Research Article
BibTex RIS Cite

Analysis of the Parameters affecting the Signaling System at Coordinated Intersections Case Study

Year 2024, Volume: 27 Issue: 4, 1515 - 1539, 25.09.2024
https://doi.org/10.2339/politeknik.1200368

Abstract

Population growth, industrialization, and rapid urbanization have led to problems in urban transportation, and different approaches are needed to solve these problems. In this study, three intersections on a sequential corridor with an isolated control system in Elazig province were examined as an example. Traffic volume measurements were taken during peak hours of all days of the week using built-in cameras in this corridor. The existing geometry of the intersections, control forms, signal cycles, phase durations, and phase plans were also considered. The current situation of the intersections was analyzed and evaluated using microsimulation software (PTV Vissim). Offset times were determined by considering the average speed and distances between the intersections, and coordination was established between the intersections. Four different coordinated states were analyzed and evaluated using microsimulation software by making changes to the intersection geometry, phase, and cycle time diagrams. The delay, number of stops, service level, queue lengths, travel time, and average speed parameters were compared between the current situation and the four different coordinated situations created. As a result of the study, it was found that significant improvements (50% or more) were achieved in the performance criteria considered in the situations of coordinated control compared to the current situation, and these improvements had different values for each criterion and situation. Therefore, it was concluded that coordinated control of intersections instead of isolated controls would be beneficial for urban traffic management, and the reorganization of intersection geometries together with the signal timings and phase plans could contribute to corridor management.

