Research Article
BibTex RIS Cite

Al, Cu Katkılı, Katkısız TiO2 İnce Film Biriktirme ve Katkılamanın Film Özelliklerine Etkisi

Year 2024, Volume: 27 Issue: 3, 1081 - 1087, 25.07.2024
https://doi.org/10.2339/politeknik.1208648

Abstract

Bu çalışma kapsamında öncelikle katkısız TiO2 filmler daldırarak kaplama yöntemi ile üretildi. Optimum katkılı ve katkısız ince film biriktirme parametreleri yapılan ön denemeler ve daha önceki çalışmalar derlenerek; daldırma tekrar sayısı 8 kat, daldırma süresi 90sn, süreç arası kuruma sıcaklığı 110 °C, süresi 150 sn, tavlama sıcaklığı 500 °C ve süresi 2 saat olarak belirlendi. Daha sonra farklı fiziksel özelliklere sahip Al ve Cu metalleri ile katkılanarak, katkılamanın TiO2 ince filmlerin yüzeysel, yapısal ve optik özellikler üzerine etkileri incelendi. Katkılama oranları değiştirilerek (%1, %3, %5) katkılama ile TiO2 ince filmlerin fiziksel özelliklerindeki değişimler belirlendi. SEM görüntülüleri incelendiğinde; cam altlıklar yüzeylerine TiO2 ince filmler homojen olarak biriktirildiği ve Al katkılamanın TiO2 film katmanlarındaki tanecik boyutunu küçülttüğü, Cu katkılamanın ise tanecik boyutunu büyüttüğü tespit edildi. XRD analiz spektrumu verileri ile hesaplamalar sonucunda tanecik boyutundaki değişimlerin SEM görüntülerine uyumlu olduğu görüldü. Katkısız TiO2 ince filmler için Anataz fazında TiO2'nin bilinen net tepe noktaları, Al ve Cu katkısından kaynaklanan pikler XRD spektrumunda tespit edilerek ince film biriktirme işlemlerinin başarıyla yapıldığı belirlendi. Optik özellikler incelendiğinde yasak enerji aralığı TiO2 ince film için 3,21eV olarak hesaplandı. Al katkılama ile TiO2 ince filmlerin yasak enerji aralığının arttığı ve Cu katkılama ile yasak enerji aralığının azaldığı tespit edildi.

