Research Article
BibTex RIS Cite

Kalıcı Mıknatıslı Vernier Makinaların Parametrik Analizi

Year 2024, Volume: 27 Issue: 3, 1169 - 1188, 25.07.2024
https://doi.org/10.2339/politeknik.1183354

Abstract

Bu çalışmada; dış rotorlu ve yüzeye monte mıknatıslara sahip bir Vernier makinanın tüm geometrik parametrelerinin performans karakteristiklerine olan etkisi detaylı bir şekilde incelenmiştir. Bu çalışmanın amacı, düşük hız yüksek moment uygulamalarında kullanılan Kalıcı Mıknatıslı Vernier makinalar (KMVM) için mıknatıs, diş ve diş açıklığı kalınlık ve genişlikleri, hava aralığı genişliği, rotor dış çaplarının iç çapına oranı (bölünme oranı), şaft çapı gibi temel tasarım parametrelerinin moment, moment dalgalılığı, verim ve zıt EMK’ya olan etkisi inceleyerek genel bir tasarım kılavuzu geliştirmektir. KMVM’ların tasarım ve çalışma prensibi kısaca anlatılmış ve düşük moment dalgalılığına karşın yüksek moment veren oluk/kutup kombinasyonun nasıl seçilmesi gerektiği üzerinde durulmuştur. Akabinde, tasarım parametreleri tanıtılmış ve makinanın küçük güçlü rüzgâr türbini uygulamalarında kullanılacağı düşünülerek, her geometrik parametrenin moment ve verimin yanı sıra, terminal gerilimi hakkında detaylı bilgi veren zıt EMK dalga biçimi de parametrik olarak analiz edilmiştir. Moment, verim ve endüklenen gerilimi en çok etkileyen geometrik tasarım parametreleri belirlenmiş ve parametrik olarak en iyi tasarım elde edilmiştir. Analizler zaman adımlı, doğrusal olmayan, iki boyutlu sonlu elemanlar yöntemi (SEY) tabanlı bir program ile gerçekleştirilmiştir.