References

  • [1] Duman, Z.N., “Koordine Kavşaklarda Sinyalizasyon Sistemine Etki Eden Parametrelerin Belirlenmesi.” Yüksek Lisans Tezi, Fırat Üniversitesi, Fen Bilimleri Enstitüsü, 145 s. (2022).
  • [2] Şener, E., Sebatlı Sağlam A., Çavdur F., "Otonom-Paylaşımlı Araç Yönetim Sistemi", Politeknik Dergisi, 26 (1): 81-92, (2023).
  • [3] Incirci, N., Ekmekci, I., "Determining The Location Of The Urban Transport İnterchanges Based On The Geographic İnformation System: The Case Study For İstanbul", Politeknik Dergisi, 24 (3):1121-1128, (2021).
  • [4] Cakici, Z., Murat, Y.S., "The Optimization of Signal Timings for Signalized Roundabouts using Differential Evolution Algorithm" May 2021, El-Cezeri Fen ve Mühendislik Dergisi, 8 (2):635-651, (2021).
  • [5] Özinal, Y., Uz, V.E., "Dönel Kavşak Geometrik Elemanlarının Kavşak Güvenliği Üzerine Etkisinin Literatür Işığında Değerlendirilmesi", Politeknik Dergisi, 24 (1):283-297, (2021).
  • [6] Ragab M., El-Naga I.A., “Measures to Improve Traffıc Operatıons at Sıgnalızed Intersectıons in Urban Areas”, International Journal for Traffic and Transport Engineering (Int. J. Traffic Transp. Eng.) 9(4): 408 - 418, (2019).
  • [7] Aktaş Y., Aslan H., Pistil F., “Sinyalize Kavşaklarda Meydana Gelen Taşıt Gecikmelerinin VISSIM Simülasyon Modellenmesi”, 5th International Symposium on Innovative Technologies in Engineering and Science, Baku-Azerbaijan, 374-386, (2017).
  • [8] Yalınız P., Arberk K., “Eskişehir’de Birbirine Yakın Kavşaklardaki Trafik Işıklarının Koordineli Olarak Düzenlenmesi”, 2. Ulusal Kentsel Altyapı Sempozyumu, Adana, s 63-74, (1999).
  • [9] Zuo Z., Yang G., Shao C., “Design of Signal Timing Optimization Based on the Unsymmetrical Traffic Flow of Signalized Intersections”, in: Traffic Transp. Stud. 374–385, (2010).
  • [10] Li R., Li W., “A Study on the Improvement of T-intersection Signal Timing”, in: Traffic Transp. Stud. 386–393, (2010).
  • [11] Zhang W., Peng X., Yang B., “An Optimal Signal Timing Method for Intersections Based on Minimum Generalized Cost”, in: ICCTP 2011 Towar. Sustain. Transp. Syst.,1200–1210 (2011).
  • [12] Murat Y.S., Cakici Z., Tian Z., “A Signal Timing Assignment Proposal For Urban Multi Lane Signalised Roundabouts”, Journal of the Croatian Association of Civil Engineers, Gradevinar, 113-124, (2019).
  • [13] Saha A., Chandra S., Ghosh I, “Delay at Signalized Intersections Under Mixed Traffic Conditions”, J. Transp. Eng. Part A Syst. 143(8), (2017).
  • [14] Webster, F.V., “Traffic Signal Settings”, Road Research Technical Paper, No. 39, Road Research Laboratory, Her Majesty Stationary Office, London, UK, (1958).
  • [15] Dogan, E., Akgungor, A.P., & Arslan, T., “Estimation of Delay and Vehicle Stops at Signalized Intersections Using Artificial Neural Network”. Engineering Review, 36(2): 157-165, (2016).
  • [16] Quiroga, C.A., Bullock, D., “Measuring control delay at signalized intersections”. Journal of Transportation Engineering 125, 271-280, (1999).
  • [17] Murat, Y.S., “Comparison of Fuzzy Logic and Artificial Neural Networks Approaches in Vehicle Delay Modeling”, Transportation Research Part C 14 316–334, (2006).
  • [18] Day, C. M., and D. M. Bullock. 2010. “Performance based management of arterial traffic signal systems”. NCHRP Project 3-79a.Washington, DC: Transportation Research Board, (2010).
  • [19] Tian, Z., and Urbanik. T., “System partition technique to improve signal coordination and progression.” J. Transp. Eng. 133 (2): 119–128, (2007).
  • [20] Haque B., Zahid A., Siddiki N. A., “Coordinated Traffic Signal Design for Major Intersections in Sylhet City”, Journal of Civil Engineering Frontiers, 51-60, (2022).
  • [21] Day, C. M., R. Haseman, H. Premachandra, T. M. Brennan, J. S. Wasson, J. R. Sturdevant, and D. M. Bullock. “Evaluation of arterial signal coordination: Methodologies for visualizing high resolution event data and measuring travel time.” Transp. Res. Rec. 2192 (1): 37–49, (2010).
  • [22] Abbas M., Bullock D., Head L., “Real-Time Offset Transitioning Algorithm For Coordinating Traffic Signals”, Transportation Research Record, 26-39, (2001).
  • [23] Lu, K., X. Zeng, L. Li, and J. Xu., “Two-way bandwidth maximization model with proration impact factor for unbalanced bandwidth demands.” J. Transp. Eng. 38 (5): 527–534, (2012).
  • [24] Abdulhafedh A., “How to Design Traffic Signals at Multiple Coordinated Intersections”, International Journal of Automation, Control and Intelligent Systems, 29-35, (2018).
  • [25] Sunkari, S., “The benefits of retiming traffic signals.” ITE J. 74 (4): 26–29 (2004).
  • [26] Karaoğlan M.E., “Koordine Sinyalize Kavşaklarda Optimizasyon”, Yüksek Lisans Tezi, Pamukkale Üniversitesi Fen Bilimleri Enstitüsü, (2021).
  • [27] Vu M.T., Nguyen V.P., Nguyen T.A., “Methods for Designing Signalized Double-İntersections with Mixed Traffic in Vietnam”, Procedia Eng., 131–138, (2016).
  • [28] Li, H., S. M. Lavrenz, C. M. Day, A. L. Stevens, and D. M. Bullock., “Use of both travel time and travel time reliability measures to quantify benefits of signal timing maintenance and optimization.” Transp. Res. Rec. 2487 (1): 55–68, (2015).
  • [29] Zheng, J., H. X. Liu, S. Misgen, and G. Yu., “Performance diagnosis tool for arterial traffic signals.” Transp. Res. Rec. 2356 (1): 109–116, (2013).
  • [30] Yue, R., Yang, G., Lin, D., Wang, A. And Tian Z., “Traffic Signal Retiming to Improve Corridor Performance”, ASCE J. Transp. Eng., 147 (1): 05020009, (2021).
  • [31] Qi H., Dai R., Tang Q., Hu X., “Coordinated İntersection Signal Design For Mixed Traffic Flow Of Human-Driven And Connected And Autonomous Vehicles”, IEEE Access, 26067-26084, (2020).
  • [32] A. A. Malikopoulos, L. Beaver, and I. V. Chremos, “Optimal time trajectory and coordination for connected and automated vehicles,” Automatica,125(6):109469, (2021).
  • [33] Yanqiu Cheng, Chenxi Chen, Xianbiao Hu, Kuanmin Chen, Qing Tang, Yang Song, "Enhancing Mixed Traffic Flow Safety via Connected and Autonomous Vehicle Trajectory Planning with a Reinforcement Learning Approach", Journal of Advanced Transportation, vol. 2021, Article ID 6117890, 11, (2021).
  • [34] Yao R., Zhang W., Long M., , Mathematical Problems in Engineering (2020).
  • [35] Murat Y.Ş., “Denizli Şehiriçi Kavşaklarındaki Trafik Akımlarının Bilgisayarla İncelenmesi”, Yüksek Lisans Tezi, [Pamukkale Üniversitesi Fen Bilimleri Enstitüsü, (1996).
  • [36] PTV Group Vissim Academic License, ORD-06074-D9Z6C5, PTV-0501885.
  • [37] Minitab 21 Statistical Software [Computer software]. State College, PA: Minitab, Inc. (www.minitab.com) (2022).