References

  • [1] Z. N. Kayani, Maria, S. Riaz, and S. Naseem, “Magnetic and antibacterial studies of sol-gel dip coated Ce doped TiO2 thin films: Influence of Ce contents,” Ceramics International, 46(1) : 381–390, Jan. (2020).
  • [2] K. R. Gustavsen et al., “Crack-Free TiO2 Thin Film via Sol-Gel Dip Coating Method: Investigation on Molarity Effect,” IOP Conference Series: Materials Science and Engineering, 340(1): 012009, Mar. (2018).
  • [3] K. Manickam, V. Muthusamy, S. Manickam, T. S. Senthil, G. Periyasamy, and S. Shanmugam, “Effect of annealing temperature on structural, morphological and optical properties of nanocrystalline TiO2 thin films synthesized by sol–gel dip coating method,” Materials Today: Proceedings, 23 : 68–72, Jan. (2020).
  • [4] M. Subaşı and Ç. Karataş, “Titanyum ve Titanyum Alaşımlarından Yapılan İmplantlar Üzerine İnceleme,” Politeknik Dergisi, 15(2): 87–103, Jun. (2012).
  • [5] F. Abbas, R. Bensaha, and H. Taroré, “The influence of Zn+2 doping and annealing temperature on grown-up of nanostructures TiO2 thin films prepared by sol-gel dip-coating method and their photocatalytic application,” Optik, 180 : 361–369, Feb. (2019).
  • [6] A. Fujishima, T. N. Rao, and D. A. Tryk, “Titanium dioxide photocatalysis,” Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 1(1): 1–21, Jun. (2000).
  • [7] S. Temel, E. Yaman, and F. O. Gökmen, “Synthesis and characterization of TiO2 co-polymeric hydrogel,” AIP Conference Proceedings, 2042(1), 030001, Nov. (2018).
  • [8] M. Yurddaşkal, U. Kartal, and E. C. Doluel, “Titanyum Dioksit/İndirgenmiş Grafen Oksit Kompozitlerin Üretimi ve Fotokatalitik Özelliklerinin İncelenmesi,” Politeknik Dergisi, 23(1): 249–255, Mar. (2020).
  • [9] S. Roy, N. Tripathy, D. Pradhan, P. K. Sahu, and J. P. Kar, “Electrical characteristics of dip coated TiO2 thin films with various withdrawal speeds for resistive switching applications,” Applied Surface Science, 449:181–185, Aug. (2018).
  • [10] S. V. Kite, D. J. Sathe, A. N. Kadam, S. S. Chavan, and K. M. Garadkar, “Highly efficient photodegradation of 4-nitrophenol over the nano-TiO2 obtained from chemical bath deposition technique,” Research on Chemical Intermediates 46(2): 1255–1282, Oct. (2019).
  • [11] F. O. Gokmen, S. Temel, and E. Yaman, “Enhanced Antibacterial Property by the Synergetic Effect of TiO2 and ZnO Nano-Particles in Biodegradable Hydrogel,” European Scientific Journal, 15(33): 1857–7881, (2019).
  • [12] A. K. Vishwakarma and L. Yadava, “ Fabrication and Characterization of Nano-TiO 2 Thin Film Using Physical Vapor Deposition Method ,” Advanced Science, Engineering and Medicine, 10(7) : 723–726, Oct. (2018).
  • [13] Ö. Öztürk, E. Aşıkuzun, Z. B. Hacıoğlu, and S. Safran, “Characteristics of ZnO:Er Nano Thin Films Produced Different Thickness Using Different Solvent By Sol-Gel Method,” Politeknik Dergisi, 25(1) : 37–45, Mar. (2022).
  • [14] C. Gül, S. Mutaf, and H. Durmuş, “Ti6Al4V Alaşımı Üzerine Sol-Jel Yöntemi ile Yapılan Hidroksiapatit Kaplamalarda Oksalik Asitin Korozyon Dayanımına Etkisi,” Politeknik Dergisi, 23(4) : 1395–1402, Dec. (2020).
  • [15] M. N. Islam and J. Podder, “The role of Al and Co co-doping on the band gap tuning of TiO2 thin films for applications in photovoltaic and optoelectronic devices,” Materials Science in Semiconductor Processing, 121: 105419, Jan. (2021).
  • [16] N. Zinai et al., “Tailoring the structural and optical properties of HiPIMS TiO2 thin films for photovoltaic applications,” Optical Materials, 131: 112590, Sep. (2022).
  • [17] S. A. Adewinbi et al., “Preparation and characterization of TiO2 thin film electrode for optoelectronic and energy storage Potentials: Effects of Co incorporation,” Chemical Physics Letters, 779: 138854, Sep. (2021).
  • [18] P. A. Carneiro, M. E. Osugi, J. J. Sene, M. A. Anderson, and M. V. B. Zanoni, “Evaluation of color removal and degradation of a reactive textile azo dye on nanoporous TiO2 thin-film electrodes,” Electrochimica Acta, 49(22) : 3807–3820, Sep. (2004).
  • [19] K. S. Abdullah Al Balushi, G. Devi, A. Saif Al Hudaifi, and A. S. R. Khamis Al Garibi, “Development of chitosan-TiO2 thin film and its application for methylene blue dye degradation,” International Journal of Environmental Analytical Chemistry, 101 : 1–14 (2021).
  • [20] S. El-Kacemi et al., “Nanostructured ZnO-TiO2 thin film oxide as anode material in electrooxidation of organic pollutants. Application to the removal of dye Amido black 10B from water,” Environmental Science and Pollution Research 24(2): 1442–1449, Oct. (2016).
  • [21] A. Farzaneh, A. Mohammadzadeh, M. D. Esrafili, and O. Mermer, “Experimental and theoretical study of TiO2 based nanostructured semiconducting humidity sensor,” Ceramics International, 45( 7) : 8362–8369, May (2019).
  • [22] B. C. Sertel, N. A. Sonmez, M. D. Kaya, and S. Ozcelik, “Development of MgO:TiO2 thin films for gas sensor applications,” Ceramics International, 45(3) : 2917–2921, Feb. (2019).
  • [23] C. Garzella, E. Comini, E. Tempesti, C. Frigeri, and G. Sberveglieri, “TiO2 thin films by a novel sol–gel processing for gas sensor applications,” Sensors and Actuators B: Chemical, 68(1) : 189–196, Aug. (2000).
  • [24] H. Tang, K. Prasad, R. Sanjinés, and F. Lévy, “TiO2 anatase thin films as gas sensors,” Sensors and Actuators B: Chemical, 26(1): 71–75, Jan. (1995).
  • [25] N. Van Hieu, N. Van Duy, P. T. Huy, and N. D. Chien, “Inclusion of SWCNTs in Nb/Pt co-doped TiO2 thin-film sensor for ethanol vapor detection,” Physica E: Low-dimensional Systems and Nanostructures, 40(9): 2950–2958, Aug. (2008).
