Research Article
BibTex RIS Cite

Statistical Modelling of Process Variables in the Electrospinning Production of PAN-Based Nanofibers

Year 2024, Volume: 27 Issue: 3, 1089 - 1099, 25.07.2024
https://doi.org/10.2339/politeknik.1247175

Abstract

In this study, the effects of the electrospinning operating parameters such as flow rate (1-5 ml/h), voltage (15-30 kV), and distance to the collector (100-200 mm) on the physical properties of PAN-based nanofibers were investigated statistically by applying the central composite design method. The minimum nanofiber diameter was found to be 366.5 nm, under operating conditions of 5 ml/h flow rate, 30 kV, and 100 mm distance to the collector. Experimental conditions of 15 kV, 5 ml/h flow rate, and a 200 mm distance to the collector, a maximum porosity value of 0.446 was obtained. Similarly to the porosity, the water absorption capacity (WAC) value did not show a linear increase, and the maximum absorption capacity was calculated as 5712%, and at that point where the diameter is relatively large and the porosity is low.

Supporting Institution

Sivas Bilim ve Teknoloji Üniversitesi

Project Number

2022-GENL-MUH-0008

Thanks

The authors acknowledge the financial support of Sivas University of Science and Technology under the grant no: 2022-GENL-MUH-0008.

