Investigation of Wettability Behavior and Surface Topology of PVC Materials Used in Outdoor Applications
Year 2024,
Volume: 27 Issue: 2, 809 - 817, 27.03.2024
Musa Faruk Çakır
,
Mustafa Karhan
,
Fatih Issı
Abstract
The wettability behavior is crucial in determining the materials' applications and durability. To assess the wettability behavior, the measurement of contact angle is utilized. In this study, commercially produced PVC profiles were sampled, and a contact angle measurement system, consisting of both software and hardware, was developed to measure the contact angle of the samples. The contact angle measurements were conducted by placing approximately 20 µl of distilled water on the samples, and each sample was measured six times, with the average being taken. A device for measuring roughness was used to determine the surface roughness of the samples, and the average roughness value was obtained from four different parts of each sample. Additionally, SEM images of each sample were taken to conduct surface and structural analyses. The correlation between roughness, SEM image analysis results, and contact angle was examined in the research study. Moreover, the wettability behavior of PVC materials was analyzed by evaluating the impact of the elements in their structure and their homogeneity on the contact angle values.
Supporting Institution
Çankırı Karatekin University BAP Unit
Project Number
MYO210621B02
Thanks
We would like to thank Çankırı Karatekin University BAP unit for their contribution to this study.
References
- [1] Braun, D., “Poly (vinyl chloride) on the way from the 19th century to the 21st century”, Journal of Polymer Science Part A: Polymer Chemistry, 42(3): 578-586, (2004).
- [2] Gilbert, M., & Patrick, S. Poly (vinyl chloride). Brydson's Plastics Materials, 329-388, (2017).
- [3] Naydenova, P., & Velev, P., “A study of the ınfluence of the composıtıon and the desıgn of polyvınyl chlorıde profıles for doors and wındows on energy effıcıency”, Journal of Chemical Technology & Metallurgy, 49(4): (2014).
- [4] Martins, J. D. N., Freire, E., & Hemadipour, H., “Applications and market of PVC for piping industry”, Polímeros, 19: 58-62, (2009).
- [5] American Water Works Association. PVC Pipe--design and Installation (Vol. 23). American Water Works Association. (2002).
- [6] Soto, I. I., Ramalho, M. A., & Izquierdo, O. S., “Flexible Tpee PUR Coiled Wire Spiral Cable Spring Cables Electric Cable”, Revista IBRACON de Estruturas e Materiais, 6(4): 598-612, (2013).
- [7] Robert, R. J., Hikku, G. S., Jeyasubramanian, K., Jacobjose, J., & Prince, R. M. R., “ZnO nanoparticles impregnated polymer composite as superhydrophobic anti-corrosive coating for Aluminium-6061 alloy”, Materials Research Express, 6(7): 075705, (2019).
- [8] Sancaktar, E., “Classification of adhesive and sealant materials”, In Handbook of Adhesion Technology, (pp. 283-317). Springer, Cham, (2018).
- [9] Skjånes, K., “Material Characteristics and Requirements for Photobiological Hydrogen Production Applications”, Microalgal Hydrogen Production: Achievements and Perspectives, 16: 439, (2018).
- [10] Askeland, D. R., & Wright, W. J., Essentials of materials science and engineering. Cengage Learning. (2018).
- [11] Lieberzeit, P., Bekchanov, D., & Mukhamediev, M., “Polyvinyl chloride modifications, properties, and applications”, Polymers for Advanced Technologies, 33(6): 1809-1820. (2022).
- [12] Skelly, P. W., Li, L., & Braslau, R., “Internal plasticization of PVC”, Polymer Reviews, 62(3): 485-528, (2022).
- [13] Bidoki, S. M., & Wittlinger, R. “Environmental and economical acceptance of polyvinyl chloride (PVC) coating agents”, Journal of cleaner production, 18(3): 219-225, (2010).
- [14] Song, D., & Gupta, R. K., “The use of thermosets in the building and construction industry”, In Thermosets, 165-188, Woodhead Publishing, (2012).
- [15] Hsissou, R., Seghiri, R., Benzekri, Z., Hilali, M., Rafik, M., & Elharfi, A., “Polymer composite materials: A comprehensive revie”, Composite structures, 262:113640, (2021).
- [16] Yang, B., Yang, Y., Huo, Z., & Yu, Y., “Advances in research on aging properties of polyvinyl chloride and polyvinylidene fluoride membranes”, Construction and Building Materials, 367: 130292, (2023).
- [17] Guermazi, N., Haddar, N., Elleuch, K., & Ayedi, H. F., “Effect of filler addition and weathering conditions on the performance of PVC/CaCO3 composites”, Polymer Composites, 37(7): 2171-2183, (2016).