References

  • [1] Lee, C. H., ''Vernier motor and its design'', IEEE Transactions on Power Apparatus and Systems, 82 (66): 343–349, (1963).
  • [2] Ishizaki, A., Tanaka, T., Takahashi, K., Nishikata, S., ''Theory and optimum design of PM vernier motor'', Seventh International Conference on Electrical Machines and Drives, 208–212, (1995).
  • [3] Atallah, K., Howe, D., ''A novel high-performance magnetic gear'', IEEE Transactions on Magnetics, 37 (4): 2844-2846, (2001).
  • [4] Toba, A., ve Lipo, T., ''Generic torque-maximizing design methodology of surface permanent-magnet vernier machine'', IEEE Transactions on Industry Applications, 36 (6): 1539–1546, (2000).
  • [5] Niu, S., Ho, S. L., Fu, W. N., Wang, L. L., ''Quantitative comparison of novel vernier permanent magnet machines'', IEEE Transactions on Magnetics, 46 (6): 2032–2035, (2010).
  • [6] Li, D., Qu, R., Li, J., Xu, W., ''Design of consequent pole, toroidal winding, outer rotor vernier permanent magnet machines'', IEEE Energy Conversion Congress and Exposition, 2342–2349, (2014).
  • [7] Qu, R., Li, D., Wang, J., ''Relationship between magnetic gears and vernier machines'', International Conference on Electrical Machines and Systems, 1–6, (2011).
  • [8] Gerber, S., ve Wang, R. J., ''Design and evaluation of a magnetically geared pm machine'', IEEE Transactions on Magnetics, 51 (8): 1–10, (2015).
  • [9] Li, D., ve Qu, R., ''Sinusoidal back-emf of vernier permanent magnet machines'', International Conference on Electrical Machines and Systems, 1–6, (2012).
  • [10] Jian, L., Xu, G., Mi, C. C., Chau, K. T., Chan, C.C., ''Analytical method for magnetic field calculation in a low-speed permanent-magnet harmonic machine'', IEEE Transactions on Energy Conversion, 26 (3): 862–870, (2011).
  • [11] Fu, W., ve Ho, S., ''A quantitative comparative analysis of a novel flux-modulated permanent-magnet motor for low-speed drive'', IEEE Transactions on Magnetics, 46 (1): 127–134, (2009).
  • [12] Yang, J., vd., ''Quantitative comparison for fractional-slot concentrated-winding configurations of permanent-magnet vernier machines'', IEEE Transactions on Magnetics, 49 (7): 3826–3829, (2013).
  • [13] Zhu, Z., ve Liu, Y., ''Analysis of air-gap field modulation and magnetic gearing effect in fractional-slot concentrated-winding permanent-magnet synchronous machines'', IEEE Transactions on Industrial Electronics, 65 (5): 3688–3698, (2018).
  • [14] Xu, L., vd., ''Quantitative comparison of integral and fractional slot permanent magnet vernier motors'', IEEE Transactions on Energy Conversion, 30 (4): 1483–1495, (2015).
  • [15] Li, D., vd., ''Analysis of torque capability and quality in vernier permanent-magnet machines'', IEEE Transactions on Industry Applications, 52 (1): 125–135, (2016).
  • [16] Liu, C., Chau, K. T., Zhong, J., W., Li, Li, F., ''Quantitative comparison of double-stator permanent magnet vernier machines with and without hts bulks'' IEEE Transactions on Applied Superconductivity, 22 (3): 5202405–5202405, (2012).
  • [17] Liu, C., ''Emerging electric machines and drives—an overview'', IEEE Transactions on Energy Conversion, 33 (4): 2270–2280, (2018).
  • [18] Liu, G., Fan, X., Zhao, W., Xu, L., Chen, Q., ''Analysis of magnet material effects on performances of fault-tolerant pm vernier machines'', IEEE Transactions on Applied Superconductivity, 26 (7): 1–5, (2016).
  • [19] Li, G. L., ve Zhu, Z. Q., ''Analytical modeling of modular and unequal tooth width surface-mounted permanent magnet machines'', IEEE Transactions on Magnetics, 51 (9): 1–9, (2015).
  • [20] Song, Z., Pei, Y., Li, Y., Li, S., Chai, F., ''Analysis of vibration in modular fault-tolerant pmsm under one-phase open-circuit fault'', International Conference on Electrical Machines, 2565–2571, (2018).
  • [21] Song, Z., Yu, Y., Chai, F., Tang, Y., ''Radial force and vibration calculation for modular permanent magnet synchronous machine with symmetrical and asymmetrical open-circuit faults'', IEEE Transactions on Magnetics, 54 (11): 1–5, (2018).
  • [22] Li, D., Qu, R., Xu, W., Li, J., Lipo, T. A., ''Design procedure of dual-stator spoke-array vernier permanent-magnet machines'', IEEE Transactions on Industry Applications, 51 (4): 2972–2983, (2015).
  • [23] Öner, Y., Zhu, Z. Q., Chu, W., ''Comparative study of vernier and interior pm machines for automotive application'', IEEE Vehicle Power and Propulsion Conference, 1–6, (2016).
  • [24] Du, Z. S., ve Lipo, T. A., 2017. ''Torque performance comparison between a ferrite magnet vernier motor and an industrial interior permanent magnet machine'', IEEE Transactions on Industry Applications, 53 (3): 2088–2097, (2017).
  • [25] Liu, G., Yang, J., Zhao, W., Ji, J., Chen, Q., Gong, W., ''Design and analysis of a new fault-tolerant permanent-magnet vernier machine for electric vehicles'', IEEE Transactions on Magnetics, 48 (11): 4176–4179, (2012).