Koordine Kavşaklarda Sinyalizasyon Sistemine Etki Eden Parametrelerin İncelenmesi Vaka Durum Çalışması

Year 2024, Volume: 27 Issue: 4, 1515 - 1539, 25.09.2024
https://doi.org/10.2339/politeknik.1200368

Abstract

Kentsel ulaşımda; nüfus fazlalaşması, sanayileşme ve hızlı kentleşme nedeniyle, sorunlar görülmekte ve bu sorunları çözmek amacıyla farklı yaklaşımlara ihtiyaç duyulmaktadır. Yapılan çalışmada, Elazığ ili örneğinde, ayrık (izole) olarak denetlenen ve sıralı şekilde bir koridor üzerinde bulunan üç kavşak incelenmiştir. Bu koridorda bulunan yerleşik kameralar ile haftanın bütün günlerinin zirve saatlerinde trafik hacim ölçümleri yapılmıştır. Ayrıca kavşakların mevcut durumdaki geometrileri, denetim biçimleri, devre, faz süreleri ve faz planları dikkate alınmıştır. Kavşaklara ait mevcut durum, bir mikrosimülasyon yazılımı kullanılarak analiz edilmiş ve değerlendirilmiştir. Kavşaklar arasındaki ortalama hız ve mesafeler dikkate alınarak, ofset süreleri tespit edilmiş ve kavşaklar arasında eşgüdüm (koordinasyon) oluşturulmuştur. Kavşak geometrisi, faz ve devre süresi diyagramları üzerinde değişiklikler yapılarak oluşturulan dört farklı eşgüdümlü durum (senaryo) mikrosimülasyon yazılımıyla analiz edilip değerlendirilmiştir. Mevcut durum ve oluşturulan dört farklı eşgüdümlü durumun performansı; gecikme, durma sayısı, hizmet seviyesi, kuyruk uzunlukları, seyahat süresi ve ortalama hız ölçütlerine göre karşılaştırılmıştır. Çalışmanın sonucunda, mevcut duruma göre, eşgüdümlü (koordine) denetim durumlarında, dikkate alınan performans ölçütlerinde önemli seviyelerde (%50 ve üzerinde) iyileşmeler elde edildiği, bu iyileşmelerin her bir ölçüt ve durum için farklı değerlerde olduğu anlaşılmıştır. Sonuç olarak, incelenen koridor özelinde, kavşakların ayrık denetlenmesi yerine eşgüdümlü biçimde denetlenmesinin kentsel trafik yönetimi açısından faydalı olacağı ve koridor yönetiminde, sinyal sürelerinin yanında, faz planı ve kavşak geometrilerinin de yeniden düzenlenmesinin katkı sağlayabileceği bulgusuna ulaşılmıştır.

