Research Article
BibTex RIS Cite

Yalıtım Transformatörlerinde Ara-Harmoniklerin Transformatör Nüve Titreşimi Üzerine Etkisi

Year 2024, Volume: 27 Issue: 3, 1147 - 1159, 25.07.2024
https://doi.org/10.2339/politeknik.1206090

Abstract

Ara-harmonikler, güç sistemlerinde doğrusal olmayan yüklerden, asenkron anahtarlamanın yapıldığı anahtarlamalı sürücülerden veya geçici durumda çalışan yüklerdeki hızlı akım değişikliklerinden kaynaklanmaktadır. Böyle çalışma koşulları altındaki transformatör nüvelerinde doymanın meydana gelmesi ve aşırı ısınma gibi problemlerin yanında titreşim seviyelerinin anormal seviyelerde artması gibi mekanik problemler de ortaya çıkmaktadır. Buna karşılık, ara-harmoniklerin yol açtığı titreşimlerdeki anormal artışın incelendiği çalışma sınırlı sayıdadır. Ara-harmoniklerin transformatör nüvesinin titreşimi üzerindeki etkilerini belirlemek amacıyla bu çalışmada bir-fazlı 10 kVA anma gücündeki bir yalıtım transformatörünün nüvesindeki titreşim yer değiştirmesi değerleri çeşitli ara-harmonik frekanslarına sahip uyarımlar altında incelenmiş ve sonuçları karşılaştırılmıştır. Yapılan benzetim çalışmalarında, ara-harmonik frekansına bağlı olarak titreşim harmonik spektrumunda yan-bantlar şeklinde veya çift katları olacak şekilde bileşenler oluştuğu ancak bazı ara-harmonik frekanslarında ise kesirli frekanslarda bileşenlerin ortaya çıkmasına yol açtığı sonucu elde edilmiştir.

