impingement Cooling for Gas-Turbine Engines”, Energies, 14: 6587, (2021).
- [6] Shariatmadar, H., Momeni, A., Karimi, A. and Ashjaee, M. “Heat Transfer Characteristics of Laminar Slot Jet Arrays Impinging on a Constant Target Surface Temperature”, Applied Thermal Engineering, 76: 252-260, (2015).
- [7] Yang, L., Li, Y., Ligrani, P.M., Ren, J. and Jiang, H., “Unsteady Heat Transfer and Flow Structure of a Row of Laminar Impingement Jets, Including Vortex Development”, International Journal of Heat and Mass Transfer, 88: 149–164, (2015).
- [8] Sarper, B., Saglam, M. and Aydin, O., “Constructal Placement of Discrete Heat Sources with Different Lenghts in Vertical Ducts under Natural and Mixed Convection”, Journal of Heat Transfer, 140: 121401, (2018).
- [9] Birinci, S., Saglam, M., Sarper, B. and Aydin, O., “Effect of Heaters’ Clearance on Mixed Convection Cooling Performance in a Discretely Heated Horizontal Duct”, International Journal of Thermal Sciences, 163: 106859, (2020).
- [10] Al-Sanea, S., “Numerical Study of the Flow and Heat Transfer Characteristics of an Impinging Laminar Slot-jet Including Crossflow Effects”, International Journal of Heat and Mass Transfer, 35: 2501-2513, (1991).
- [11] Chen, M., Chalupa, R., West, A.C. and Modi, V., “High Schmidt Mass Transfer in a Laminar Impinging Slot Jet Flow”, International Journal of Heat and Mass Transfer, 43: 3907-3915, (2000).
- [12] Garimella, S.V. and Schroder, V.P., “Local Heat Transfer Distributions in Confined Multiple Air Jet Impingement”, Journal of Electronic Packaging, 123: 165-172, (2001).
- [13] Li, X., Gaddis, J.L. and Wang, T., “Multiple Flow Patterns and Heat Transfer in Confined Jet Impingement”, International Journal of Heat and Fluid Flow, 26: 746–754, (2005).
- [14] Arquis, E., Rady, M.A. and Nada, S.A., “A Numerical Investigation and Parametric Study of Cooling an Array of Multiple Protruding Heat Sources by a Laminar Slot Air Jet”, International Journal of Heat and Fluid Flow, 28: 787–805, (2007).
- [15] Sivasamy, A., Selladurai, V. and Kanna, P.R., “Numerical Simulation of Two-Dimensional Laminar Slot-Jet Impingement Flows Confined by a Parallel Wall”, International Journal for Numerical Methods in Fluids, 55: 965–983, (2007).
- [16] Dağtekin, İ. and Öztop, H.F., “Heat Transfer Due to Double Laminar Slot Jets Impingement onto an Isothermal Wall within One Side Closed Long Duct”, International Communications in Heat and Mass Transfer, 35: 65–75, (2008).
- [17] Saeid, N.H., “Effect of Oscillating Jet Velocity on the Jet Impingement Cooling of an Isothermal Surface”, Engineering, 1: 133-139, (2009).
- [18] Nada, S.A., “Buoyancy and Cross Flow Effects on Heat Transfer of Multiple Impinging Slot Air Jets Cooling a Flat Plate at Different Orientations”, Heat Mass Transfer, 45:1083–1097, (2009).
- [19] Lee, D.H., Park, H.J. and Ligrani, P., “Milliscale confined impinging slot jets: Laminar Heat Transfer Characteristics for an Isothermal Flat Plate”, International Journal of Heat and Mass Transfer, 55: 2249–2260, (2012).
- [20] Di Lorrenzo, G., Manca, O., Nardini, S. and Ricci D., “Numerical Study of Laminar Confined Impinging Slot Jets with Nanofluids”, Advances in Mechanical Engineering, 248795, 15, (2012).