  • [26] Sui, Y., vd., ''A novel five-phase fault-tolerant modular in-wheel permanent-magnet synchronous machine for electric vehicles'', Journal of Applied Physics, 117, (2015).
  • [27] Fan, X., vd., ''Influence of magnet materials on performances of fault-tolerant permanent-magnet vernier machines'', IEEE International Conference on Applied Superconductivity and Electromagnetic Devices (ASEMD), 135–136, (2015).
  • [28] Kwon, H. S., Ro, J. S., Jung, H. K., ''Influence of a rotor eddy current on performance of a vernier permanent-magnet machine'', International Conference on Electrical Machines and Systems, 2822–2825, (2018).
  • [29] Moldovan, D. V., Jurca, F. N., Marţiş, C. S., Minciunescu, P., Vărăticeanu, B., ''The influence of permanent magnets' position in the double stator vernier machine's performances'', Electric Vehicles International Conference, 1–5, (2019).
  • [30] Liu, G., Sui, Y., Liu, J., Wang, M., Yang, L., Zheng, P., ''Comparison of vernier machines with different rotor pm configurations'', International Conference on Electrical Machines and Systems, 1–4, (2019).
  • [31] Wu, L., Qu, R., Li, D., Gao, Y., ''Influence of pole ratio and winding pole numbers on performance and optimal design parameters of surface permanent-magnet vernier machines'', IEEE Transactions on Industry Applications, 51 (5): 3707–3715, (2015).
  • [32] Li, H., Zhu, Z. Q. Liu, Y., ''Optimal number of flux modulation pole in vernier permanent magnet synchronous machines'', IEEE Transactions on Industry Applications, 55 (6): 5747–5757, (2019).
  • [33] Xu, L., Zhao, W., Wu, M., Ji, J., ''Investigation of slot–pole combination of dual-permanent-magnet-excited vernier machines by using air-gap field modulation theory'', IEEE Transactions on Transportation Electrification, 5 (4): 1360–1369, (2019).
  • [34] Ren, X., Li, D., Qu, R., Yu, Z., Gao, Y., ''Investigation of spoke array permanent magnet vernier machine with alternate flux bridges'', IEEE Transactions on Energy Conversion, 33 (4): 2112–2121, (2018).
  • [35] Li, D., Qu, R., Lipo, T., ''High power factor vernier permanent magnet machines'', IEEE Transactions on Industry Applications, 50 (6): 3664–3674, (2014).
  • [36] Zhang, J., vd., ''Quantitative design of a high performance permanent magnet vernier generator'', IEEE Transactions on Magnetics, 53 (11): 1–4, (2017).
  • [37] Zhao, X., Niu, S., Fu, W., ''Torque component quantification and design guideline for dual permanent magnet vernier machine'', IEEE Transactions on Magnetics, vol. 55 (6) 1–5, (2019).
  • [38] Kim, B., Lipo, T. A., ''Operation and design principles of a pm vernier motor'', IEEE Transactions on Industry Applications, 50 (6): 3656–3663, (2014).
  • [39] Kim, B., Lipo, T. A., ''Design of a surface PM vernier motor for a practical variable speed application'', IEEE Energy Conversion Congress and Exposition, 776–783, (2015).
  • [40] Wang, Q., Niu, S., ''Overview of flux-controllable machines: electrically excited machines, hybrid excited machines and memory machines'',Renewable and Sustainable Energy Reviews, 68 (1): 475–491, (2017).
  • [41] IEC Standarts, IEC 60034-30-1:2014 Rotating electrical machines - Part 30-1: Efficiency classes of line operated AC motors (IE code).
  • [42] Moreira, J. C., Lipo, T. A., "Modeling of saturated ac machines including air gap flux harmonic components", IEEE Transactions on Industry Applications, 28 (2): 343–349, (1992).
  • [43] Gundogdu, T., Zhu, Z. Q., Mipo, J. C., "Influence of stator slot and pole number combination on rotor bar current waveform and performance of induction machines", International Conference on Electrical Machines and Systems, 1–6, (2017).
  • [44] Gundogdu, T., Zhu, Z. Q., Mipo, J. C., Farah, P., "Influence of magnetic saturation on rotor bar current waveform and performance in induction machines", International Conference on Electrical Machines, 391–397, (2016).
  • [45] Xu, L., vd., "Quantitative comparison of integral and fractional slot permanent magnet vernier motors", IEEE Transactions on Energy Conversion, 30 (4): 1483–1495, (2015).
  • [46] Xu, L., Liu, G., Zhao, W., Ji, J., Fan, X., "High-performance fault tolerant halbach permanent magnet vernier machines for safety-critical applications", IEEE Transactions on Magnetics, 52 (7): 1–4, (2016).
  • [47] Zhao, W., Sun, X., Ji, J., Liu, G., "Design and analysis of new vernier permanent-magnet machine with improved torque capability", IEEE Transactions on Applied Superconductivity, 26 (4): 1–5, (2016).
  • [48] Bianchi, N. Fornasiero, E., "Impact of MMF space harmonic on rotor losses in fractional-slot permanent-magnet machines," IEEE Transactions on Energy Conversion, 24 (2): 323-328, (2009)
  • [49] Gundogdu, T, Komurgoz, G., "Investigation of winding MMF harmonic reduction methods in IPM machines equipped with FSCWs". International Transactions on Electrical Energy Systems, 29 (e2688): 1-27, (2019).

