Weldability of Haynes 188 Cobalt Based Superalloy and AISI 316L Austenitic Stainless Steel
Yıl 2024,
Cilt: 27 Sayı: 3, 995 - 1004, 25.07.2024
Samet Nohutçu
,
Ramazan Kaçar
,
Hayriye Ertek Emre
Öz
Because of their high temperature and oxidation resistance, similar and dissimilar metal welding is needed in producing gas turbine and rocket engine parts, in which cobalt-based superalloys are also used. The fusion welding methods such as gas tungsten arc welding (TIG), Laser welding (LW), Electron beam welding (EBW), and Plasma arc welding (PAW) are widely used for dissimilar metals welding applications. Weld discontinuity such as solidification cracks and liquefaction cracks can occur in the weldment. One way to overcome these problems is to use a low heat input in the welding process. Force TIG welding machine, which has been developed in recent years, allows automatic welding with its integrated systems. Thus, it provides the opportunity to obtain the heat input homogeneously and to perform autogenous welding with its control of the welding parameters. The study aims to investigate the weldability of the Haynes 188 – AISI 316L couple, as supplied, automatically with the Force TIG welding machine, without opening the weld groove, and without using any filler metal (autogenously). For this purpose, the strength and hardness of the dissimilar welded sample were determined, and its microstructure was evaluated in detail.
Destekleyen Kurum
Karabük Üniversitesi
Proje Numarası
KBÜBAP-22-DR-081
Teşekkür
Thanks to Mr. Kadir BEYENAL, owner of 2K welding company, for supporting welding equipment in obtaining the welded joint.
This work was supported by the Scientific Research Projects Coordination Unit of Karabük University under the project code number KBU-BAP-22-DR-081. The authors are grateful for their financial support.
Kaynakça
- [1] Kaner S., "The effect of aging treatments after TIG welding on AISI 304 stainless steel material on hardness and strength values", Journal Of Polytechnic, 24 (4): 1491–1498 (2020).
- [2] Byun T. S., Garrison B. E., McAlister M. R., Chen X., Gussev M. N., Lach T. G., Coq A. Le, Linton K., Joslin C. B., Carver J. K., List F. A., Dehoff R. R. and Terrani K. A., "Mechanical behavior of additively manufactured and wrought 316L stainless steels before and after neutron irradiation", Journal Of Nuclear Materials, 548: 1–32 (2021).
- [3] McGuire M. F., "Stainless Steels for Design Engineers", ASM International, 1–304 (2008).
- [4] Reed R. C., "The Superalloys Fundamentals and Applications", Cambridge University Press, 1–372 (2006).
- [5] Caiazzo F., Alfieri V., Sergi V., Schipani A. and Cinque S., "Dissimilar autogenous disk-laser welding of Haynes 188 and Inconel 718 superalloys for aerospace applications", International Journal Of Advanced Manufacturing Technology, 68: 1809–1820 (2013).
- [6] Dev S., Ramkumar K. D., Arivazhagan N. and Rajendran R., "Investigations on the microstructure and mechanical properties of dissimilar welds of inconel 718 and sulphur rich martensitic stainless steel, AISI 416", Journal Of Manufacturing Processes, 32: 685–698 (2018).
- [7] Ahmad G. N., Raza M. S., Singh N. K. and Kumar H., "Experimental investigation on Ytterbium fiber laser butt welding of Inconel 625 and Duplex stainless steel 2205 thin sheets", Optics And Laser Technology, 126: 1–10 (2020).
- [8] Henderson M. B., Arrell D., Heobel M., Larsson R. and Marchantc G., "Nickel-Based Superalloy Welding Practices for Industrial Gas Turbine Applications", Science And Technology Of Welding & Joining, 9 (1): 1–14 (2004).
- [9] Yilbas B. S. and Akthar S., "Laser welding of Haynes 188 alloy sheet: thermal stress analysis", The International Journal Of Advanced Manufacturing Technology, 56: 115–124 (2011).
- [10] Hejripour F. and Aidun D. K., "Consumable selection for arc welding between Stainless Steel 410 and Inconel 718", Journal Of Materials Processing Technology, 245: 287–299 (2017).
- [11] Osoba L. O., Ding R. G. and Ojo O. A., "Microstructural analysis of laser weld fusion zone in Haynes 282 superalloy", Materials Characterization, 65: 93–99 (2012).