References

  • [1] Hanzelka, Z., Bien, A. “Application Note Interharmonics”, Cu0151 AN Interharmonics, Leonardo ENERGY, (2015).
  • [2] Soltani, H.; Davari, P.; Zare, F.; Blaabjerg, F. “Effects of modulation techniques on the input current Interharmonics of adjustable speed drives”, IEEE Trans. Ind. Electron., 65:167–178, (2018).
  • [3] Guo, Q., Wu, J., Jin, H., Peng, C. “An innovative calibration scheme for interharmonic analyzers in power systems under asynchronous sampling”, Energies, 12(121), (2019).
  • [4] Ravindran, V., Busatto, T., Ronnberg, S.K., Meyer, J., Bollen, M. “Time-varying interharmonics in different types of grid-tied PV inverter systems”, IEEE Trans. Power Deliv., 35(2): 483-496, (2020).
  • [5] Kalair, A.; Abas, N.; Kalair, A.R.; Saleem, Z.; Khan, N. “Review of harmonic analysis, modeling and mitigation techniques”, Renew. Sustain. Energy Rev., 78: 1152–1187, (2017).
  • [6] Arranz-Gimon, A., Zorita-Lamadrid, A., Morinigo-Sotelo, D., Duque-Perez, O. “A study of the effects of time aggregation and overlapping within the framework of IEC standards for the measurement of harmonics and interharmonics”, Appl. Sci., 9: 4549; (2019).
  • [7] Buticchi, G., Lorenzani, E. “Detection method of the DC bias in distribution power transformers”, IEEE Transactions on Industrial Electronics, 60(8): 3539-3549, (2013).
  • [8] Baguley, C. A., Madawala, U. K., Carsten, B. “The impact of vibration due to magnetostriction on the core losses of ferrite toroidals under DC bias”, IEEE Transactions on Magnetics, 47(8): 2022-2028, (2011).
  • [9] Yao, X. G., Moses, A. J., Anayi, F. “Normal Flux Distribution in a Three-phase transformer core under sinusoidal and PWM excitation”, IEEE Transactions on Magnetics, 43(6): 2660-2662, (2007).
  • [10] Ramírez-Nino, J., Haro-Hernández, C., Rodriguez-Rodriguez, J. H., Mijarez, R. “Core saturation effects of geomagnetic induced currents in power transformers”, Journal of Applied Research and Technology, 14: 87–92, (2016).
  • [11] Zhang, Y., Wang, J., Sun, X., Bai, B., Xie, D. “Measurement and modeling of anisotropic magnetostriction characteristic of grain-oriented silicon steel sheet under DC bias”, IEEE Transactions on Magnetics, 50(2): 361 – 364, (2014).
  • [12] Wang, J., Gao, C., Duan, X., Mao, K. “Multi-field coupling simulation and experimental study on Transformer vibration caused by DC bias”, Journal of Electrical Engineering Technology, 10(1): 176-187, (2015).
  • [13] Berler Z., Golubev A., Rusov V., Tsvetkov V., “Vibro-Acoustic Method of Transformer Clamping Pressure Monitoring”, In Proceedings of the IEEE International Symposium on Electrical Insulation, Anaheim, CA, USA, 263- 266, (2000).
  • [14] Xiong W., Ji R., “Nonlinear Time Series Analysis of Transformer’s Core Vibration”, The Sixth World Congress on Intelligent Control and Automation 2, Dalian, China, 5493 – 5496, (2006).
  • [15] Munir B. S., Smit J. J., Rinaldi I G. M. R., “Diagnosing Winding and Core Condition of Power Transformer by vibration signal analysis”, International Conference on Condition Monitoring and Diagnosis (CMD), (2012).
  • [16] Wang Y. “Transformer vibration and its application to condition monitoring”, Doktor Tezi, University of Western Australia, School of Mechanical and Chemical Engineering, (2015).
  • [17] He, Q., Fan, C., Yang, G., Li, H., Li, J., Chen, X. “Experimental analysis of transformer core vibration and noise under inter-harmonic excitation”, Appl. Sci., 12: 1758, (2022).
  • [18] He, Q., Fan, C., Yang, G., Li, H., Li, J., Chen, X. “Numerical calculation of vibration characteristics of transformer core under inter-harmonics”, J. Phys.: Conf. Ser. 2290:012099, (2022).
  • [19] A. J. Moses, P. I. Anderson, and T. Phophongviwat, “Localized surface vibration and acoustic noise emitted from laboratory-scale transformer cores assembled from grain-oriented electrical steel,” IEEE Trans. Magn., 52:10, 7100615, (2016).
  • [20] Pan, C., Wang, C., Su, H. “Excitation current and vibration characteristics of DC biased transformer”, CSEE Journal of Power and Energy Systems, 7:3, 604 – 613, (2021).
  • [21] B. X. Du, D. S. Liu, “Dynamic behavior of magnetostriction-induced vibration and noise of amorphous alloy cores”, IEEE Transactions on Magnetics, 51:4, (2015).
  • [22] Yu, Z., Li, D., Chen, L. “Statistical analysis of vibration characteristics of power transformers with different voltage levels”, 12th IEEE International Conference on the Properties and Applications of Dielectric Materials (ICPADM), 694-699, Xi'an, China, (2018).
  • [23] Santoso, S., Beaty, H. W., Dugan, R. C., McGranaghan, M. F. Electrical Power Systems Quality, Second Edition, The McGraw-Hill Companies, (2004).

The Effect of Interharmonics on Transformer Core Vibration in Isolation Transformers

Year 2024, Volume: 27 Issue: 3, 1147 - 1159, 25.07.2024
https://doi.org/10.2339/politeknik.1206090

Abstract

Interharmonics are caused by nonlinear loads in power systems, switched drives with asynchronous switching, or rapid current changes in loads operating in a transient state. In addition to problems such as saturation and overheating of transformer cores under such operating conditions, mechanical problems such as abnormal increase in vibration levels also occur. On the other hand, few studies have examined the abnormal increase in vibrations caused by interharmonics. In this study, in order to determine the effects of interharmonics on the vibration of the transformer core, the vibration displacement values in the core of a single-phase 10 kVA rated insulation transformer were examined under excitations with various interharmonic frequencies and the results have compared. In the simulation studies, it was concluded that depending on the interharmonic frequency, components appear as sidebands or double multiples of the relevant frequency in the vibration harmonic spectrum, but in some interharmonic frequencies, it leads to the emergence of components at fractional frequencies.