- [18] Thenepalli, T., Jun, A. Y., Han, C., Ramakrishna, C., & Ahn, J. W., “A strategy of precipitated calcium carbonate (CaCO3) fillers for enhancing the mechanical properties of polypropylene polymers”, Korean Journal of Chemical Engineering, 32(6): 1009-1022, (2015).
- [19] Grundke, K., Pöschel, K., Synytska, A., Frenzel, R., Drechsler, A., Nitschke, M., ... & Welzel, P. B., “Experimental studies of contact angle hysteresis phenomena on polymer surfaces—Toward the understanding and control of wettability for different applications”, Advances in colloid and interface science, 222, 350-376, (2015).
- [20] Ozbay, S., Evaluation of polyphenylene sulfide by surface thermodynamics approaches: Comparison with common polymers. Journal of Applied Polymer Science, 139(18), 52082, (2022).
- [21] Karhan, M., Çakır, M. F., & Arslan, Ö., “Investigation of the effect of roughness value on the wettability behavior under electric field in XLPE materials used in medium and high voltage applications”, Electrical Engineering, 103(6): 3225-3238, (2021).
- [22] Dzivy, D., & Pietrikova, A., “Real-time contact angle’s measurement of molten solder balls in laboratory conditions”, Microelectronics International, 39(3): 132-138, (2022).
- [23] A. M. Erer, “Effect of Melting Temperature on Wettability of Sn-Ag-Cu Alloys on Cu Substrate”, Politeknik Dergisi, 21(3): 587–589, (2018).
- [24] Özbay, S., Estimation of the work of adhesion between ITO and polymer substrates: a surface thermodynamics approach. Turkish Journal of Chemistry, 47(1), 68-80, (2023).
- [25] Marmur, A., Della Volpe, C., Siboni, S., Amirfazli, A., & Drelich, J. W., “Contact angles and wettability: Towards common and accurate terminology”, Surface Innovations, 5(1): 3-8, (2017).
- [26] Chen, H., Yuan, Z., Zhang, J., Liu, Y., Li, K., Zhao, D., ... & Tang, J., “Preparation, characterization and wettability of porous superhydrophobic poly (vinyl chloride) surface”, Journal of Porous Materials, 16: 447-451, (2009).
- [27] Wang, J., Wu, Y., Cao, Y., Li, G., & Liao, Y.,” Influence of surface roughness on contact angle hysteresis and spreading work”, Colloid and Polymer Science, 298: 1107-1112, (2020).
- [28] Karhan, M., Çakır, M. F., Arslan, Ö., Fatih, Issı., & Eyüpoğlu, V., “XLPE dielektrik malzemelerde elektrik alanının temas açısına ve damlacık şekline etkisi”, Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 36(3): 1747-1760, (2021).
- [29] Law, K. Y., & Zhao, H., “Surface wetting: characterization, contact angle, and Fundamentals”. Basel, Switzerland: Springer International Publishing, (2016).
- [30] A. M. Erer, “Effect of Melting Temperature on Wettability of Sn-Ag-Cu Alloys on Cu Substrate”, Politeknik Dergisi, 21(3): 587–589, (2018).
- [31] Zhao, T., & Jiang, L., “Contact angle measurement of natural materials”, Colloids and Surfaces B: Biointerfaces, 161: 324-330, (2018).
- [32] Letellier, P., Mayaffre, A., & Turmine, M., “Drop size effect on contact angle explained by nonextensive thermodynamics. Young's equation revisited”, Journal of colloid and interface science, 314(2): 604-614, (2007).
- [33] Cwikel, D., Zhao, Q., Liu, C., Su, X., & Marmur, A., “Comparing contact angle measurements and surface tension assessments of solid surfaces”, Langmuir, 26(19): 15289-15294, (2010).
- [34] Kijlstra, J., Reihs, K., & Klamt, A., “Roughness and topology of ultra-hydrophobic surfaces”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 206(1-3): 521-529, (2002).
- [35] Yao, C. W., Garvin, T. P., Alvarado, J. L., Jacobi, A. M., Jones, B. G., & Marsh, C. P., “Droplet contact angle behavior on a hybrid surface with hydrophobic and hydrophilic properties”, Applied Physics Letters, 101(11), (2012).
- [36] Tavana, H., & Neumann, A. W., “Recent progress in the determination of solid surface tensions from contact angles”, Advances in colloid and interface science, 132(1): 1-32, (2007).
- [37] Yuan, Y., & Lee, T. R., “Contact angle and wetting properties”, In Surface science techniques (pp. 3-34). Springer, Berlin, Heidelberg, (2013).