- [21] Afroz F. and Sharif, M.A.R., “Numerical Study of Heat Transfer from an Isothermally Heated Flat Surface due to Turbulent Twin Oblique Confined Slot-jet Impimgement”, International Journal of Thermal Sciences, 74: 1-13, (2013).
- [22] Yousefi-Lafouraki, B., Ramiar, A. and Ranjbar, A.A., “Laminar Forced Convection of a Confined Slot Impinging Jet in a Converging Channel”, International Journal of Thermal Sciences, 77: 130-138, (2014).
- [23] Al-Rmah, M.A. and Mohamad, A.A., “Simulation of Multi-internal Confined Impinging Jets using the Lattice Boltzmann Method”, Applied Thermal Engineering, 81: 288-296, (2015).
- [24] Lam, P.A.K. and Prakash, K.A., “A Numerical Investigation of Heat Transfer and Entropy Generation During Jet Impingement Cooling of Protruding Heat Sources Without and with Porous Medium”, Energy Conversion and Management, 89: 626–643, (2015).
- [25] Lam, P.A.K. and Prakash, K.A., “Thermodynamic Investigation and Multi-Objective Optimization for Jet Impingement Cooling System with Al2O3/Water Nanofluid”, Energy Conversion and Management, 111: 38–56, (2016).
- [26] Guoneng, L., Zhihua, X., Youqu, Z., Wenwen, G. and Cong D., “Experimental Study on Convective Heat Transfer from a Rectangular Flat Plate by Multiple Impinging Jets in Laminar Cross flows”, International Journal of Thermal Sciences, 108: 123-131, (2016).
- [27] Zhou, T., Xu, D., Chen, J., Cao, C. and Ye, T., “Numerical Analysis of Turbulent Round Jet Impingement Heat Transfer at High Temperature Difference”, Applied Thermal Engineering, 100: 55–61, (2016).
- [28] Goodfriend, E., Chow, F.K., Vanella, M. and Balaras, E., “Large-Eddy Simulation of Flow Through an Array of Cubes with Local Grid Refinement”, Boundary-Layer Meteorology, 159: 285–303, (2016).
- [29] Buonomo, B., Lauriat, G., Manca, O. and Nardini, S., “Numerical Investigation on Laminar Slot-jet Impinging in a Confined Porous Medium in Local Thermal Non-equilibrium”, International Journal of Heat and Mass Transfer, 98: 484–492, (2016).
- [30] Buonomo, B., Manca, O., Nappo, S. and Nardini S., “Numerical Investigation on Laminar Slot-Jet Impinging on a Surface at Uniform Heat Flux in a Channel Partially Filled with a Porous Medium”, Energy Procedia, 148: 790–797, (2018).
- [31] Lam, P.A.K. and Prakash, K.A., “A Numerical Investigation and Design Optimization of Impingement Cooling System with an Array of Air Jets”, International Journal of Heat and Mass Transfer, 108: 880–900, (2017).
- [32] Kılıç, M., “Elektronik Sistemlerin Soğutulmasında Nanoakışkanlar ve Çarpan Jetlerin Müşterek Etkisinin İncelenmesi”, Çukurova Üniversitesi Mühendislik Mimarlık Dergisi, 33: 121-132, (2018).
- [33] McInturff, P., Suzuki, M., Ligrani, P., Nakamata, C. and Lee D.H., “Effects of Hole Shape on Impingement Jet Array Heat Transfer with Small-Scale, Target Surface Triangle Roughness”, International Journal of Heat and Mass Transfer, 127: 585–597, (2018).
- [34] Kashi, B. and Haustein, H.D., “Dependence of Submerged Jet Heat Transfer on Nozzle Length”, International Journal of Heat and Mass Transfer, 121: 137–152, (2018).
- [35] Gurturk, M. and Oztop, H.F., “Cooling of the Heated Circular Porous Disc with a Circular Jet”, Sakarya University Journal of Science, 23: 676-695, (2019).
- [36] Alnak, D.E., Karabulut, K. and Koca, F., “Investigation of heat transfer from heated square patterned surfaces in a rectangular channel with an air jet impingement”, European Journal of Engineering and Natural Sciences, 3: 78-86, (2019).