- [12] Ramkumar D. K., Sridhar R., Periwal S., Oza S., Saxena V., Hidad P. and Arivazhagan N., "Investigations on the structure – Property relationships of electron beam welded Inconel 625 and UNS 32205", Materials & Design, 68: 158–166 (2015).
- [13] Shakil M., Ahmad M., Tariq N. H., Hasan B. A., Akhter J. I., Ahmed E., Mehmood M., Choudhry M. A. and Iqbal, M., "Microstructure and hardness studies of electron beam welded Inconel 625 and stainless steel 304L", Vacuum, 110: 121–126 (2014).
- [14] Gope D. K. and Chattopadhyaya S., "Dissimilar Welding of Nickel Based Superalloy with Stainless Steel: Influence of Post Weld Heat Treatment", Materials And Manufacturing Processes, 37 (2): 136–142 (2022).
- [15] Geddes B., Leon H. and Huang X., "Superalloys: Alloying and Performance", ASM International, Ohio, (2010).
- [16] ASM Matweb, AISI Type 316 Stainless Steel Data Sheet, https://asm.matweb.com/search/SpecificMaterial.asp?bassnum=MQ316A (last access date 02.10.2022)
- [17] Haynes International, HAYNES 188 Alloy Data Sheet, http://haynesintl.com/docs/default-source/pdfs/new-alloy-brochures/high-temperature-alloys/brochures/188-brochure.pdf?sfvrsn=bc7229d4_40 (last access date 15.11.2022)
- [18] Akar N. and Çelik F. D. G., " Effect of atmosphere and carbon content on microstructure and mechanical properties of co-cr-mo superalloy dental blocks produced by centrifugal ınvestment casting method", Journal Of Polytechnic, 0900 (4): 1435–1446 (2021).
- [19] Kahraman N., Durgutlu A. and Gülenç B., "Investigation of the effect of hydrogen addition to argon shielding gas on weld zone morphology of TIG welded 316L stainless steel", Journal Of Polytechnic, 7 (3): 223–228 (2004).
- [20] Cui Y., Xu C. and Han Q., "Effect of ultrasonic vibration on unmixed zone formation", Scripta Materialia, 55 (11): 975–978 (2006).
- [21] Hua C., Lu H., Yu C., Chen J. M., Zhang M. L. and Li D. Y., "Reduction of Laves phase in nickel-alloy welding process under ultrasonic Ampère’s force", Journal Of Materials Processing Technology, 252: 389–397 (2018).
- [22] Sirohi S., Pandey S. M., Świerczyńska A., Rogalski G., Kumar N., Landowski M., Fydrych D. and Pandey C., "Microstructure and Mechanical Properties of Combined GTAW and SMAW Dissimilar Welded Joints between Inconel 718 and 304L Austenitic Stainless Steel", Metals, 13 (1): 1–17 (2022).
- [23] Nevcanoğlu A., Pazarlioğlu S. S. and Salman S., "Investigation of Microstructre and Hardness Properties of Inconel 718 Material Combined With TIG Welding After Aging Heat Treatments", The Internatinonal Conference On Materials Science, Mechanical And Automotive Engineerings And Technology, 1–7 (2019).
- [24] Nevcanoğlu A., Bozkurt Y. and Salman S., "The Effect of TIG Welding Parameters and Automatization for Non-Heat Treated Inconel 718 Sheets", Arabian Journal For Science And Engineering, 46 (12): 12613–12623 (2021).
- [25] Osoba L. O., Ding R. G. and Ojo O. A., "Improved Resistance to Laser Weld Heat-Affected Zone Microfissuring in a Newly Developed Superalloy HAYNES 282", Metallurgical And Materials Transactions A, 43 (11): 4281–4295 (2012).
- [26] Ferreira L. D. S., Graf K. and Scheid A., "Microstructure and Properties of Nickel-based C276 Alloy Coatings by PTA on AISI 316L and API 5L X70 Steel Substrates", Materials Research, 18 (1): 212–221 (2015).