Parametric Analysis of Permanent Magnet Vernier Machines

Year 2024, Volume: 27 Issue: 3, 1169 - 1188, 25.07.2024
https://doi.org/10.2339/politeknik.1183354

Abstract

In this study, the effect of key geometrical parameters on the performance of a Vernier machine with outer rotor and surface mounted magnets has been studied in detail. The aim of this study is to develop a general design guideline by examining the influence of basic design parameters such as magnet, tooth and tooth tip dimensions, air gap width, ratio of rotor outer diameter to inner diameter (split ratio), shaft diameter, etc. on the torque, torque ripple, efficiency and induced voltage for permanent magnet Vernier machines (PMVMs) used in low speed and high torque applications, such as wind turbine. The design and working principle of the PMVMs is briefly explained and it is emphasized how to choose the slot/pole combination that provides high torque despite low torque ripple. Afterwards, the design parameters are introduced and the waveform of back-EMF, which gives detailed information about the terminal voltage of each geometric parameter as well as the torque and efficiency, is parametrically analyzed. The most dominant geometric design parameters affecting the torque, efficiency and back-EMF were determined and the best design was obtained parametrically. Analyses were performed with a time-stepped, non-linear, two-dimensional finite element method (FEM) based program.

References

  • [1] Lee, C. H., ''Vernier motor and its design'', IEEE Transactions on Power Apparatus and Systems, 82 (66): 343–349, (1963).
  • [2] Ishizaki, A., Tanaka, T., Takahashi, K., Nishikata, S., ''Theory and optimum design of PM vernier motor'', Seventh International Conference on Electrical Machines and Drives, 208–212, (1995).
  • [3] Atallah, K., Howe, D., ''A novel high-performance magnetic gear'', IEEE Transactions on Magnetics, 37 (4): 2844-2846, (2001).
  • [4] Toba, A., ve Lipo, T., ''Generic torque-maximizing design methodology of surface permanent-magnet vernier machine'', IEEE Transactions on Industry Applications, 36 (6): 1539–1546, (2000).
  • [5] Niu, S., Ho, S. L., Fu, W. N., Wang, L. L., ''Quantitative comparison of novel vernier permanent magnet machines'', IEEE Transactions on Magnetics, 46 (6): 2032–2035, (2010).
  • [6] Li, D., Qu, R., Li, J., Xu, W., ''Design of consequent pole, toroidal winding, outer rotor vernier permanent magnet machines'', IEEE Energy Conversion Congress and Exposition, 2342–2349, (2014).
  • [7] Qu, R., Li, D., Wang, J., ''Relationship between magnetic gears and vernier machines'', International Conference on Electrical Machines and Systems, 1–6, (2011).
  • [8] Gerber, S., ve Wang, R. J., ''Design and evaluation of a magnetically geared pm machine'', IEEE Transactions on Magnetics, 51 (8): 1–10, (2015).
  • [9] Li, D., ve Qu, R., ''Sinusoidal back-emf of vernier permanent magnet machines'', International Conference on Electrical Machines and Systems, 1–6, (2012).
  • [10] Jian, L., Xu, G., Mi, C. C., Chau, K. T., Chan, C.C., ''Analytical method for magnetic field calculation in a low-speed permanent-magnet harmonic machine'', IEEE Transactions on Energy Conversion, 26 (3): 862–870, (2011).
  • [11] Fu, W., ve Ho, S., ''A quantitative comparative analysis of a novel flux-modulated permanent-magnet motor for low-speed drive'', IEEE Transactions on Magnetics, 46 (1): 127–134, (2009).
  • [12] Yang, J., vd., ''Quantitative comparison for fractional-slot concentrated-winding configurations of permanent-magnet vernier machines'', IEEE Transactions on Magnetics, 49 (7): 3826–3829, (2013).
  • [13] Zhu, Z., ve Liu, Y., ''Analysis of air-gap field modulation and magnetic gearing effect in fractional-slot concentrated-winding permanent-magnet synchronous machines'', IEEE Transactions on Industrial Electronics, 65 (5): 3688–3698, (2018).