- [37] Wang, C., Wang, Z., Wang, L., Luo, L. and Sundén B., “Experimental Study of Fluid Flow and Heat Transfer of Jet Impingement in Cross-Flow with a Vortex Generator Pair”, International Journal of Heat and Mass Transfer, 135: 935–949, (2019).
- [38] Paulraj, M.P., Byon, C., Vallati, A. and Parthasarathy, R.K., “A Numerical Investigation of Flow and Heat Transfer of Laminar Multiple Slot Jets Impinging on Multiple Protruding Heat Sources”, Heat Transfer Engineering, 41: 65-83, (2020).
- [39] Kaya, H., “İkili Çarpan Jet ile Soğutulan Sıcak Plakanın Yüzey Şeklinin Isı Transferine Etkisinin Sayısal Analizi”, Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 9: 152-163, (2021).
- [40] Hosseinalipour, S.M., Rashidzadeh, S., Moghimi, M. and Esmailpour, K., “Numerical Study of Laminar Pulsed Impinging Jet on the Metallic Foam Blocks using the Local Thermal Non-Equilibrium Model”, Journal of Thermal Analysis and Calorimetry, 141: 1859–1874, (2020).
- [41] Li, H., Deng, H. and Qui, L., “Effect of Channel Orientation on Heat Transfer in a Rotating Impingement Cooling Channel”, International Journal of Heat and Mass Transfer, 187: 122493, (2022).
[42] Martinez-Filguera, P., Portal-Porras, K., Fernandez-Gamiz, U., Zulueta, E. and Soriano, J., “Experimental and Numerical Modeling of an Air Jet Impingement System”, European Journal of Mechanics-B/Fludis, 94: 228-245, (2022).
- [43] Singh, P.K., Renganathan, M., Yadav, H., Sahu, S.K., Upadhyay, P.K. and Agrawal, A., “An Experimental Investigation of the Flow-Field and Thermal Characteristics of Synthetic Jet Impingement with Different Waveforms”, International Journal of Heat and Mass Transfer, 187: 122534, (2022).
- [44] Albayrak, M., Sarper, B., Birinci, S., Saglam, M. and Aydin, O., “Effect of Surface Radiation on Jet Impingement Cooling of a Concave Surface”, Proceedings of CONV-22: International Symposium on Convective Heat and Mass Transfer, Turkey, June 5 – 10, 512-522, (2022).
- [45] “ANSYS Fluent Release 21 R2 Theory Guide”, Ansys Inc., (2021).
- [46] Sharif, M. A. R., “Heat Transfer from an Isothermally Heated Flat Surface due to Confined Laminar Twin Oblique Slot-Jet Impingement” Journal of Thermal Science and Engineering Applications, 7, 031001, (2015).
The Impact of Nozzle Position on Cooling Performance in Electronic Components Cooling with Twin Slot Jets
Yıl 2024,
Cilt: 27 Sayı: 2, 559 - 574, 27.03.2024
Buğra Sarper
,
Nida Emin Kirişçi
,
Melisa Albayrak
Öz
In this study, the impact of nozzle position on flow structure and characteristics of convective heat transfer in electronic components cooling with twin jet nozzles are investigated numerically. Assuming that nozzle widths and jet Reynolds numbers are equal, numerical calculations are performed in the laminar regime between the Reynolds number range of 100 and 500 for different nozzle positions (JP 1-2, JP 1-3, JP 1-4 and JP 1-5). Numerical calculations are realized via the ANSYS Fluent software, and velocity and temperature contours, local and mean Nusselt number variation on the heat sources’ surfaces and the overall mean Nusselt number variation are investigated for different nozzle positions and Reynolds numbers. As a result of the study, it is disclosed that the flow structure and characteristics of convective heat transfer are considerably influenced by nozzle position, the overall rate of convective heat transfer in JP 1-2 is higher than in the other cases, and it decreases with the displacement of the second jet towards the outlet.