References

  • [1] Choi, D., Kil, H.S., Lee, S., “Fabrication of low-cost carbon fibers using economical precursors and advanced processing technologies”, Carbon, 142, 610–649, (2019).
  • [2] Zabihi, O., Ahmadi, M., Li, Q., Shafei, S., Huson, M.G., Naebe, M.: Carbon fibre surface modification using functionalized nanoclay, “A hierarchical interphase for fibre-reinforced polymer composites”, Composites Science and Technology, 148, 49–58, (2017).
  • [3] Atlı İ.S. and Evcin A., “Analysing mechanical behaviors of carbon fiber reinforced silicone matrix composite materials after static folding”, Journal of Polytechnic, 23(2): 351-359, (2020).
  • [4] Huang, M., Tu, H., Chen, J., Liu, R., Liang, Z., Jiang, L., Shi, X., Du, Y., Deng, H., “Chitosan-rectorite nanospheres embedded aminated polyacrylonitrile nanofibers via shoulder-to-shoulder electrospinning and electrospraying for enhanced heavy metal removal”, Applied Surface Science, 437, 294–303, (2018).
  • [5] Chaúque, E.F.C., Dlamini, L.N., Adelodun, A.A., Greyling, C.J., Catherine Ngila, J., “Modification of electrospun polyacrylonitrile nanofibers with EDTA for the removal of Cd and Cr ions from water effluents”, Applied Surface Science, 369, 19–28, (2016).
  • [6] Yerkinbekova, Y., Kalybekkyzy, S., Tolganbek, N., Kahraman, M.V., Bakenov, Z., Mentbayeva, A., “Photo-crosslinked lignin/PAN electrospun separator for safe lithium-ion batteries”, Scientific Reports, 12, 1–13, (2022).
  • [7] Han, Q., Zhang, W., Han, Z., Niu, S., Zhang, J., Wang, F., Li, X., Geng, D., Yu, G., “Preparation of PAN-based carbon fiber/Co3O4 composite and potential application in structural lithium-ion battery anodes”, Ionics, 25, 5333–5340, (2019).
  • [8] Pusta, A., Tertiș, M., Cristea, C., Mirel, S., “Wearable Sensors for the Detection of Biomarkers for Wound Infection”, Biosensors, 12, 1-12, (2021).
  • [9] Khayyam, H., Jazar, R.N., Nunna, S., Golkarnarenji, G., Badii, K., Fakhrhoseini, S.M., Kumar, S., Naebe, M., “PAN precursor fabrication, applications and thermal stabilization process in carbon fiber production: Experimental and mathematical modelling”, Progress in Materials Science, 107, 100575, (2020).
  • [10] Özdemir A.O., Karataş Ç. ve Yücesu H.S., “Elyaf konfigürasyonunun termoplastik kompozit levhaların mekanik özelliklerine etkisi”, Politeknik Dergisi, 24(2): 599-607, (2021).
  • [11] Korku M., Feyzullahoğlu E. ve İlhan R., “Farklı türlerde polyester ve çekme katkısı içeren cam elyaf takviyeli polyester kompozit malzemelerde çevresel koşulların aşınma davranışlarına olan etkilerinin incelenmesi”, Politeknik Dergisi, *(*): *, (*).
  • [12] Wei, Q., Xiong, F., Tan, S., Huang, L., Lan, E.H., Dunn, B., Mai, L., Wei, Q.L., Xiong, F.Y., Tan, S.S., Huang, L., Mai, L.Q., Lan, E.H., Dunn, B., “Porous One-Dimensional Nanomaterials: Design, Fabrication and Applications in Electrochemical Energy Storage”, Advanced Materials, 29, 1602300, (2017).
  • [13] Subbiah, T., Bhat, G.S., Tock, R.W., Parameswaran, S., Ramkumar, S.S., “Electrospinning of nanofibers”, Journal of Applied Polymer Science, 96, 557–569, (2005).
  • [14] Ali, A.A., Eltabey, M.M., Farouk, W.M., Zoalfakar, S.H., “Electrospun precursor carbon nanofibers optimization by using response surface methodology”, Journal Electrostatics, 72, 462–469, (2014).
  • [15] Matulevicius, J., Kliucininkas, L., Martuzevicius, D., Krugly, E., Tichonovas, M., Baltrusaitis, J., “Design and characterization of electrospun polyamide nanofiber media for air filtration applications”, Journal of Nanomaterials, 1-13, (2014).
  • [16] Campbell, F. C., “Introduction to composite materials”, Structural composite materials, 1, 1-29, (2010). [17] Andreola, F., Leonelli, C., Romagnoli, M., Miselli, P., “Techniques Used to Determine Porosity”, American Ceramic Society Bulletin, 79, 49–52, (2000).
  • [18] Cazorla-Amorós, D., Alcaniz-Monge, J., Linares-Solano, A., “Characterization of activated carbon fibers by CO2 adsorption”, Langmuir, 12, 2820–2824, (1996).
  • [19] Jafari, M.J., Akhlaghi Pirposhteh, E., Farhangian, M., Khodakarim Ardakani, S., Tavakol, E., Dehghan, S.F., Khalilinejad, A., “Optimizing the electrospinning parameters in polyvinyl chloride nanofiber fabrication using CCD”, Research Journal of Textile and Apparel, 1-16, (2022).
  • [20]. Wei, L., Liu, C., Dong, J., Fan, X., Zhi, C., Sun, R., “Process investigation of nanofiber diameter based on linear needleless spinneret by response surface methodology”, Polymer Testing, 110, (2022).
  • [21] Nasouri, K., Bahrambeygi, H., Rabbi, A., Shoushtari, A.M., Kaflou, A., “Modeling and optimization of electrospun PAN nanofiber diameter using response surface methodology and artificial neural networks”, Journal of Applied Polymer Science, 126, 127–135, (2012).
  • [22] Rabbi, A., Nasouri, K., Bahrambeygi, H., Shoushtari, A.M., Babaei, M.R., “RSM and ANN Approaches for Modeling and Optimizing of Electrospun Polyurethane Nanofibers Morphology”, Fibers and Polymers, 13, 1007–1014, (2012).
  • [23] Murphy, R., Turcott, A., Banuelos, L., Dowey, E., Goodwin, B., O’, K., Cardinal, H., “SIMPoly: A Matlab-Based Image Analysis Tool to Measure Electrospun Polymer Scaffold Fiber Diameter, Tissue Engineering Part C: Methods, 26(12), 628-636, (2020).
  • [24] Dehghan, S.F., Golbabaei, F., Maddah, B., Latifi, M., Pezeshk, H., Hasanzadeh, M., Akbar-Khanzadeh, F., “Optimization of electrospinning parameters for polyacrylonitrile-MgO nanofibers applied in air filtration”, Journal of the Air & Waste Management Association, 66(9), 912-921, (2016).
  • [25] Do, V.T., Nguyen-Tran, H.D., Chun, D.M., “Effect of polypropylene on the mechanical properties and water absorption of carbon-fiber-reinforced-polyamide-6/polypropylene composite”, Composite Structures, 150, 240–245, (2016).