References

  • [1] Duman, Z.N., “Koordine Kavşaklarda Sinyalizasyon Sistemine Etki Eden Parametrelerin Belirlenmesi.” Yüksek Lisans Tezi, Fırat Üniversitesi, Fen Bilimleri Enstitüsü, 145 s. (2022).
  • [2] Şener, E., Sebatlı Sağlam A., Çavdur F., "Otonom-Paylaşımlı Araç Yönetim Sistemi", Politeknik Dergisi, 26 (1): 81-92, (2023).
  • [3] Incirci, N., Ekmekci, I., "Determining The Location Of The Urban Transport İnterchanges Based On The Geographic İnformation System: The Case Study For İstanbul", Politeknik Dergisi, 24 (3):1121-1128, (2021).
  • [4] Cakici, Z., Murat, Y.S., "The Optimization of Signal Timings for Signalized Roundabouts using Differential Evolution Algorithm" May 2021, El-Cezeri Fen ve Mühendislik Dergisi, 8 (2):635-651, (2021).
  • [5] Özinal, Y., Uz, V.E., "Dönel Kavşak Geometrik Elemanlarının Kavşak Güvenliği Üzerine Etkisinin Literatür Işığında Değerlendirilmesi", Politeknik Dergisi, 24 (1):283-297, (2021).
  • [6] Ragab M., El-Naga I.A., “Measures to Improve Traffıc Operatıons at Sıgnalızed Intersectıons in Urban Areas”, International Journal for Traffic and Transport Engineering (Int. J. Traffic Transp. Eng.) 9(4): 408 - 418, (2019).
  • [7] Aktaş Y., Aslan H., Pistil F., “Sinyalize Kavşaklarda Meydana Gelen Taşıt Gecikmelerinin VISSIM Simülasyon Modellenmesi”, 5th International Symposium on Innovative Technologies in Engineering and Science, Baku-Azerbaijan, 374-386, (2017).
  • [8] Yalınız P., Arberk K., “Eskişehir’de Birbirine Yakın Kavşaklardaki Trafik Işıklarının Koordineli Olarak Düzenlenmesi”, 2. Ulusal Kentsel Altyapı Sempozyumu, Adana, s 63-74, (1999).
  • [9] Zuo Z., Yang G., Shao C., “Design of Signal Timing Optimization Based on the Unsymmetrical Traffic Flow of Signalized Intersections”, in: Traffic Transp. Stud. 374–385, (2010).
  • [10] Li R., Li W., “A Study on the Improvement of T-intersection Signal Timing”, in: Traffic Transp. Stud. 386–393, (2010).
  • [11] Zhang W., Peng X., Yang B., “An Optimal Signal Timing Method for Intersections Based on Minimum Generalized Cost”, in: ICCTP 2011 Towar. Sustain. Transp. Syst.,1200–1210 (2011).
  • [12] Murat Y.S., Cakici Z., Tian Z., “A Signal Timing Assignment Proposal For Urban Multi Lane Signalised Roundabouts”, Journal of the Croatian Association of Civil Engineers, Gradevinar, 113-124, (2019).
  • [13] Saha A., Chandra S., Ghosh I, “Delay at Signalized Intersections Under Mixed Traffic Conditions”, J. Transp. Eng. Part A Syst. 143(8), (2017).
  • [14] Webster, F.V., “Traffic Signal Settings”, Road Research Technical Paper, No. 39, Road Research Laboratory, Her Majesty Stationary Office, London, UK, (1958).
  • [15] Dogan, E., Akgungor, A.P., & Arslan, T., “Estimation of Delay and Vehicle Stops at Signalized Intersections Using Artificial Neural Network”. Engineering Review, 36(2): 157-165, (2016).
  • [16] Quiroga, C.A., Bullock, D., “Measuring control delay at signalized intersections”. Journal of Transportation Engineering 125, 271-280, (1999).
  • [17] Murat, Y.S., “Comparison of Fuzzy Logic and Artificial Neural Networks Approaches in Vehicle Delay Modeling”, Transportation Research Part C 14 316–334, (2006).
  • [18] Day, C. M., and D. M. Bullock. 2010. “Performance based management of arterial traffic signal systems”. NCHRP Project 3-79a.Washington, DC: Transportation Research Board, (2010).