References

  • [1] Hanzelka, Z., Bien, A. “Application Note Interharmonics”, Cu0151 AN Interharmonics, Leonardo ENERGY, (2015).
  • [2] Soltani, H.; Davari, P.; Zare, F.; Blaabjerg, F. “Effects of modulation techniques on the input current Interharmonics of adjustable speed drives”, IEEE Trans. Ind. Electron., 65:167–178, (2018).
  • [3] Guo, Q., Wu, J., Jin, H., Peng, C. “An innovative calibration scheme for interharmonic analyzers in power systems under asynchronous sampling”, Energies, 12(121), (2019).
  • [4] Ravindran, V., Busatto, T., Ronnberg, S.K., Meyer, J., Bollen, M. “Time-varying interharmonics in different types of grid-tied PV inverter systems”, IEEE Trans. Power Deliv., 35(2): 483-496, (2020).
  • [5] Kalair, A.; Abas, N.; Kalair, A.R.; Saleem, Z.; Khan, N. “Review of harmonic analysis, modeling and mitigation techniques”, Renew. Sustain. Energy Rev., 78: 1152–1187, (2017).
  • [6] Arranz-Gimon, A., Zorita-Lamadrid, A., Morinigo-Sotelo, D., Duque-Perez, O. “A study of the effects of time aggregation and overlapping within the framework of IEC standards for the measurement of harmonics and interharmonics”, Appl. Sci., 9: 4549; (2019).
  • [7] Buticchi, G., Lorenzani, E. “Detection method of the DC bias in distribution power transformers”, IEEE Transactions on Industrial Electronics, 60(8): 3539-3549, (2013).
  • [8] Baguley, C. A., Madawala, U. K., Carsten, B. “The impact of vibration due to magnetostriction on the core losses of ferrite toroidals under DC bias”, IEEE Transactions on Magnetics, 47(8): 2022-2028, (2011).
  • [9] Yao, X. G., Moses, A. J., Anayi, F. “Normal Flux Distribution in a Three-phase transformer core under sinusoidal and PWM excitation”, IEEE Transactions on Magnetics, 43(6): 2660-2662, (2007).
  • [10] Ramírez-Nino, J., Haro-Hernández, C., Rodriguez-Rodriguez, J. H., Mijarez, R. “Core saturation effects of geomagnetic induced currents in power transformers”, Journal of Applied Research and Technology, 14: 87–92, (2016).
  • [11] Zhang, Y., Wang, J., Sun, X., Bai, B., Xie, D. “Measurement and modeling of anisotropic magnetostriction characteristic of grain-oriented silicon steel sheet under DC bias”, IEEE Transactions on Magnetics, 50(2): 361 – 364, (2014).
  • [12] Wang, J., Gao, C., Duan, X., Mao, K. “Multi-field coupling simulation and experimental study on Transformer vibration caused by DC bias”, Journal of Electrical Engineering Technology, 10(1): 176-187, (2015).
  • [13] Berler Z., Golubev A., Rusov V., Tsvetkov V., “Vibro-Acoustic Method of Transformer Clamping Pressure Monitoring”, In Proceedings of the IEEE International Symposium on Electrical Insulation, Anaheim, CA, USA, 263- 266, (2000).
  • [14] Xiong W., Ji R., “Nonlinear Time Series Analysis of Transformer’s Core Vibration”, The Sixth World Congress on Intelligent Control and Automation 2, Dalian, China, 5493 – 5496, (2006).
  • [15] Munir B. S., Smit J. J., Rinaldi I G. M. R., “Diagnosing Winding and Core Condition of Power Transformer by vibration signal analysis”, International Conference on Condition Monitoring and Diagnosis (CMD), (2012).
  • [16] Wang Y. “Transformer vibration and its application to condition monitoring”, Doktor Tezi, University of Western Australia, School of Mechanical and Chemical Engineering, (2015).
  • [17] He, Q., Fan, C., Yang, G., Li, H., Li, J., Chen, X. “Experimental analysis of transformer core vibration and noise under inter-harmonic excitation”, Appl. Sci., 12: 1758, (2022).
  • [18] He, Q., Fan, C., Yang, G., Li, H., Li, J., Chen, X. “Numerical calculation of vibration characteristics of transformer core under inter-harmonics”, J. Phys.: Conf. Ser. 2290:012099, (2022).
  • [19] A. J. Moses, P. I. Anderson, and T. Phophongviwat, “Localized surface vibration and acoustic noise emitted from laboratory-scale transformer cores assembled from grain-oriented electrical steel,” IEEE Trans. Magn., 52:10, 7100615, (2016).
  • [20] Pan, C., Wang, C., Su, H. “Excitation current and vibration characteristics of DC biased transformer”, CSEE Journal of Power and Energy Systems, 7:3, 604 – 613, (2021).
  • [21] B. X. Du, D. S. Liu, “Dynamic behavior of magnetostriction-induced vibration and noise of amorphous alloy cores”, IEEE Transactions on Magnetics, 51:4, (2015).
  • [22] Yu, Z., Li, D., Chen, L. “Statistical analysis of vibration characteristics of power transformers with different voltage levels”, 12th IEEE International Conference on the Properties and Applications of Dielectric Materials (ICPADM), 694-699, Xi'an, China, (2018).
  • [23] Santoso, S., Beaty, H. W., Dugan, R. C., McGranaghan, M. F. Electrical Power Systems Quality, Second Edition, The McGraw-Hill Companies, (2004).
There are 23 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Funda Battal 0000-0002-7233-2843