PAN Bazlı Nanofiberlerin Elektroeğirme ile Üretiminde Proses Değişkenlerinin İstatistiksel Modellenmesi

Year 2024, Volume: 27 Issue: 3, 1089 - 1099, 25.07.2024
https://doi.org/10.2339/politeknik.1247175

Abstract

Bu çalışmada, akış hızı (1-5 ml/sa), voltaj (15-30 kV) ve kollektöre olan mesafe (100-200 mm) gibi elektroeğirme çalışma parametrelerinin PAN bazlı nanofiberlerin fiziksel özelliklerine etkisi, merkezi kompozit tasarım yöntemi uygulanarak, istatistiksel olarak incelenmiştir. 5 ml/sa akış hızında, 30 kV voltajda ve kolektöre 100 mm mesafedeki çalışma koşullarında minimum nanofiber çapı 366,5 nm olarak bulunmuştur. 15 kV, 5 ml/sa akış hızı ve kolektöre 200 mm mesafe uzaklıktaki deney koşullarında, maksimum gözeneklilik değeri 0,446 olarak elde edilmiştir. Gözenekliliğe benzer şekilde, su tutma kapasitesi (STK) değeri doğrusal bir artış göstermemiş ve maksimum absorpsiyon kapasitesi %5712 olarak hesaplanmış ve bu noktada çapın nispeten büyük ve gözenekliliğin düşük olduğu nokta olarak belirlenmiştir.