Kaynakça
- [1] Sarper, B., Birinci, S., Saglam, M. and Aydin, O., “Constructal Enhancement of Cooling Performance of Local Heating Elements with Different Heat Generation Rates under Free and Mixed Convection”, International Communications in Heat and Mass Transfer, 135: 106145, (2022).
- [2] Yeh, L. T., “Review of Heat Transfer Technologies in Electronic Equipment”, Journal of Electronic Packaging, 117, 333-339, (1995).
- [3] Bar Cohen, A., Watye, A. A., Prasher, R. S., “Heat Transfer in Electronic Equipment”, in: Bejan, A., Kraus, A. D. (Eds.), Heat Transfer Handbook, John Wiley & Sons Inc., New York, 947-1028, (2003).
- [4] Barik, A. K., Rout, S. and Mukherjee, A., “Numerical Investigation of Heat Transfer Enhancement from a Protruded Surface by Cross-flow Jet using Al2O3–water Nanofluid”, International Journal of Heat and Mass Transfer, 101: 550–561, (2016).
- [5] Dutta, S. and Singh, P., “Opportunities in Jet-Impingement Cooling for Gas-Turbine Engines”, Energies, 14: 6587, (2021).
- [6] Shariatmadar, H., Momeni, A., Karimi, A. and Ashjaee, M. “Heat Transfer Characteristics of Laminar Slot Jet Arrays Impinging on a Constant Target Surface Temperature”, Applied Thermal Engineering, 76: 252-260, (2015).
- [7] Yang, L., Li, Y., Ligrani, P.M., Ren, J. and Jiang, H., “Unsteady Heat Transfer and Flow Structure of a Row of Laminar Impingement Jets, Including Vortex Development”, International Journal of Heat and Mass Transfer, 88: 149–164, (2015).
- [8] Sarper, B., Saglam, M. and Aydin, O., “Constructal Placement of Discrete Heat Sources with Different Lenghts in Vertical Ducts under Natural and Mixed Convection”, Journal of Heat Transfer, 140: 121401, (2018).
- [9] Birinci, S., Saglam, M., Sarper, B. and Aydin, O., “Effect of Heaters’ Clearance on Mixed Convection Cooling Performance in a Discretely Heated Horizontal Duct”, International Journal of Thermal Sciences, 163: 106859, (2020).
- [10] Al-Sanea, S., “Numerical Study of the Flow and Heat Transfer Characteristics of an Impinging Laminar Slot-jet Including Crossflow Effects”, International Journal of Heat and Mass Transfer, 35: 2501-2513, (1991).
- [11] Chen, M., Chalupa, R., West, A.C. and Modi, V., “High Schmidt Mass Transfer in a Laminar Impinging Slot Jet Flow”, International Journal of Heat and Mass Transfer, 43: 3907-3915, (2000).
- [12] Garimella, S.V. and Schroder, V.P., “Local Heat Transfer Distributions in Confined Multiple Air Jet Impingement”, Journal of Electronic Packaging, 123: 165-172, (2001).
- [13] Li, X., Gaddis, J.L. and Wang, T., “Multiple Flow Patterns and Heat Transfer in Confined Jet Impingement”, International Journal of Heat and Fluid Flow, 26: 746–754, (2005).
- [14] Arquis, E., Rady, M.A. and Nada, S.A., “A Numerical Investigation and Parametric Study of Cooling an Array of Multiple Protruding Heat Sources by a Laminar Slot Air Jet”, International Journal of Heat and Fluid Flow, 28: 787–805, (2007).
- [15] Sivasamy, A., Selladurai, V. and Kanna, P.R., “Numerical Simulation of Two-Dimensional Laminar Slot-Jet Impingement Flows Confined by a Parallel Wall”, International Journal for Numerical Methods in Fluids, 55: 965–983, (2007).
- [16] Dağtekin, İ. and Öztop, H.F., “Heat Transfer Due to Double Laminar Slot Jets Impingement onto an Isothermal Wall within One Side Closed Long Duct”, International Communications in Heat and Mass Transfer, 35: 65–75, (2008).