Haynes 188 Kobalt Esaslı Süperalaşım ile AISI 316L Ostenitik Paslanmaz Çeliğin Kaynak Edilebilirliği
Yıl 2024,
Cilt: 27 Sayı: 3, 995 - 1004, 25.07.2024
Samet Nohutçu
,
Ramazan Kaçar
,
Hayriye Ertek Emre
Öz
Kobalt esaslı süper esaslı süperalaşımların da kullanıldığı gaz türbini ve roket motor parçalarının üretiminde, yüksek sıcaklık ve oksidasyon dirençleri nedeniyle benzer ve benzer olmayan metallerin kaynağına ihtiyaç duyulmaktadır. Gaz tungsten ark kaynağı (TIG), Lazer kaynağı (LW), Elektron ışını kaynağı (EBW) ve Plazma ark kaynağı (PAW) gibi ergitme kaynak işlemleri, benzer olmayan metallerin kaynak uygulamaları için yaygın olarak kullanılmaktadır. Kaynaklı birleştirmelerde katılaşma ve sıvılaşma çatlakları gibi kaynak kusurları oluşabilir. Bu sorunların üstesinden gelmenin bir yolu, kaynak işleminde düşük ısı girdisi kullanmaktır. Son yıllarda geliştirilen Force TIG kaynak makinası entegre edildiği sistemler ile otomatik kaynak yapmaya imkân vermektedir. Böylece ısı girdisini homojen olarak elde etme ve kaynak parametreleri üzerindeki kontrolü ile otojen kaynak yapma olanağı sağlar. Çalışmada; Haynes 188-AISI 316L çiftinin tedarik edildiği şekliyle Force TIG kaynak makinesi ile otomatik olarak, kaynak ağzı açılmadan ve herhangi bir ilave metal kullanılmadan (otojen olarak) kaynaklanabilirliğinin araştırılması amaçlanmıştır. Bu amaçla, farklı cins malzeme kaynaklı numunenin dayanımı, sertliği belirlenmiş ve mikroyapısı detaylı olarak değerlendirilmiştir.
Proje Numarası
KBÜBAP-22-DR-081
Kaynakça
- [1] Kaner S., "The effect of aging treatments after TIG welding on AISI 304 stainless steel material on hardness and strength values", Journal Of Polytechnic, 24 (4): 1491–1498 (2020).
- [2] Byun T. S., Garrison B. E., McAlister M. R., Chen X., Gussev M. N., Lach T. G., Coq A. Le, Linton K., Joslin C. B., Carver J. K., List F. A., Dehoff R. R. and Terrani K. A., "Mechanical behavior of additively manufactured and wrought 316L stainless steels before and after neutron irradiation", Journal Of Nuclear Materials, 548: 1–32 (2021).
- [3] McGuire M. F., "Stainless Steels for Design Engineers", ASM International, 1–304 (2008).
- [4] Reed R. C., "The Superalloys Fundamentals and Applications", Cambridge University Press, 1–372 (2006).
- [5] Caiazzo F., Alfieri V., Sergi V., Schipani A. and Cinque S., "Dissimilar autogenous disk-laser welding of Haynes 188 and Inconel 718 superalloys for aerospace applications", International Journal Of Advanced Manufacturing Technology, 68: 1809–1820 (2013).
- [6] Dev S., Ramkumar K. D., Arivazhagan N. and Rajendran R., "Investigations on the microstructure and mechanical properties of dissimilar welds of inconel 718 and sulphur rich martensitic stainless steel, AISI 416", Journal Of Manufacturing Processes, 32: 685–698 (2018).
- [7] Ahmad G. N., Raza M. S., Singh N. K. and Kumar H., "Experimental investigation on Ytterbium fiber laser butt welding of Inconel 625 and Duplex stainless steel 2205 thin sheets", Optics And Laser Technology, 126: 1–10 (2020).
- [8] Henderson M. B., Arrell D., Heobel M., Larsson R. and Marchantc G., "Nickel-Based Superalloy Welding Practices for Industrial Gas Turbine Applications", Science And Technology Of Welding & Joining, 9 (1): 1–14 (2004).
- [9] Yilbas B. S. and Akthar S., "Laser welding of Haynes 188 alloy sheet: thermal stress analysis", The International Journal Of Advanced Manufacturing Technology, 56: 115–124 (2011).
- [10] Hejripour F. and Aidun D. K., "Consumable selection for arc welding between Stainless Steel 410 and Inconel 718", Journal Of Materials Processing Technology, 245: 287–299 (2017).