  • [26] Nagmani, D. Pravarthana, A. Tyagi, T. C. Jagadale, W. Prellier, and D. K. Aswal, “Highly sensitive and selective H2S gas sensor based on TiO2 thin films,” Applied Surface Science, 549:149281, May (2021).
  • [27] M. Nebi, D. Peker, and S. Temel, “Deposition of Co doped TiO2 films using sol gel spin coating technique and investigation of band gap,” AIP Conference Proceedings, 1935, no. 1, p. 150004, Feb. (2018).
  • [28] F. Kara, M. Kurban, and B. Coşkun, “Evaluation of electronic transport and optical response of two-dimensional Fe-doped TiO2 thin films for photodetector applications,” Optik, 210:164605, May (2020).
  • [29] M. Sreedhar, I. Neelakanta Reddy, C. V. Reddy, J. Shim, and J. Brijitta, “Highly photostable Zn-doped TiO2 thin film nanostructures for enhanced dye degradation deposited by sputtering method,” Materials Science in Semiconductor Processing, 85 : 113–121, Oct. (2018).
  • [30] J. Bi and X. Cao, “Electrochemıcal Scıence Electrochemical Properties and Thin-Film Morphology of Mn-doped TiO2 Thin Layer Prepared by Electrodeposition Technique and Its application as photocatalyst for Rhodamine B degradation,” Int. J. Electrochem. Sci, 16: 210-340, (2021).
  • [31] M. M. Abbas and M. Rasheed, “Solid State Reaction Synthesis and Characterization of Aluminum Doped Titanium Dioxide Nanomaterials,” Journal of Southwest Jiaotong University, 55(2), (2020).
  • [32] B. Moongraksathum, J. Y. Shang, and Y. W. Chen, “Photocatalytic Antibacterial Effectiveness of Cu-Doped TiO2 Thin Film Prepared via the Peroxo Sol-Gel Method,” Catalysts, 8(9): 352-361, Aug. (2018).
  • [33] Yazid, S. A., Rosli, Z. M. and Juoi, J. M. ‘Effect of titanium (IV) isopropoxide molarity on the crystallinity and photocatalytic activity of titanium dioxide thin film deposited via green sol–gel route’, Journal of Materials Research and Technology. Elsevier, 8(1): 1434–1439, (2019).
  • [34] Sahbeni K, Sta I, Jlassi M, Kandyla M, Hajji M, et al. “Annealing Temperature Effect on the Physical Properties of Titanium Oxide Thin Films Prepared by the Sol-Gel Method”. J Phys Chem Biophys 7: 257-270 (2017).
  • [35] Hyodo, T. et al. ‘Preparation of TiO2 thin layer on ceramics using dip coating method for degradation humic acid’, Journal of Physics: Conference Series. IOP Publishing, 1481:1-8 (2020)
  • [36] P. Dulian, W. Nachit, J. Jaglarz, P. Zięba, J. Kanak, and W. Żukowski, “Photocatalytic methylene blue degradation on multilayer transparent TiO2 coatings,” Optical Materials, 90 : 264–272, Apr. (2019).
  • [37] Hakki, H. K., Allahyari, S., Rahemi, N., & Tasbihi, M. “The role of thermal annealing in controlling morphology, crystal structure and adherence of dip coated TiO2 film on glass and its photocatalytic activity." Materials Science in Semiconductor Processing, 85 : 24-32. (2018)
  • [38] Timoumi, A., Albetran, H. M., Alamri, H. R., Alamri, S. N., & Low, I. M. “Impact of annealing temperature on structural, morphological and optical properties of GO-TiO2 thin films prepared by spin coating technique.” Superlattices and Microstructures, 139:1-9, (2020).
  • [39] Beldjebli, O., Bensaha, R., & Panneerselvam, P. “Effect of both Sn doping and annealing temperature on the properties of dip-coated nanostructured TiO2 thin films.” Journal of Inorganic and Organometallic polymers and materials, 32(5) :1624-1636, (2022).
  • [40] Chibani, O., Touam, T., Chelouche, A., & Ouarez, L. ”Investigation of the effects of acidic pH and annealing on the properties of nanostructured TiO2 thin films for waveguiding applications.” Journal of Alloys and Compounds, 768 : 866-874, (2018).
  • [41] Y. Mi and Y. Weng, “Band Alignment and Controllable Electron Migration between Rutile and Anatase TiO2,” Scientific Reports 5(1) : 1–10, Jul. (2015).
  • [42] Zhu, L., Lu, Q., Lv, L., Wang, Y., Hu, Y., Deng, Z.,Teng, F., “Ligand-free rutile and anatase TiO2 nanocrystals as electron extraction layers for high performance inverted polymer solar cells”. RSC advances, 7(33): 20084-20092. (2017).
  • [43] E. Haimi, H. Lipsonen, J. Larismaa, M. Kapulainen, J. Krzak-Ros, and S. P. Hannula, “Optical and structural properties of nanocrystalline anatase (TiO2) thin films prepared by non-aqueous sol-gel dip-coating,” Thin Solid Films, 519(18) : 5882–5886, Jul. (2011).
  • [44] S. B. K. Aydin, D. E. Yildiz, H. K. Çavuş, and R. Şahingöz, “ALD TiO2 thin film as dielectric for Al/p-Si Schottky diode,” Bulletin of Materials Science, 37(7):1563–1568, Dec. (2014).
  • [45] M. Khosravi, M. R. Toroghinejad, M. R. Vaezi, and A. Saidi, “Structural, electrical, optical and morphological properties of aluminum-doped TiO2 thin films deposited by spray pyrolysis method,” Journal of Materials Science: Materials in Electronics, 31(9) : 7150–7163, May (2020).
  • [46] Yadav, H. M., Otari, S. V., Koli, V. B., Mali, S. S., Hong, C. K., Pawar, S. H., & Delekar, S. D., “Preparation and characterization of copper-doped anatase TiO2 nanoparticles with visible light photocatalytic antibacterial activity,” Journal of Photochemistry and Photobiology A: Chemistry, 280 : 32–38, Apr. (2014).
  • [47] S. K. Gharaei, M. Abbasnejad, and R. Maezono, “Bandgap reduction of photocatalytic TiO2 nanotube by Cu doping,” Scientific Reports, 8(1) : 1–10, Sep. (2018).
  • [48] M. E. Aguirre, R. Zhou, A. J. Eugene, M. I. Guzman, and M. A. Grela, “Cu2O/TiO2 heterostructures for CO2 reduction through a direct Z-scheme: Protecting Cu2O from photocorrosion,” Applied Catalysis B: Environmental, 217: 485–493, (2017).