- [17] Saeid, N.H., “Effect of Oscillating Jet Velocity on the Jet Impingement Cooling of an Isothermal Surface”, Engineering, 1: 133-139, (2009).
- [18] Nada, S.A., “Buoyancy and Cross Flow Effects on Heat Transfer of Multiple Impinging Slot Air Jets Cooling a Flat Plate at Different Orientations”, Heat Mass Transfer, 45:1083–1097, (2009).
- [19] Lee, D.H., Park, H.J. and Ligrani, P., “Milliscale confined impinging slot jets: Laminar Heat Transfer Characteristics for an Isothermal Flat Plate”, International Journal of Heat and Mass Transfer, 55: 2249–2260, (2012).
- [20] Di Lorrenzo, G., Manca, O., Nardini, S. and Ricci D., “Numerical Study of Laminar Confined Impinging Slot Jets with Nanofluids”, Advances in Mechanical Engineering, 248795, 15, (2012).
- [21] Afroz F. and Sharif, M.A.R., “Numerical Study of Heat Transfer from an Isothermally Heated Flat Surface due to Turbulent Twin Oblique Confined Slot-jet Impimgement”, International Journal of Thermal Sciences, 74: 1-13, (2013).
- [22] Yousefi-Lafouraki, B., Ramiar, A. and Ranjbar, A.A., “Laminar Forced Convection of a Confined Slot Impinging Jet in a Converging Channel”, International Journal of Thermal Sciences, 77: 130-138, (2014).
- [23] Al-Rmah, M.A. and Mohamad, A.A., “Simulation of Multi-internal Confined Impinging Jets using the Lattice Boltzmann Method”, Applied Thermal Engineering, 81: 288-296, (2015).
- [24] Lam, P.A.K. and Prakash, K.A., “A Numerical Investigation of Heat Transfer and Entropy Generation During Jet Impingement Cooling of Protruding Heat Sources Without and with Porous Medium”, Energy Conversion and Management, 89: 626–643, (2015).
- [25] Lam, P.A.K. and Prakash, K.A., “Thermodynamic Investigation and Multi-Objective Optimization for Jet Impingement Cooling System with Al2O3/Water Nanofluid”, Energy Conversion and Management, 111: 38–56, (2016).
- [26] Guoneng, L., Zhihua, X., Youqu, Z., Wenwen, G. and Cong D., “Experimental Study on Convective Heat Transfer from a Rectangular Flat Plate by Multiple Impinging Jets in Laminar Cross flows”, International Journal of Thermal Sciences, 108: 123-131, (2016).
- [27] Zhou, T., Xu, D., Chen, J., Cao, C. and Ye, T., “Numerical Analysis of Turbulent Round Jet Impingement Heat Transfer at High Temperature Difference”, Applied Thermal Engineering, 100: 55–61, (2016).
- [28] Goodfriend, E., Chow, F.K., Vanella, M. and Balaras, E., “Large-Eddy Simulation of Flow Through an Array of Cubes with Local Grid Refinement”, Boundary-Layer Meteorology, 159: 285–303, (2016).
- [29] Buonomo, B., Lauriat, G., Manca, O. and Nardini, S., “Numerical Investigation on Laminar Slot-jet Impinging in a Confined Porous Medium in Local Thermal Non-equilibrium”, International Journal of Heat and Mass Transfer, 98: 484–492, (2016).
- [30] Buonomo, B., Manca, O., Nappo, S. and Nardini S., “Numerical Investigation on Laminar Slot-Jet Impinging on a Surface at Uniform Heat Flux in a Channel Partially Filled with a Porous Medium”, Energy Procedia, 148: 790–797, (2018).
- [31] Lam, P.A.K. and Prakash, K.A., “A Numerical Investigation and Design Optimization of Impingement Cooling System with an Array of Air Jets”, International Journal of Heat and Mass Transfer, 108: 880–900, (2017).