Early Pub Date May 12, 2023
Publication Date July 25, 2024
Submission Date November 17, 2022
Published in Issue Year 2024 Volume: 27 Issue: 3

Cite

APA Battal, F. (2024). Yalıtım Transformatörlerinde Ara-Harmoniklerin Transformatör Nüve Titreşimi Üzerine Etkisi. Politeknik Dergisi, 27(3), 1147-1159. https://doi.org/10.2339/politeknik.1206090
AMA Battal F. Yalıtım Transformatörlerinde Ara-Harmoniklerin Transformatör Nüve Titreşimi Üzerine Etkisi. Politeknik Dergisi. July 2024;27(3):1147-1159. doi:10.2339/politeknik.1206090
Chicago Battal, Funda. “Yalıtım Transformatörlerinde Ara-Harmoniklerin Transformatör Nüve Titreşimi Üzerine Etkisi”. Politeknik Dergisi 27, no. 3 (July 2024): 1147-59. https://doi.org/10.2339/politeknik.1206090.
EndNote Battal F (July 1, 2024) Yalıtım Transformatörlerinde Ara-Harmoniklerin Transformatör Nüve Titreşimi Üzerine Etkisi. Politeknik Dergisi 27 3 1147–1159.
IEEE F. Battal, “Yalıtım Transformatörlerinde Ara-Harmoniklerin Transformatör Nüve Titreşimi Üzerine Etkisi”, Politeknik Dergisi, vol. 27, no. 3, pp. 1147–1159, 2024, doi: 10.2339/politeknik.1206090.
ISNAD Battal, Funda. “Yalıtım Transformatörlerinde Ara-Harmoniklerin Transformatör Nüve Titreşimi Üzerine Etkisi”. Politeknik Dergisi 27/3 (July 2024), 1147-1159. https://doi.org/10.2339/politeknik.1206090.
JAMA Battal F. Yalıtım Transformatörlerinde Ara-Harmoniklerin Transformatör Nüve Titreşimi Üzerine Etkisi. Politeknik Dergisi. 2024;27:1147–1159.
MLA Battal, Funda. “Yalıtım Transformatörlerinde Ara-Harmoniklerin Transformatör Nüve Titreşimi Üzerine Etkisi”. Politeknik Dergisi, vol. 27, no. 3, 2024, pp. 1147-59, doi:10.2339/politeknik.1206090.
Vancouver Battal F. Yalıtım Transformatörlerinde Ara-Harmoniklerin Transformatör Nüve Titreşimi Üzerine Etkisi. Politeknik Dergisi. 2024;27(3):1147-59.