- [38] Marmur, A., “Wetting on hydrophobic rough surfaces: to be heterogeneous or not to be?”, Langmuir, 19(20): 8343-8348, (2003).
- [39] Parry, V., Berthomé, G., & Joud, J. C., “Wetting properties of gas diffusion layers: Application of the Cassie–Baxter and Wenzel equations”, Applied surface science, 258(15): 5619-5627, (2012).
- [40] Sheng, Y. J., Jiang, S., & Tsao, H. K., “Effects of geometrical characteristics of surface roughness on droplet wetting”, The Journal of chemical physics, 127(23): (2007).
- [41] Crick, C. R., & Parkin, I. P., “Preparation and characterisation of super‐hydrophobic surfaces”, Chemistry–A European Journal, 16(12): 3568-3588, (2010).
- [42] Du, Q., Zhou, P., Pan, Y., Qu, X., Liu, L., Yu, H., & Hou, J., “Influence of hydrophobicity and roughness on the wetting and flow resistance of water droplets on solid surface: A many-body dissipative particle dynamics study”, Chemical Engineering Science, 249: 117327, (2022).
- [43] Bhushan, B., & Bhushan, B., “Modeling of Contact Angle for a Liquid in Contact with a Rough Surface for Various Wetting Regimes”, Biomimetics: Bioinspired Hierarchical-Structured Surfaces for Green Science and Technology, 51-80, (2018).
- [44] Huang, X., & Gates, I., “Apparent contact angle around the periphery of a liquid drop on roughened surfaces”, Scientific Reports, 10(1): 8220, (2020).
- [45] Cassie, A. B. D., & Baxter, S., “Wettability of porous surfaces”. Transactions of the Faraday society, 40: 546-551, (1944).
- [46] Ellison, A. H., & Zisman, W. A., Wettability of halogenated organic solid surfaces. The Journal of Physical Chemistry, 58(3), 260-265, (1954).
Dış Mekan Uygulamalarında Kullanılan PVC Malzemelerin Islanabilirlik Davranışının ve Yüzey Topolojisinin İncelenmesi
Year 2024,
Volume: 27 Issue: 2, 809 - 817, 27.03.2024
Musa Faruk Çakır
,
Mustafa Karhan
,
Fatih Issı
Abstract
Islanabilirlik davranışı malzemelerin kullanım alanlarının ve servis ömrünün belirlenmesinde önemli bir parametredir. Islanabilirlik davranışını belirlemek için temas açısı ölçümü kullanılır. Bu çalışma kapsamında ticari olarak üretilen PVC profillerden numuneler alınmıştır. Numunelerin temas açısı ölçümlerinin yapılabilmesi için yazılım ve donanımdan oluşan temas açısı ölçüm sistemi geliştirilmiştir. Numunelerin üzerine yaklaşık 20 µl distile su damlatılarak temas açısı ölçümleri yapıldı. Her numune için 6 kez temas açısı ölçümü yapılarak ortalaması alındı. Numunelerin yüzey pürüzlülüğü pürüzlülük ölçüm cihazı ile ölçülmüştür. Numunelerin farklı yerlerinden 4 kez pürüzlülük ölçümleri yapılarak ortalama pürüzlülük değeri elde edildi. Ayrıca her bir numunenin SEM görüntüleri alınarak yüzey ve yapısal analizleri yapılmıştır. Sonuç olarak temas açısı, pürüzlülük ve SEM görüntü analiz sonuçları arasındaki ilişki araştırıldı. Ayrıca PVC malzemelerin yapısındaki elementlerin ve homojenlik yapısının temas açısı değerlerine etkisi değerlendirilerek PVC malzemelerin ıslanabilirlik davranışı yorumlanmıştır.
Supporting Institution
Çankırı Karatekin Üniversitesi BAP Birimi
Project Number
MYO210621B02
Thanks
Bu çalışmada katkılarından dolayı Çankırı Karatekin Üniversitesi BAP birimine teşekkür ederiz
References
- [1] Braun, D., “Poly (vinyl chloride) on the way from the 19th century to the 21st century”, Journal of Polymer Science Part A: Polymer Chemistry, 42(3): 578-586, (2004).
- [2] Gilbert, M., & Patrick, S. Poly (vinyl chloride). Brydson's Plastics Materials, 329-388, (2017).
- [3] Naydenova, P., & Velev, P., “A study of the ınfluence of the composıtıon and the desıgn of polyvınyl chlorıde profıles for doors and wındows on energy effıcıency”, Journal of Chemical Technology & Metallurgy, 49(4): (2014).