Al, Cu Doped-Undoped TiO2 Thin Film Deposition and The Effect of Doping on Film Properties

Year 2024, Volume: 27 Issue: 3, 1081 - 1087, 25.07.2024
https://doi.org/10.2339/politeknik.1208648

Abstract

In this study, undoped TiO2 films were first produced by dip coating method. Optimum doped and undoped thin film deposition parameters were determined by compiling preliminary trials and previous studies. The number of dipping repetitions was 8 times, the dipping time was 90 seconds, the drying temperature between the processes was 110 °C, the time was 150 seconds, the annealing temperature was 500 °C and the duration was 2 hours. The effects of doping with Al and Cu metals with different physical properties on the surface, structural and optical properties of TiO2 thin films were investigated. The changes in the physical properties of TiO2 thin films were determined by increasing the doping ratios (1%, 3%, 5%). When SEM images are examined; It was determined that TiO2 thin films were deposited homogeneously on the glass substrates and Al doping reduced the particle size in the TiO2 film layers, while Cu doping increased the particle size. As a result of the calculations with the XRD analysis spectrum data, it was seen that the changes in particle size were compatible with the SEM images. For undoped TiO2 thin films, the known net peaks of TiO2 in the Anatase phase, the peaks caused by Al and Cu doping were detected in the XRD spectrum, and it was determined that the thin film was successfully deposited. When the optical properties were examined, the band gap was calculated as 3.21eV for the TiO2 Thin film. It was determined that the band gap of the TiO2 thin films increased with Al doping and the band gap decreased with Cu doping.