  • [14] Xu, L., vd., ''Quantitative comparison of integral and fractional slot permanent magnet vernier motors'', IEEE Transactions on Energy Conversion, 30 (4): 1483–1495, (2015).
  • [15] Li, D., vd., ''Analysis of torque capability and quality in vernier permanent-magnet machines'', IEEE Transactions on Industry Applications, 52 (1): 125–135, (2016).
  • [16] Liu, C., Chau, K. T., Zhong, J., W., Li, Li, F., ''Quantitative comparison of double-stator permanent magnet vernier machines with and without hts bulks'' IEEE Transactions on Applied Superconductivity, 22 (3): 5202405–5202405, (2012).
  • [17] Liu, C., ''Emerging electric machines and drives—an overview'', IEEE Transactions on Energy Conversion, 33 (4): 2270–2280, (2018).
  • [18] Liu, G., Fan, X., Zhao, W., Xu, L., Chen, Q., ''Analysis of magnet material effects on performances of fault-tolerant pm vernier machines'', IEEE Transactions on Applied Superconductivity, 26 (7): 1–5, (2016).
  • [19] Li, G. L., ve Zhu, Z. Q., ''Analytical modeling of modular and unequal tooth width surface-mounted permanent magnet machines'', IEEE Transactions on Magnetics, 51 (9): 1–9, (2015).
  • [20] Song, Z., Pei, Y., Li, Y., Li, S., Chai, F., ''Analysis of vibration in modular fault-tolerant pmsm under one-phase open-circuit fault'', International Conference on Electrical Machines, 2565–2571, (2018).
  • [21] Song, Z., Yu, Y., Chai, F., Tang, Y., ''Radial force and vibration calculation for modular permanent magnet synchronous machine with symmetrical and asymmetrical open-circuit faults'', IEEE Transactions on Magnetics, 54 (11): 1–5, (2018).
  • [22] Li, D., Qu, R., Xu, W., Li, J., Lipo, T. A., ''Design procedure of dual-stator spoke-array vernier permanent-magnet machines'', IEEE Transactions on Industry Applications, 51 (4): 2972–2983, (2015).
  • [23] Öner, Y., Zhu, Z. Q., Chu, W., ''Comparative study of vernier and interior pm machines for automotive application'', IEEE Vehicle Power and Propulsion Conference, 1–6, (2016).
  • [24] Du, Z. S., ve Lipo, T. A., 2017. ''Torque performance comparison between a ferrite magnet vernier motor and an industrial interior permanent magnet machine'', IEEE Transactions on Industry Applications, 53 (3): 2088–2097, (2017).
  • [25] Liu, G., Yang, J., Zhao, W., Ji, J., Chen, Q., Gong, W., ''Design and analysis of a new fault-tolerant permanent-magnet vernier machine for electric vehicles'', IEEE Transactions on Magnetics, 48 (11): 4176–4179, (2012).
  • [26] Sui, Y., vd., ''A novel five-phase fault-tolerant modular in-wheel permanent-magnet synchronous machine for electric vehicles'', Journal of Applied Physics, 117, (2015).
  • [27] Fan, X., vd., ''Influence of magnet materials on performances of fault-tolerant permanent-magnet vernier machines'', IEEE International Conference on Applied Superconductivity and Electromagnetic Devices (ASEMD), 135–136, (2015).
  • [28] Kwon, H. S., Ro, J. S., Jung, H. K., ''Influence of a rotor eddy current on performance of a vernier permanent-magnet machine'', International Conference on Electrical Machines and Systems, 2822–2825, (2018).
  • [29] Moldovan, D. V., Jurca, F. N., Marţiş, C. S., Minciunescu, P., Vărăticeanu, B., ''The influence of permanent magnets' position in the double stator vernier machine's performances'', Electric Vehicles International Conference, 1–5, (2019).
  • [30] Liu, G., Sui, Y., Liu, J., Wang, M., Yang, L., Zheng, P., ''Comparison of vernier machines with different rotor pm configurations'', International Conference on Electrical Machines and Systems, 1–4, (2019).