Project Number

2022-GENL-MUH-0008

References

  • [1] Choi, D., Kil, H.S., Lee, S., “Fabrication of low-cost carbon fibers using economical precursors and advanced processing technologies”, Carbon, 142, 610–649, (2019).
  • [2] Zabihi, O., Ahmadi, M., Li, Q., Shafei, S., Huson, M.G., Naebe, M.: Carbon fibre surface modification using functionalized nanoclay, “A hierarchical interphase for fibre-reinforced polymer composites”, Composites Science and Technology, 148, 49–58, (2017).
  • [3] Atlı İ.S. and Evcin A., “Analysing mechanical behaviors of carbon fiber reinforced silicone matrix composite materials after static folding”, Journal of Polytechnic, 23(2): 351-359, (2020).
  • [4] Huang, M., Tu, H., Chen, J., Liu, R., Liang, Z., Jiang, L., Shi, X., Du, Y., Deng, H., “Chitosan-rectorite nanospheres embedded aminated polyacrylonitrile nanofibers via shoulder-to-shoulder electrospinning and electrospraying for enhanced heavy metal removal”, Applied Surface Science, 437, 294–303, (2018).
  • [5] Chaúque, E.F.C., Dlamini, L.N., Adelodun, A.A., Greyling, C.J., Catherine Ngila, J., “Modification of electrospun polyacrylonitrile nanofibers with EDTA for the removal of Cd and Cr ions from water effluents”, Applied Surface Science, 369, 19–28, (2016).
  • [6] Yerkinbekova, Y., Kalybekkyzy, S., Tolganbek, N., Kahraman, M.V., Bakenov, Z., Mentbayeva, A., “Photo-crosslinked lignin/PAN electrospun separator for safe lithium-ion batteries”, Scientific Reports, 12, 1–13, (2022).
  • [7] Han, Q., Zhang, W., Han, Z., Niu, S., Zhang, J., Wang, F., Li, X., Geng, D., Yu, G., “Preparation of PAN-based carbon fiber/Co3O4 composite and potential application in structural lithium-ion battery anodes”, Ionics, 25, 5333–5340, (2019).
  • [8] Pusta, A., Tertiș, M., Cristea, C., Mirel, S., “Wearable Sensors for the Detection of Biomarkers for Wound Infection”, Biosensors, 12, 1-12, (2021).
  • [9] Khayyam, H., Jazar, R.N., Nunna, S., Golkarnarenji, G., Badii, K., Fakhrhoseini, S.M., Kumar, S., Naebe, M., “PAN precursor fabrication, applications and thermal stabilization process in carbon fiber production: Experimental and mathematical modelling”, Progress in Materials Science, 107, 100575, (2020).
  • [10] Özdemir A.O., Karataş Ç. ve Yücesu H.S., “Elyaf konfigürasyonunun termoplastik kompozit levhaların mekanik özelliklerine etkisi”, Politeknik Dergisi, 24(2): 599-607, (2021).
  • [11] Korku M., Feyzullahoğlu E. ve İlhan R., “Farklı türlerde polyester ve çekme katkısı içeren cam elyaf takviyeli polyester kompozit malzemelerde çevresel koşulların aşınma davranışlarına olan etkilerinin incelenmesi”, Politeknik Dergisi, *(*): *, (*).
  • [12] Wei, Q., Xiong, F., Tan, S., Huang, L., Lan, E.H., Dunn, B., Mai, L., Wei, Q.L., Xiong, F.Y., Tan, S.S., Huang, L., Mai, L.Q., Lan, E.H., Dunn, B., “Porous One-Dimensional Nanomaterials: Design, Fabrication and Applications in Electrochemical Energy Storage”, Advanced Materials, 29, 1602300, (2017).
  • [13] Subbiah, T., Bhat, G.S., Tock, R.W., Parameswaran, S., Ramkumar, S.S., “Electrospinning of nanofibers”, Journal of Applied Polymer Science, 96, 557–569, (2005).
  • [14] Ali, A.A., Eltabey, M.M., Farouk, W.M., Zoalfakar, S.H., “Electrospun precursor carbon nanofibers optimization by using response surface methodology”, Journal Electrostatics, 72, 462–469, (2014).
  • [15] Matulevicius, J., Kliucininkas, L., Martuzevicius, D., Krugly, E., Tichonovas, M., Baltrusaitis, J., “Design and characterization of electrospun polyamide nanofiber media for air filtration applications”, Journal of Nanomaterials, 1-13, (2014).
  • [16] Campbell, F. C., “Introduction to composite materials”, Structural composite materials, 1, 1-29, (2010). [17] Andreola, F., Leonelli, C., Romagnoli, M., Miselli, P., “Techniques Used to Determine Porosity”, American Ceramic Society Bulletin, 79, 49–52, (2000).
  • [18] Cazorla-Amorós, D., Alcaniz-Monge, J., Linares-Solano, A., “Characterization of activated carbon fibers by CO2 adsorption”, Langmuir, 12, 2820–2824, (1996).
  • [19] Jafari, M.J., Akhlaghi Pirposhteh, E., Farhangian, M., Khodakarim Ardakani, S., Tavakol, E., Dehghan, S.F., Khalilinejad, A., “Optimizing the electrospinning parameters in polyvinyl chloride nanofiber fabrication using CCD”, Research Journal of Textile and Apparel, 1-16, (2022).
  • [20]. Wei, L., Liu, C., Dong, J., Fan, X., Zhi, C., Sun, R., “Process investigation of nanofiber diameter based on linear needleless spinneret by response surface methodology”, Polymer Testing, 110, (2022).
  • [21] Nasouri, K., Bahrambeygi, H., Rabbi, A., Shoushtari, A.M., Kaflou, A., “Modeling and optimization of electrospun PAN nanofiber diameter using response surface methodology and artificial neural networks”, Journal of Applied Polymer Science, 126, 127–135, (2012).
  • [22] Rabbi, A., Nasouri, K., Bahrambeygi, H., Shoushtari, A.M., Babaei, M.R., “RSM and ANN Approaches for Modeling and Optimizing of Electrospun Polyurethane Nanofibers Morphology”, Fibers and Polymers, 13, 1007–1014, (2012).
  • [23] Murphy, R., Turcott, A., Banuelos, L., Dowey, E., Goodwin, B., O’, K., Cardinal, H., “SIMPoly: A Matlab-Based Image Analysis Tool to Measure Electrospun Polymer Scaffold Fiber Diameter, Tissue Engineering Part C: Methods, 26(12), 628-636, (2020).
  • [24] Dehghan, S.F., Golbabaei, F., Maddah, B., Latifi, M., Pezeshk, H., Hasanzadeh, M., Akbar-Khanzadeh, F., “Optimization of electrospinning parameters for polyacrylonitrile-MgO nanofibers applied in air filtration”, Journal of the Air & Waste Management Association, 66(9), 912-921, (2016).
  • [25] Do, V.T., Nguyen-Tran, H.D., Chun, D.M., “Effect of polypropylene on the mechanical properties and water absorption of carbon-fiber-reinforced-polyamide-6/polypropylene composite”, Composite Structures, 150, 240–245, (2016).
There are 24 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Ebubekir Sıddık Aydın 0000-0002-8704-4502