References

  • [1] Z. N. Kayani, Maria, S. Riaz, and S. Naseem, “Magnetic and antibacterial studies of sol-gel dip coated Ce doped TiO2 thin films: Influence of Ce contents,” Ceramics International, 46(1) : 381–390, Jan. (2020).
  • [2] K. R. Gustavsen et al., “Crack-Free TiO2 Thin Film via Sol-Gel Dip Coating Method: Investigation on Molarity Effect,” IOP Conference Series: Materials Science and Engineering, 340(1): 012009, Mar. (2018).
  • [3] K. Manickam, V. Muthusamy, S. Manickam, T. S. Senthil, G. Periyasamy, and S. Shanmugam, “Effect of annealing temperature on structural, morphological and optical properties of nanocrystalline TiO2 thin films synthesized by sol–gel dip coating method,” Materials Today: Proceedings, 23 : 68–72, Jan. (2020).
  • [4] M. Subaşı and Ç. Karataş, “Titanyum ve Titanyum Alaşımlarından Yapılan İmplantlar Üzerine İnceleme,” Politeknik Dergisi, 15(2): 87–103, Jun. (2012).
  • [5] F. Abbas, R. Bensaha, and H. Taroré, “The influence of Zn+2 doping and annealing temperature on grown-up of nanostructures TiO2 thin films prepared by sol-gel dip-coating method and their photocatalytic application,” Optik, 180 : 361–369, Feb. (2019).
  • [6] A. Fujishima, T. N. Rao, and D. A. Tryk, “Titanium dioxide photocatalysis,” Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 1(1): 1–21, Jun. (2000).
  • [7] S. Temel, E. Yaman, and F. O. Gökmen, “Synthesis and characterization of TiO2 co-polymeric hydrogel,” AIP Conference Proceedings, 2042(1), 030001, Nov. (2018).
  • [8] M. Yurddaşkal, U. Kartal, and E. C. Doluel, “Titanyum Dioksit/İndirgenmiş Grafen Oksit Kompozitlerin Üretimi ve Fotokatalitik Özelliklerinin İncelenmesi,” Politeknik Dergisi, 23(1): 249–255, Mar. (2020).
  • [9] S. Roy, N. Tripathy, D. Pradhan, P. K. Sahu, and J. P. Kar, “Electrical characteristics of dip coated TiO2 thin films with various withdrawal speeds for resistive switching applications,” Applied Surface Science, 449:181–185, Aug. (2018).
  • [10] S. V. Kite, D. J. Sathe, A. N. Kadam, S. S. Chavan, and K. M. Garadkar, “Highly efficient photodegradation of 4-nitrophenol over the nano-TiO2 obtained from chemical bath deposition technique,” Research on Chemical Intermediates 46(2): 1255–1282, Oct. (2019).
  • [11] F. O. Gokmen, S. Temel, and E. Yaman, “Enhanced Antibacterial Property by the Synergetic Effect of TiO2 and ZnO Nano-Particles in Biodegradable Hydrogel,” European Scientific Journal, 15(33): 1857–7881, (2019).
  • [12] A. K. Vishwakarma and L. Yadava, “ Fabrication and Characterization of Nano-TiO 2 Thin Film Using Physical Vapor Deposition Method ,” Advanced Science, Engineering and Medicine, 10(7) : 723–726, Oct. (2018).
  • [13] Ö. Öztürk, E. Aşıkuzun, Z. B. Hacıoğlu, and S. Safran, “Characteristics of ZnO:Er Nano Thin Films Produced Different Thickness Using Different Solvent By Sol-Gel Method,” Politeknik Dergisi, 25(1) : 37–45, Mar. (2022).
  • [14] C. Gül, S. Mutaf, and H. Durmuş, “Ti6Al4V Alaşımı Üzerine Sol-Jel Yöntemi ile Yapılan Hidroksiapatit Kaplamalarda Oksalik Asitin Korozyon Dayanımına Etkisi,” Politeknik Dergisi, 23(4) : 1395–1402, Dec. (2020).
  • [15] M. N. Islam and J. Podder, “The role of Al and Co co-doping on the band gap tuning of TiO2 thin films for applications in photovoltaic and optoelectronic devices,” Materials Science in Semiconductor Processing, 121: 105419, Jan. (2021).
  • [16] N. Zinai et al., “Tailoring the structural and optical properties of HiPIMS TiO2 thin films for photovoltaic applications,” Optical Materials, 131: 112590, Sep. (2022).
  • [17] S. A. Adewinbi et al., “Preparation and characterization of TiO2 thin film electrode for optoelectronic and energy storage Potentials: Effects of Co incorporation,” Chemical Physics Letters, 779: 138854, Sep. (2021).