  • [31] Wu, L., Qu, R., Li, D., Gao, Y., ''Influence of pole ratio and winding pole numbers on performance and optimal design parameters of surface permanent-magnet vernier machines'', IEEE Transactions on Industry Applications, 51 (5): 3707–3715, (2015).
  • [32] Li, H., Zhu, Z. Q. Liu, Y., ''Optimal number of flux modulation pole in vernier permanent magnet synchronous machines'', IEEE Transactions on Industry Applications, 55 (6): 5747–5757, (2019).
  • [33] Xu, L., Zhao, W., Wu, M., Ji, J., ''Investigation of slot–pole combination of dual-permanent-magnet-excited vernier machines by using air-gap field modulation theory'', IEEE Transactions on Transportation Electrification, 5 (4): 1360–1369, (2019).
  • [34] Ren, X., Li, D., Qu, R., Yu, Z., Gao, Y., ''Investigation of spoke array permanent magnet vernier machine with alternate flux bridges'', IEEE Transactions on Energy Conversion, 33 (4): 2112–2121, (2018).
  • [35] Li, D., Qu, R., Lipo, T., ''High power factor vernier permanent magnet machines'', IEEE Transactions on Industry Applications, 50 (6): 3664–3674, (2014).
  • [36] Zhang, J., vd., ''Quantitative design of a high performance permanent magnet vernier generator'', IEEE Transactions on Magnetics, 53 (11): 1–4, (2017).
  • [37] Zhao, X., Niu, S., Fu, W., ''Torque component quantification and design guideline for dual permanent magnet vernier machine'', IEEE Transactions on Magnetics, vol. 55 (6) 1–5, (2019).
  • [38] Kim, B., Lipo, T. A., ''Operation and design principles of a pm vernier motor'', IEEE Transactions on Industry Applications, 50 (6): 3656–3663, (2014).
  • [39] Kim, B., Lipo, T. A., ''Design of a surface PM vernier motor for a practical variable speed application'', IEEE Energy Conversion Congress and Exposition, 776–783, (2015).
  • [40] Wang, Q., Niu, S., ''Overview of flux-controllable machines: electrically excited machines, hybrid excited machines and memory machines'',Renewable and Sustainable Energy Reviews, 68 (1): 475–491, (2017).
  • [41] IEC Standarts, IEC 60034-30-1:2014 Rotating electrical machines - Part 30-1: Efficiency classes of line operated AC motors (IE code).
  • [42] Moreira, J. C., Lipo, T. A., "Modeling of saturated ac machines including air gap flux harmonic components", IEEE Transactions on Industry Applications, 28 (2): 343–349, (1992).
  • [43] Gundogdu, T., Zhu, Z. Q., Mipo, J. C., "Influence of stator slot and pole number combination on rotor bar current waveform and performance of induction machines", International Conference on Electrical Machines and Systems, 1–6, (2017).
  • [44] Gundogdu, T., Zhu, Z. Q., Mipo, J. C., Farah, P., "Influence of magnetic saturation on rotor bar current waveform and performance in induction machines", International Conference on Electrical Machines, 391–397, (2016).
  • [45] Xu, L., vd., "Quantitative comparison of integral and fractional slot permanent magnet vernier motors", IEEE Transactions on Energy Conversion, 30 (4): 1483–1495, (2015).
  • [46] Xu, L., Liu, G., Zhao, W., Ji, J., Fan, X., "High-performance fault tolerant halbach permanent magnet vernier machines for safety-critical applications", IEEE Transactions on Magnetics, 52 (7): 1–4, (2016).
  • [47] Zhao, W., Sun, X., Ji, J., Liu, G., "Design and analysis of new vernier permanent-magnet machine with improved torque capability", IEEE Transactions on Applied Superconductivity, 26 (4): 1–5, (2016).
  • [48] Bianchi, N. Fornasiero, E., "Impact of MMF space harmonic on rotor losses in fractional-slot permanent-magnet machines," IEEE Transactions on Energy Conversion, 24 (2): 323-328, (2009)
  • [49] Gundogdu, T, Komurgoz, G., "Investigation of winding MMF harmonic reduction methods in IPM machines equipped with FSCWs". International Transactions on Electrical Energy Systems, 29 (e2688): 1-27, (2019).
There are 49 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Tayfun Gündoğdu 0000-0002-7150-1860