- [32] Kılıç, M., “Elektronik Sistemlerin Soğutulmasında Nanoakışkanlar ve Çarpan Jetlerin Müşterek Etkisinin İncelenmesi”, Çukurova Üniversitesi Mühendislik Mimarlık Dergisi, 33: 121-132, (2018).
- [33] McInturff, P., Suzuki, M., Ligrani, P., Nakamata, C. and Lee D.H., “Effects of Hole Shape on Impingement Jet Array Heat Transfer with Small-Scale, Target Surface Triangle Roughness”, International Journal of Heat and Mass Transfer, 127: 585–597, (2018).
- [34] Kashi, B. and Haustein, H.D., “Dependence of Submerged Jet Heat Transfer on Nozzle Length”, International Journal of Heat and Mass Transfer, 121: 137–152, (2018).
- [35] Gurturk, M. and Oztop, H.F., “Cooling of the Heated Circular Porous Disc with a Circular Jet”, Sakarya University Journal of Science, 23: 676-695, (2019).
- [36] Alnak, D.E., Karabulut, K. and Koca, F., “Investigation of heat transfer from heated square patterned surfaces in a rectangular channel with an air jet impingement”, European Journal of Engineering and Natural Sciences, 3: 78-86, (2019).
- [37] Wang, C., Wang, Z., Wang, L., Luo, L. and Sundén B., “Experimental Study of Fluid Flow and Heat Transfer of Jet Impingement in Cross-Flow with a Vortex Generator Pair”, International Journal of Heat and Mass Transfer, 135: 935–949, (2019).
- [38] Paulraj, M.P., Byon, C., Vallati, A. and Parthasarathy, R.K., “A Numerical Investigation of Flow and Heat Transfer of Laminar Multiple Slot Jets Impinging on Multiple Protruding Heat Sources”, Heat Transfer Engineering, 41: 65-83, (2020).
- [39] Kaya, H., “İkili Çarpan Jet ile Soğutulan Sıcak Plakanın Yüzey Şeklinin Isı Transferine Etkisinin Sayısal Analizi”, Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 9: 152-163, (2021).
- [40] Hosseinalipour, S.M., Rashidzadeh, S., Moghimi, M. and Esmailpour, K., “Numerical Study of Laminar Pulsed Impinging Jet on the Metallic Foam Blocks using the Local Thermal Non-Equilibrium Model”, Journal of Thermal Analysis and Calorimetry, 141: 1859–1874, (2020).
- [41] Li, H., Deng, H. and Qui, L., “Effect of Channel Orientation on Heat Transfer in a Rotating Impingement Cooling Channel”, International Journal of Heat and Mass Transfer, 187: 122493, (2022).
[42] Martinez-Filguera, P., Portal-Porras, K., Fernandez-Gamiz, U., Zulueta, E. and Soriano, J., “Experimental and Numerical Modeling of an Air Jet Impingement System”, European Journal of Mechanics-B/Fludis, 94: 228-245, (2022).
- [43] Singh, P.K., Renganathan, M., Yadav, H., Sahu, S.K., Upadhyay, P.K. and Agrawal, A., “An Experimental Investigation of the Flow-Field and Thermal Characteristics of Synthetic Jet Impingement with Different Waveforms”, International Journal of Heat and Mass Transfer, 187: 122534, (2022).
- [44] Albayrak, M., Sarper, B., Birinci, S., Saglam, M. and Aydin, O., “Effect of Surface Radiation on Jet Impingement Cooling of a Concave Surface”, Proceedings of CONV-22: International Symposium on Convective Heat and Mass Transfer, Turkey, June 5 – 10, 512-522, (2022).
- [45] “ANSYS Fluent Release 21 R2 Theory Guide”, Ansys Inc., (2021).
- [46] Sharif, M. A. R., “Heat Transfer from an Isothermally Heated Flat Surface due to Confined Laminar Twin Oblique Slot-Jet Impingement” Journal of Thermal Science and Engineering Applications, 7, 031001, (2015).