- [11] Osoba L. O., Ding R. G. and Ojo O. A., "Microstructural analysis of laser weld fusion zone in Haynes 282 superalloy", Materials Characterization, 65: 93–99 (2012).
- [12] Ramkumar D. K., Sridhar R., Periwal S., Oza S., Saxena V., Hidad P. and Arivazhagan N., "Investigations on the structure – Property relationships of electron beam welded Inconel 625 and UNS 32205", Materials & Design, 68: 158–166 (2015).
- [13] Shakil M., Ahmad M., Tariq N. H., Hasan B. A., Akhter J. I., Ahmed E., Mehmood M., Choudhry M. A. and Iqbal, M., "Microstructure and hardness studies of electron beam welded Inconel 625 and stainless steel 304L", Vacuum, 110: 121–126 (2014).
- [14] Gope D. K. and Chattopadhyaya S., "Dissimilar Welding of Nickel Based Superalloy with Stainless Steel: Influence of Post Weld Heat Treatment", Materials And Manufacturing Processes, 37 (2): 136–142 (2022).
- [15] Geddes B., Leon H. and Huang X., "Superalloys: Alloying and Performance", ASM International, Ohio, (2010).
- [16] ASM Matweb, AISI Type 316 Stainless Steel Data Sheet, https://asm.matweb.com/search/SpecificMaterial.asp?bassnum=MQ316A (last access date 02.10.2022)
- [17] Haynes International, HAYNES 188 Alloy Data Sheet, http://haynesintl.com/docs/default-source/pdfs/new-alloy-brochures/high-temperature-alloys/brochures/188-brochure.pdf?sfvrsn=bc7229d4_40 (last access date 15.11.2022)
- [18] Akar N. and Çelik F. D. G., " Effect of atmosphere and carbon content on microstructure and mechanical properties of co-cr-mo superalloy dental blocks produced by centrifugal ınvestment casting method", Journal Of Polytechnic, 0900 (4): 1435–1446 (2021).
- [19] Kahraman N., Durgutlu A. and Gülenç B., "Investigation of the effect of hydrogen addition to argon shielding gas on weld zone morphology of TIG welded 316L stainless steel", Journal Of Polytechnic, 7 (3): 223–228 (2004).
- [20] Cui Y., Xu C. and Han Q., "Effect of ultrasonic vibration on unmixed zone formation", Scripta Materialia, 55 (11): 975–978 (2006).
- [21] Hua C., Lu H., Yu C., Chen J. M., Zhang M. L. and Li D. Y., "Reduction of Laves phase in nickel-alloy welding process under ultrasonic Ampère’s force", Journal Of Materials Processing Technology, 252: 389–397 (2018).
- [22] Sirohi S., Pandey S. M., Świerczyńska A., Rogalski G., Kumar N., Landowski M., Fydrych D. and Pandey C., "Microstructure and Mechanical Properties of Combined GTAW and SMAW Dissimilar Welded Joints between Inconel 718 and 304L Austenitic Stainless Steel", Metals, 13 (1): 1–17 (2022).
- [23] Nevcanoğlu A., Pazarlioğlu S. S. and Salman S., "Investigation of Microstructre and Hardness Properties of Inconel 718 Material Combined With TIG Welding After Aging Heat Treatments", The Internatinonal Conference On Materials Science, Mechanical And Automotive Engineerings And Technology, 1–7 (2019).
- [24] Nevcanoğlu A., Bozkurt Y. and Salman S., "The Effect of TIG Welding Parameters and Automatization for Non-Heat Treated Inconel 718 Sheets", Arabian Journal For Science And Engineering, 46 (12): 12613–12623 (2021).
- [25] Osoba L. O., Ding R. G. and Ojo O. A., "Improved Resistance to Laser Weld Heat-Affected Zone Microfissuring in a Newly Developed Superalloy HAYNES 282", Metallurgical And Materials Transactions A, 43 (11): 4281–4295 (2012).
- [26] Ferreira L. D. S., Graf K. and Scheid A., "Microstructure and Properties of Nickel-based C276 Alloy Coatings by PTA on AISI 316L and API 5L X70 Steel Substrates", Materials Research, 18 (1): 212–221 (2015).