Early Pub Date June 4, 2023
Publication Date July 25, 2024
Submission Date October 2, 2022
Published in Issue Year 2024 Volume: 27 Issue: 3

Cite

APA Gündoğdu, T. (2024). Kalıcı Mıknatıslı Vernier Makinaların Parametrik Analizi. Politeknik Dergisi, 27(3), 1169-1188. https://doi.org/10.2339/politeknik.1183354
AMA Gündoğdu T. Kalıcı Mıknatıslı Vernier Makinaların Parametrik Analizi. Politeknik Dergisi. July 2024;27(3):1169-1188. doi:10.2339/politeknik.1183354
Chicago Gündoğdu, Tayfun. “Kalıcı Mıknatıslı Vernier Makinaların Parametrik Analizi”. Politeknik Dergisi 27, no. 3 (July 2024): 1169-88. https://doi.org/10.2339/politeknik.1183354.
EndNote Gündoğdu T (July 1, 2024) Kalıcı Mıknatıslı Vernier Makinaların Parametrik Analizi. Politeknik Dergisi 27 3 1169–1188.
IEEE T. Gündoğdu, “Kalıcı Mıknatıslı Vernier Makinaların Parametrik Analizi”, Politeknik Dergisi, vol. 27, no. 3, pp. 1169–1188, 2024, doi: 10.2339/politeknik.1183354.
ISNAD Gündoğdu, Tayfun. “Kalıcı Mıknatıslı Vernier Makinaların Parametrik Analizi”. Politeknik Dergisi 27/3 (July 2024), 1169-1188. https://doi.org/10.2339/politeknik.1183354.
JAMA Gündoğdu T. Kalıcı Mıknatıslı Vernier Makinaların Parametrik Analizi. Politeknik Dergisi. 2024;27:1169–1188.
MLA Gündoğdu, Tayfun. “Kalıcı Mıknatıslı Vernier Makinaların Parametrik Analizi”. Politeknik Dergisi, vol. 27, no. 3, 2024, pp. 1169-88, doi:10.2339/politeknik.1183354.
Vancouver Gündoğdu T. Kalıcı Mıknatıslı Vernier Makinaların Parametrik Analizi. Politeknik Dergisi. 2024;27(3):1169-88.