- [4] Martins, J. D. N., Freire, E., & Hemadipour, H., “Applications and market of PVC for piping industry”, Polímeros, 19: 58-62, (2009).
- [5] American Water Works Association. PVC Pipe--design and Installation (Vol. 23). American Water Works Association. (2002).
- [6] Soto, I. I., Ramalho, M. A., & Izquierdo, O. S., “Flexible Tpee PUR Coiled Wire Spiral Cable Spring Cables Electric Cable”, Revista IBRACON de Estruturas e Materiais, 6(4): 598-612, (2013).
- [7] Robert, R. J., Hikku, G. S., Jeyasubramanian, K., Jacobjose, J., & Prince, R. M. R., “ZnO nanoparticles impregnated polymer composite as superhydrophobic anti-corrosive coating for Aluminium-6061 alloy”, Materials Research Express, 6(7): 075705, (2019).
- [8] Sancaktar, E., “Classification of adhesive and sealant materials”, In Handbook of Adhesion Technology, (pp. 283-317). Springer, Cham, (2018).
- [9] Skjånes, K., “Material Characteristics and Requirements for Photobiological Hydrogen Production Applications”, Microalgal Hydrogen Production: Achievements and Perspectives, 16: 439, (2018).
- [10] Askeland, D. R., & Wright, W. J., Essentials of materials science and engineering. Cengage Learning. (2018).
- [11] Lieberzeit, P., Bekchanov, D., & Mukhamediev, M., “Polyvinyl chloride modifications, properties, and applications”, Polymers for Advanced Technologies, 33(6): 1809-1820. (2022).
- [12] Skelly, P. W., Li, L., & Braslau, R., “Internal plasticization of PVC”, Polymer Reviews, 62(3): 485-528, (2022).
- [13] Bidoki, S. M., & Wittlinger, R. “Environmental and economical acceptance of polyvinyl chloride (PVC) coating agents”, Journal of cleaner production, 18(3): 219-225, (2010).
- [14] Song, D., & Gupta, R. K., “The use of thermosets in the building and construction industry”, In Thermosets, 165-188, Woodhead Publishing, (2012).
- [15] Hsissou, R., Seghiri, R., Benzekri, Z., Hilali, M., Rafik, M., & Elharfi, A., “Polymer composite materials: A comprehensive revie”, Composite structures, 262:113640, (2021).
- [16] Yang, B., Yang, Y., Huo, Z., & Yu, Y., “Advances in research on aging properties of polyvinyl chloride and polyvinylidene fluoride membranes”, Construction and Building Materials, 367: 130292, (2023).
- [17] Guermazi, N., Haddar, N., Elleuch, K., & Ayedi, H. F., “Effect of filler addition and weathering conditions on the performance of PVC/CaCO3 composites”, Polymer Composites, 37(7): 2171-2183, (2016).
- [18] Thenepalli, T., Jun, A. Y., Han, C., Ramakrishna, C., & Ahn, J. W., “A strategy of precipitated calcium carbonate (CaCO3) fillers for enhancing the mechanical properties of polypropylene polymers”, Korean Journal of Chemical Engineering, 32(6): 1009-1022, (2015).
- [19] Grundke, K., Pöschel, K., Synytska, A., Frenzel, R., Drechsler, A., Nitschke, M., ... & Welzel, P. B., “Experimental studies of contact angle hysteresis phenomena on polymer surfaces—Toward the understanding and control of wettability for different applications”, Advances in colloid and interface science, 222, 350-376, (2015).
- [20] Ozbay, S., Evaluation of polyphenylene sulfide by surface thermodynamics approaches: Comparison with common polymers. Journal of Applied Polymer Science, 139(18), 52082, (2022).
- [21] Karhan, M., Çakır, M. F., & Arslan, Ö., “Investigation of the effect of roughness value on the wettability behavior under electric field in XLPE materials used in medium and high voltage applications”, Electrical Engineering, 103(6): 3225-3238, (2021).
- [22] Dzivy, D., & Pietrikova, A., “Real-time contact angle’s measurement of molten solder balls in laboratory conditions”, Microelectronics International, 39(3): 132-138, (2022).
- [23] A. M. Erer, “Effect of Melting Temperature on Wettability of Sn-Ag-Cu Alloys on Cu Substrate”, Politeknik Dergisi, 21(3): 587–589, (2018).
- [24] Özbay, S., Estimation of the work of adhesion between ITO and polymer substrates: a surface thermodynamics approach. Turkish Journal of Chemistry, 47(1), 68-80, (2023).
- [25] Marmur, A., Della Volpe, C., Siboni, S., Amirfazli, A., & Drelich, J. W., “Contact angles and wettability: Towards common and accurate terminology”, Surface Innovations, 5(1): 3-8, (2017).