İbrahim Korkut 0000-0002-2720-0796

Project Number 2022-GENL-MUH-0008
Early Pub Date January 31, 2024
Publication Date July 25, 2024
Submission Date February 3, 2023
Published in Issue Year 2024 Volume: 27 Issue: 3

Cite

APA Aydın, E. S., & Korkut, İ. (2024). Statistical Modelling of Process Variables in the Electrospinning Production of PAN-Based Nanofibers. Politeknik Dergisi, 27(3), 1089-1099. https://doi.org/10.2339/politeknik.1247175
AMA Aydın ES, Korkut İ. Statistical Modelling of Process Variables in the Electrospinning Production of PAN-Based Nanofibers. Politeknik Dergisi. July 2024;27(3):1089-1099. doi:10.2339/politeknik.1247175
Chicago Aydın, Ebubekir Sıddık, and İbrahim Korkut. “Statistical Modelling of Process Variables in the Electrospinning Production of PAN-Based Nanofibers”. Politeknik Dergisi 27, no. 3 (July 2024): 1089-99. https://doi.org/10.2339/politeknik.1247175.
EndNote Aydın ES, Korkut İ (July 1, 2024) Statistical Modelling of Process Variables in the Electrospinning Production of PAN-Based Nanofibers. Politeknik Dergisi 27 3 1089–1099.
IEEE E. S. Aydın and İ. Korkut, “Statistical Modelling of Process Variables in the Electrospinning Production of PAN-Based Nanofibers”, Politeknik Dergisi, vol. 27, no. 3, pp. 1089–1099, 2024, doi: 10.2339/politeknik.1247175.
ISNAD Aydın, Ebubekir Sıddık - Korkut, İbrahim. “Statistical Modelling of Process Variables in the Electrospinning Production of PAN-Based Nanofibers”. Politeknik Dergisi 27/3 (July 2024), 1089-1099. https://doi.org/10.2339/politeknik.1247175.
JAMA Aydın ES, Korkut İ. Statistical Modelling of Process Variables in the Electrospinning Production of PAN-Based Nanofibers. Politeknik Dergisi. 2024;27:1089–1099.
MLA Aydın, Ebubekir Sıddık and İbrahim Korkut. “Statistical Modelling of Process Variables in the Electrospinning Production of PAN-Based Nanofibers”. Politeknik Dergisi, vol. 27, no. 3, 2024, pp. 1089-9, doi:10.2339/politeknik.1247175.
Vancouver Aydın ES, Korkut İ. Statistical Modelling of Process Variables in the Electrospinning Production of PAN-Based Nanofibers. Politeknik Dergisi. 2024;27(3):1089-9.