  • [19] Tian, Z., and Urbanik. T., “System partition technique to improve signal coordination and progression.” J. Transp. Eng. 133 (2): 119–128, (2007).
  • [20] Haque B., Zahid A., Siddiki N. A., “Coordinated Traffic Signal Design for Major Intersections in Sylhet City”, Journal of Civil Engineering Frontiers, 51-60, (2022).
  • [21] Day, C. M., R. Haseman, H. Premachandra, T. M. Brennan, J. S. Wasson, J. R. Sturdevant, and D. M. Bullock. “Evaluation of arterial signal coordination: Methodologies for visualizing high resolution event data and measuring travel time.” Transp. Res. Rec. 2192 (1): 37–49, (2010).
  • [22] Abbas M., Bullock D., Head L., “Real-Time Offset Transitioning Algorithm For Coordinating Traffic Signals”, Transportation Research Record, 26-39, (2001).
  • [23] Lu, K., X. Zeng, L. Li, and J. Xu., “Two-way bandwidth maximization model with proration impact factor for unbalanced bandwidth demands.” J. Transp. Eng. 38 (5): 527–534, (2012).
  • [24] Abdulhafedh A., “How to Design Traffic Signals at Multiple Coordinated Intersections”, International Journal of Automation, Control and Intelligent Systems, 29-35, (2018).
  • [25] Sunkari, S., “The benefits of retiming traffic signals.” ITE J. 74 (4): 26–29 (2004).
  • [26] Karaoğlan M.E., “Koordine Sinyalize Kavşaklarda Optimizasyon”, Yüksek Lisans Tezi, Pamukkale Üniversitesi Fen Bilimleri Enstitüsü, (2021).
  • [27] Vu M.T., Nguyen V.P., Nguyen T.A., “Methods for Designing Signalized Double-İntersections with Mixed Traffic in Vietnam”, Procedia Eng., 131–138, (2016).
  • [28] Li, H., S. M. Lavrenz, C. M. Day, A. L. Stevens, and D. M. Bullock., “Use of both travel time and travel time reliability measures to quantify benefits of signal timing maintenance and optimization.” Transp. Res. Rec. 2487 (1): 55–68, (2015).
  • [29] Zheng, J., H. X. Liu, S. Misgen, and G. Yu., “Performance diagnosis tool for arterial traffic signals.” Transp. Res. Rec. 2356 (1): 109–116, (2013).
  • [30] Yue, R., Yang, G., Lin, D., Wang, A. And Tian Z., “Traffic Signal Retiming to Improve Corridor Performance”, ASCE J. Transp. Eng., 147 (1): 05020009, (2021).
  • [31] Qi H., Dai R., Tang Q., Hu X., “Coordinated İntersection Signal Design For Mixed Traffic Flow Of Human-Driven And Connected And Autonomous Vehicles”, IEEE Access, 26067-26084, (2020).
  • [32] A. A. Malikopoulos, L. Beaver, and I. V. Chremos, “Optimal time trajectory and coordination for connected and automated vehicles,” Automatica,125(6):109469, (2021).
  • [33] Yanqiu Cheng, Chenxi Chen, Xianbiao Hu, Kuanmin Chen, Qing Tang, Yang Song, "Enhancing Mixed Traffic Flow Safety via Connected and Autonomous Vehicle Trajectory Planning with a Reinforcement Learning Approach", Journal of Advanced Transportation, vol. 2021, Article ID 6117890, 11, (2021).
  • [34] Yao R., Zhang W., Long M., , Mathematical Problems in Engineering (2020).
  • [35] Murat Y.Ş., “Denizli Şehiriçi Kavşaklarındaki Trafik Akımlarının Bilgisayarla İncelenmesi”, Yüksek Lisans Tezi, [Pamukkale Üniversitesi Fen Bilimleri Enstitüsü, (1996).
  • [36] PTV Group Vissim Academic License, ORD-06074-D9Z6C5, PTV-0501885.
  • [37] Minitab 21 Statistical Software [Computer software]. State College, PA: Minitab, Inc. (www.minitab.com) (2022).
There are 37 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Zeynep Nur Duman 0000-0001-9882-0573