- [26] Chen, H., Yuan, Z., Zhang, J., Liu, Y., Li, K., Zhao, D., ... & Tang, J., “Preparation, characterization and wettability of porous superhydrophobic poly (vinyl chloride) surface”, Journal of Porous Materials, 16: 447-451, (2009).
- [27] Wang, J., Wu, Y., Cao, Y., Li, G., & Liao, Y.,” Influence of surface roughness on contact angle hysteresis and spreading work”, Colloid and Polymer Science, 298: 1107-1112, (2020).
- [28] Karhan, M., Çakır, M. F., Arslan, Ö., Fatih, Issı., & Eyüpoğlu, V., “XLPE dielektrik malzemelerde elektrik alanının temas açısına ve damlacık şekline etkisi”, Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 36(3): 1747-1760, (2021).
- [29] Law, K. Y., & Zhao, H., “Surface wetting: characterization, contact angle, and Fundamentals”. Basel, Switzerland: Springer International Publishing, (2016).
- [30] A. M. Erer, “Effect of Melting Temperature on Wettability of Sn-Ag-Cu Alloys on Cu Substrate”, Politeknik Dergisi, 21(3): 587–589, (2018).
- [31] Zhao, T., & Jiang, L., “Contact angle measurement of natural materials”, Colloids and Surfaces B: Biointerfaces, 161: 324-330, (2018).
- [32] Letellier, P., Mayaffre, A., & Turmine, M., “Drop size effect on contact angle explained by nonextensive thermodynamics. Young's equation revisited”, Journal of colloid and interface science, 314(2): 604-614, (2007).
- [33] Cwikel, D., Zhao, Q., Liu, C., Su, X., & Marmur, A., “Comparing contact angle measurements and surface tension assessments of solid surfaces”, Langmuir, 26(19): 15289-15294, (2010).
- [34] Kijlstra, J., Reihs, K., & Klamt, A., “Roughness and topology of ultra-hydrophobic surfaces”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 206(1-3): 521-529, (2002).
- [35] Yao, C. W., Garvin, T. P., Alvarado, J. L., Jacobi, A. M., Jones, B. G., & Marsh, C. P., “Droplet contact angle behavior on a hybrid surface with hydrophobic and hydrophilic properties”, Applied Physics Letters, 101(11), (2012).
- [36] Tavana, H., & Neumann, A. W., “Recent progress in the determination of solid surface tensions from contact angles”, Advances in colloid and interface science, 132(1): 1-32, (2007).
- [37] Yuan, Y., & Lee, T. R., “Contact angle and wetting properties”, In Surface science techniques (pp. 3-34). Springer, Berlin, Heidelberg, (2013).
- [38] Marmur, A., “Wetting on hydrophobic rough surfaces: to be heterogeneous or not to be?”, Langmuir, 19(20): 8343-8348, (2003).
- [39] Parry, V., Berthomé, G., & Joud, J. C., “Wetting properties of gas diffusion layers: Application of the Cassie–Baxter and Wenzel equations”, Applied surface science, 258(15): 5619-5627, (2012).
- [40] Sheng, Y. J., Jiang, S., & Tsao, H. K., “Effects of geometrical characteristics of surface roughness on droplet wetting”, The Journal of chemical physics, 127(23): (2007).
- [41] Crick, C. R., & Parkin, I. P., “Preparation and characterisation of super‐hydrophobic surfaces”, Chemistry–A European Journal, 16(12): 3568-3588, (2010).
- [42] Du, Q., Zhou, P., Pan, Y., Qu, X., Liu, L., Yu, H., & Hou, J., “Influence of hydrophobicity and roughness on the wetting and flow resistance of water droplets on solid surface: A many-body dissipative particle dynamics study”, Chemical Engineering Science, 249: 117327, (2022).
- [43] Bhushan, B., & Bhushan, B., “Modeling of Contact Angle for a Liquid in Contact with a Rough Surface for Various Wetting Regimes”, Biomimetics: Bioinspired Hierarchical-Structured Surfaces for Green Science and Technology, 51-80, (2018).
- [44] Huang, X., & Gates, I., “Apparent contact angle around the periphery of a liquid drop on roughened surfaces”, Scientific Reports, 10(1): 8220, (2020).
- [45] Cassie, A. B. D., & Baxter, S., “Wettability of porous surfaces”. Transactions of the Faraday society, 40: 546-551, (1944).
- [46] Ellison, A. H., & Zisman, W. A., Wettability of halogenated organic solid surfaces. The Journal of Physical Chemistry, 58(3), 260-265, (1954).