  • [18] P. A. Carneiro, M. E. Osugi, J. J. Sene, M. A. Anderson, and M. V. B. Zanoni, “Evaluation of color removal and degradation of a reactive textile azo dye on nanoporous TiO2 thin-film electrodes,” Electrochimica Acta, 49(22) : 3807–3820, Sep. (2004).
  • [19] K. S. Abdullah Al Balushi, G. Devi, A. Saif Al Hudaifi, and A. S. R. Khamis Al Garibi, “Development of chitosan-TiO2 thin film and its application for methylene blue dye degradation,” International Journal of Environmental Analytical Chemistry, 101 : 1–14 (2021).
  • [20] S. El-Kacemi et al., “Nanostructured ZnO-TiO2 thin film oxide as anode material in electrooxidation of organic pollutants. Application to the removal of dye Amido black 10B from water,” Environmental Science and Pollution Research 24(2): 1442–1449, Oct. (2016).
  • [21] A. Farzaneh, A. Mohammadzadeh, M. D. Esrafili, and O. Mermer, “Experimental and theoretical study of TiO2 based nanostructured semiconducting humidity sensor,” Ceramics International, 45( 7) : 8362–8369, May (2019).
  • [22] B. C. Sertel, N. A. Sonmez, M. D. Kaya, and S. Ozcelik, “Development of MgO:TiO2 thin films for gas sensor applications,” Ceramics International, 45(3) : 2917–2921, Feb. (2019).
  • [23] C. Garzella, E. Comini, E. Tempesti, C. Frigeri, and G. Sberveglieri, “TiO2 thin films by a novel sol–gel processing for gas sensor applications,” Sensors and Actuators B: Chemical, 68(1) : 189–196, Aug. (2000).
  • [24] H. Tang, K. Prasad, R. Sanjinés, and F. Lévy, “TiO2 anatase thin films as gas sensors,” Sensors and Actuators B: Chemical, 26(1): 71–75, Jan. (1995).
  • [25] N. Van Hieu, N. Van Duy, P. T. Huy, and N. D. Chien, “Inclusion of SWCNTs in Nb/Pt co-doped TiO2 thin-film sensor for ethanol vapor detection,” Physica E: Low-dimensional Systems and Nanostructures, 40(9): 2950–2958, Aug. (2008).
  • [26] Nagmani, D. Pravarthana, A. Tyagi, T. C. Jagadale, W. Prellier, and D. K. Aswal, “Highly sensitive and selective H2S gas sensor based on TiO2 thin films,” Applied Surface Science, 549:149281, May (2021).
  • [27] M. Nebi, D. Peker, and S. Temel, “Deposition of Co doped TiO2 films using sol gel spin coating technique and investigation of band gap,” AIP Conference Proceedings, 1935, no. 1, p. 150004, Feb. (2018).
  • [28] F. Kara, M. Kurban, and B. Coşkun, “Evaluation of electronic transport and optical response of two-dimensional Fe-doped TiO2 thin films for photodetector applications,” Optik, 210:164605, May (2020).
  • [29] M. Sreedhar, I. Neelakanta Reddy, C. V. Reddy, J. Shim, and J. Brijitta, “Highly photostable Zn-doped TiO2 thin film nanostructures for enhanced dye degradation deposited by sputtering method,” Materials Science in Semiconductor Processing, 85 : 113–121, Oct. (2018).
  • [30] J. Bi and X. Cao, “Electrochemıcal Scıence Electrochemical Properties and Thin-Film Morphology of Mn-doped TiO2 Thin Layer Prepared by Electrodeposition Technique and Its application as photocatalyst for Rhodamine B degradation,” Int. J. Electrochem. Sci, 16: 210-340, (2021).
  • [31] M. M. Abbas and M. Rasheed, “Solid State Reaction Synthesis and Characterization of Aluminum Doped Titanium Dioxide Nanomaterials,” Journal of Southwest Jiaotong University, 55(2), (2020).
  • [32] B. Moongraksathum, J. Y. Shang, and Y. W. Chen, “Photocatalytic Antibacterial Effectiveness of Cu-Doped TiO2 Thin Film Prepared via the Peroxo Sol-Gel Method,” Catalysts, 8(9): 352-361, Aug. (2018).
  • [33] Yazid, S. A., Rosli, Z. M. and Juoi, J. M. ‘Effect of titanium (IV) isopropoxide molarity on the crystallinity and photocatalytic activity of titanium dioxide thin film deposited via green sol–gel route’, Journal of Materials Research and Technology. Elsevier, 8(1): 1434–1439, (2019).