Yetis Sazi Murat 0000-0002-7033-7026

Mehmet Yilmaz 0000-0001-6700-6579

Early Pub Date September 8, 2023
Publication Date September 25, 2024
Submission Date November 7, 2022
Published in Issue Year 2024 Volume: 27 Issue: 4

Cite

APA Duman, Z. N., Murat, Y. S., & Yilmaz, M. (2024). Koordine Kavşaklarda Sinyalizasyon Sistemine Etki Eden Parametrelerin İncelenmesi Vaka Durum Çalışması. Politeknik Dergisi, 27(4), 1515-1539. https://doi.org/10.2339/politeknik.1200368
AMA Duman ZN, Murat YS, Yilmaz M. Koordine Kavşaklarda Sinyalizasyon Sistemine Etki Eden Parametrelerin İncelenmesi Vaka Durum Çalışması. Politeknik Dergisi. September 2024;27(4):1515-1539. doi:10.2339/politeknik.1200368
Chicago Duman, Zeynep Nur, Yetis Sazi Murat, and Mehmet Yilmaz. “Koordine Kavşaklarda Sinyalizasyon Sistemine Etki Eden Parametrelerin İncelenmesi Vaka Durum Çalışması”. Politeknik Dergisi 27, no. 4 (September 2024): 1515-39. https://doi.org/10.2339/politeknik.1200368.
EndNote Duman ZN, Murat YS, Yilmaz M (September 1, 2024) Koordine Kavşaklarda Sinyalizasyon Sistemine Etki Eden Parametrelerin İncelenmesi Vaka Durum Çalışması. Politeknik Dergisi 27 4 1515–1539.
IEEE Z. N. Duman, Y. S. Murat, and M. Yilmaz, “Koordine Kavşaklarda Sinyalizasyon Sistemine Etki Eden Parametrelerin İncelenmesi Vaka Durum Çalışması”, Politeknik Dergisi, vol. 27, no. 4, pp. 1515–1539, 2024, doi: 10.2339/politeknik.1200368.
ISNAD Duman, Zeynep Nur et al. “Koordine Kavşaklarda Sinyalizasyon Sistemine Etki Eden Parametrelerin İncelenmesi Vaka Durum Çalışması”. Politeknik Dergisi 27/4 (September 2024), 1515-1539. https://doi.org/10.2339/politeknik.1200368.
JAMA Duman ZN, Murat YS, Yilmaz M. Koordine Kavşaklarda Sinyalizasyon Sistemine Etki Eden Parametrelerin İncelenmesi Vaka Durum Çalışması. Politeknik Dergisi. 2024;27:1515–1539.
MLA Duman, Zeynep Nur et al. “Koordine Kavşaklarda Sinyalizasyon Sistemine Etki Eden Parametrelerin İncelenmesi Vaka Durum Çalışması”. Politeknik Dergisi, vol. 27, no. 4, 2024, pp. 1515-39, doi:10.2339/politeknik.1200368.
Vancouver Duman ZN, Murat YS, Yilmaz M. Koordine Kavşaklarda Sinyalizasyon Sistemine Etki Eden Parametrelerin İncelenmesi Vaka Durum Çalışması. Politeknik Dergisi. 2024;27(4):1515-39.