  • [34] Sahbeni K, Sta I, Jlassi M, Kandyla M, Hajji M, et al. “Annealing Temperature Effect on the Physical Properties of Titanium Oxide Thin Films Prepared by the Sol-Gel Method”. J Phys Chem Biophys 7: 257-270 (2017).
  • [35] Hyodo, T. et al. ‘Preparation of TiO2 thin layer on ceramics using dip coating method for degradation humic acid’, Journal of Physics: Conference Series. IOP Publishing, 1481:1-8 (2020)
  • [36] P. Dulian, W. Nachit, J. Jaglarz, P. Zięba, J. Kanak, and W. Żukowski, “Photocatalytic methylene blue degradation on multilayer transparent TiO2 coatings,” Optical Materials, 90 : 264–272, Apr. (2019).
  • [37] Hakki, H. K., Allahyari, S., Rahemi, N., & Tasbihi, M. “The role of thermal annealing in controlling morphology, crystal structure and adherence of dip coated TiO2 film on glass and its photocatalytic activity." Materials Science in Semiconductor Processing, 85 : 24-32. (2018)
  • [38] Timoumi, A., Albetran, H. M., Alamri, H. R., Alamri, S. N., & Low, I. M. “Impact of annealing temperature on structural, morphological and optical properties of GO-TiO2 thin films prepared by spin coating technique.” Superlattices and Microstructures, 139:1-9, (2020).
  • [39] Beldjebli, O., Bensaha, R., & Panneerselvam, P. “Effect of both Sn doping and annealing temperature on the properties of dip-coated nanostructured TiO2 thin films.” Journal of Inorganic and Organometallic polymers and materials, 32(5) :1624-1636, (2022).
  • [40] Chibani, O., Touam, T., Chelouche, A., & Ouarez, L. ”Investigation of the effects of acidic pH and annealing on the properties of nanostructured TiO2 thin films for waveguiding applications.” Journal of Alloys and Compounds, 768 : 866-874, (2018).
  • [41] Y. Mi and Y. Weng, “Band Alignment and Controllable Electron Migration between Rutile and Anatase TiO2,” Scientific Reports 5(1) : 1–10, Jul. (2015).
  • [42] Zhu, L., Lu, Q., Lv, L., Wang, Y., Hu, Y., Deng, Z.,Teng, F., “Ligand-free rutile and anatase TiO2 nanocrystals as electron extraction layers for high performance inverted polymer solar cells”. RSC advances, 7(33): 20084-20092. (2017).
  • [43] E. Haimi, H. Lipsonen, J. Larismaa, M. Kapulainen, J. Krzak-Ros, and S. P. Hannula, “Optical and structural properties of nanocrystalline anatase (TiO2) thin films prepared by non-aqueous sol-gel dip-coating,” Thin Solid Films, 519(18) : 5882–5886, Jul. (2011).
  • [44] S. B. K. Aydin, D. E. Yildiz, H. K. Çavuş, and R. Şahingöz, “ALD TiO2 thin film as dielectric for Al/p-Si Schottky diode,” Bulletin of Materials Science, 37(7):1563–1568, Dec. (2014).
  • [45] M. Khosravi, M. R. Toroghinejad, M. R. Vaezi, and A. Saidi, “Structural, electrical, optical and morphological properties of aluminum-doped TiO2 thin films deposited by spray pyrolysis method,” Journal of Materials Science: Materials in Electronics, 31(9) : 7150–7163, May (2020).
  • [46] Yadav, H. M., Otari, S. V., Koli, V. B., Mali, S. S., Hong, C. K., Pawar, S. H., & Delekar, S. D., “Preparation and characterization of copper-doped anatase TiO2 nanoparticles with visible light photocatalytic antibacterial activity,” Journal of Photochemistry and Photobiology A: Chemistry, 280 : 32–38, Apr. (2014).
  • [47] S. K. Gharaei, M. Abbasnejad, and R. Maezono, “Bandgap reduction of photocatalytic TiO2 nanotube by Cu doping,” Scientific Reports, 8(1) : 1–10, Sep. (2018).
  • [48] M. E. Aguirre, R. Zhou, A. J. Eugene, M. I. Guzman, and M. A. Grela, “Cu2O/TiO2 heterostructures for CO2 reduction through a direct Z-scheme: Protecting Cu2O from photocorrosion,” Applied Catalysis B: Environmental, 217: 485–493, (2017).
There are 48 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Mehmet Fatih Gözükızıl 0000-0003-1719-959X

Ali Birelli This is me 0000-0002-8859-0660

Early Pub Date January 31, 2024
Publication Date July 25, 2024
Submission Date November 23, 2022
Published in Issue Year 2024 Volume: 27 Issue: 3

Cite

APA Gözükızıl, M. F., & Birelli, A. (2024). Al, Cu Katkılı, Katkısız TiO2 İnce Film Biriktirme ve Katkılamanın Film Özelliklerine Etkisi. Politeknik Dergisi, 27(3), 1081-1087. https://doi.org/10.2339/politeknik.1208648
AMA Gözükızıl MF, Birelli A. Al, Cu Katkılı, Katkısız TiO2 İnce Film Biriktirme ve Katkılamanın Film Özelliklerine Etkisi. Politeknik Dergisi. July 2024;27(3):1081-1087. doi:10.2339/politeknik.1208648
Chicago Gözükızıl, Mehmet Fatih, and Ali Birelli. “Al, Cu Katkılı, Katkısız TiO2 İnce Film Biriktirme Ve Katkılamanın Film Özelliklerine Etkisi”. Politeknik Dergisi 27, no. 3 (July 2024): 1081-87. https://doi.org/10.2339/politeknik.1208648.
EndNote Gözükızıl MF, Birelli A (July 1, 2024) Al, Cu Katkılı, Katkısız TiO2 İnce Film Biriktirme ve Katkılamanın Film Özelliklerine Etkisi. Politeknik Dergisi 27 3 1081–1087.
IEEE M. F. Gözükızıl and A. Birelli, “Al, Cu Katkılı, Katkısız TiO2 İnce Film Biriktirme ve Katkılamanın Film Özelliklerine Etkisi”, Politeknik Dergisi, vol. 27, no. 3, pp. 1081–1087, 2024, doi: 10.2339/politeknik.1208648.
ISNAD Gözükızıl, Mehmet Fatih - Birelli, Ali. “Al, Cu Katkılı, Katkısız TiO2 İnce Film Biriktirme Ve Katkılamanın Film Özelliklerine Etkisi”. Politeknik Dergisi 27/3 (July 2024), 1081-1087. https://doi.org/10.2339/politeknik.1208648.
JAMA Gözükızıl MF, Birelli A. Al, Cu Katkılı, Katkısız TiO2 İnce Film Biriktirme ve Katkılamanın Film Özelliklerine Etkisi. Politeknik Dergisi. 2024;27:1081–1087.
MLA Gözükızıl, Mehmet Fatih and Ali Birelli. “Al, Cu Katkılı, Katkısız TiO2 İnce Film Biriktirme Ve Katkılamanın Film Özelliklerine Etkisi”. Politeknik Dergisi, vol. 27, no. 3, 2024, pp. 1081-7, doi:10.2339/politeknik.1208648.
Vancouver Gözükızıl MF, Birelli A. Al, Cu Katkılı, Katkısız TiO2 İnce Film Biriktirme ve Katkılamanın Film Özelliklerine Etkisi. Politeknik Dergisi. 2024;27(3):1081-7.