Research Article
BibTex RIS Cite

Use of Various Industrial and Eggshell Wastes for the Sustainable Construction Sector

Year 2024, Volume: 27 Issue: 4, 1293 - 1304, 25.09.2024
https://doi.org/10.2339/politeknik.1207602

Abstract

The alternative composites’ production alleviates the serious problem generated by global warming. Methods to reduce the amount of cement used in concrete production, for example, are being investigated to determine how to reduce carbon dioxide emissions in many applications. Egg shells and various industrial wastes, which are recommended to use in the construction sector at an appropriately high rate, also cause serious environmental damage. Bottom ash (BA) and marble powder (MP) wastes are used today in civil engineering applications. In addition, it is important to increase the use of eggshells due to their rich calcium carbonate content. In this work, BA and MP wastes were blended with eggshells to produce cement paste composites. Two different sets of composites were prepared during this study. The composites were prepared with cement (80%), BA (20%), and MP (20%) wastes by weight with 0.3%, 0.75%, 1.5%, and 2.5% eggshell waste. The fresh (flow table), physical (dry unit mass, apparent specific gravity, and porosity), mechanical (unconfined compressive strength and flexural strength), and durability (water absorption, seawater resistance) tests were conducted. According to the experimental results, the composites can be classified as lightweight construction materials. The test results showed that 0.75% eggshell by weight of cement in bottom ash and marble powder can be used as an optimum value for better performance. The bottom ash mixtures groups are higher water absorption and porosity values when referring to the marble powder mixture groups. The highest compressive strength value was found at 56.03 MPa in the MP mixture group and 52.79 MPa in the BA mixture groups with these optimum eggshell combinations at 56 days. The MP mixture group showed better resistance to seawater when referring to the bottom ash blended mixtures. Laboratory-produced composites are possible candidates for cost-effective and environmentally friendly building materials. The eggshells have a promising alternative binder for concrete in the near future and they are utilized together with industrial wastes such as BA and MP in sustainable concrete construction.

Supporting Institution

Lefke Avrupa Üniversitesi

Thanks

The author would like to thank to the assistance of Mr. Birol Karaman and Lütfiye Varoğlu, who provided the materials for the present study.

References

  • [1] N. Sathiparan, Utilization prospects of eggshell powder in sustainable construction material–A review, Constr. Build. Mater. 293, 123465, (2021).
  • [2] W. Ferdous, A. Manalo, R. Siddique, P. Mendis, Y. Zhuge, H.S. Wong, W. Lokuge, T. Aravinthan, P. Schubel, Recycling of landfill wastes (tyres, plastics and glass) in construction – A review on global waste generation, performance, application and future opportunities, Resour. Conserv. Recy. 173, 10574, (2021).
  • [3] E. Aydin, Use of industrial wastes as an alternative binder to cement for better sustainable building construction, International Conference on Cement–Based Materials Tailored for a Sustainable Future, – Istanbul/Turkey, 567-575, (2021).
  • [4] E. Aydın, Alternative approaches to sustainable concrete construction, 10th International concrete conference, Bursa, Turkey, 419-429, (2019).
  • [5] N. Gupta, R. Siddique, R. Belarbi, Sustainable and greener self-compacting concrete incorporating industrial by-products: a review, J. Clean. Prod. 284 124803, (2021).
  • [6] H.Ş. Arel, E. Aydin, Use of industrial and agricultural wastes in construction concrete, ACI Mater. J, 115: 1, 55-64, (2018).
  • [7] E. Aydin, H.Ş. Arel, High-volume marble substitution in cement-paste: towards a better sustainability, J. Clean. Prod, 237, 117801, (2019).
  • [8] J. Kleib, G. Aouad, N.E Abriak, M. Benzerzour, Production of Portland cement clinker from French municipal solid waste incineration bottom ash, Case Stud. Constr. Mater. 15, e00629, (2021).
  • [9] H.M. Hamada, B.A. Tayeh, A. Al-Attar, F.M. Yahaya, K. Muthusamy, A.M. Humada, The present state of the use of eggshell powder in concrete: A review. J. Build. Eng. 32, 101583, (2020).
  • [10] T.A. Prasath, P. Sudharsan, B.S. Kumar, A study on incorporation of supplementary cementitious materials for sustainable development, Mater. Today Proc. 37 3363–3366, (2021).
  • [11] V. Vandeginste, Food waste eggshell valorization through development of new composites: A review, SM&T, 29, e00317, (2021).
  • [12] https://arastirma.tarimorman.gov.tr/tepge (accessed 02 October 2021).
  • [13] D. Nath, K. Jangid, A. Susaniya, R. Kumar, R. Vaish, Eggshell derived CaO-Portland cement antibacterial composites, JCOMC 5, 100123, (2021).
  • [14] E. Aydin, Novel coal bottom ash waste composites for sustainable construction, Constr. Build. Mater, 124, 582-588, (2016).
  • [15] M. Atiyeh, E. Aydin, Data for bottom ash and marble powder utilization as an alternative binder for sustainable concrete construction, Data in Brief, 29, 105160, (2020).
  • [16] N. Ankur, N. Singh, Performance of cement mortars and concretes containing coal bottom ash: A comprehensive review, Renew. Sust. Energy. Rev. 149 111361, (2021).
  • [17] S. Siddique, H. Kim, J.G. Jang, Properties of high-volume slag cement mortar incorporating circulating fluidized bed combustion fly ash and bottom ash, Constr. Build. Mater, 289, 123150, (2021).
  • [18] M.H. Kumar, I.S. Macharyulu, T. Ray, N.R. Mohanta, M. Jain, S. Samantaray, A. Sahoo, Effect of water absorption and curing period on strength and porosity of triple blended concrete, Mater. Today Proc. 43, 2162–2169, (2021).
  • [19] S. Zhang, Z. Ghouleh, Y. Shao, Green concrete made from MSWI residues derived eco-cement and bottom ash aggregates, Constr. Build. Mater, 297, 123818, (2021).
  • [20] K-H. Yang, H-Y. Kim, H-J. Lee, Shrinkage behavior of concrete containing bottom ash granules as partial replacement of natural sands, Constr. Build. Mater, 300 124188, (2021).
  • [21] K. Muthusamy, M.H. Rasid, N.N. Isa, N.H. Hamdan, N.A.S. Jamil, A.M.A. Budiea, S.W. Ahmad, Mechanical properties and acid resistance of oil palm shell lightweight aggregate concrete containing coal bottom ash, Mater. Today Proc. 41, 47–50, (2021).
  • [22] Y-H. Kim, H-Y. Kim, K-H. Yang, J-S. Ha, Effect of concrete unit weight on the mechanical properties of bottom ash aggregate concrete, Constr. Build. Mater, 273, 121998, (2021).
  • [23] A. Taherlou, G. Asadollahfardi, A. Salehi, A. Katebi, Sustainable use of municipal solid waste incinerator bottom ash and the treated industrial wastewater in self-compacting concrete, Constr. Build. Mater, 297, 123814, (2021).
  • [24] M. Singh, R. Siddique, Effect of coal bottom ash as partial replacement of sand on workability and strength properties of concrete, J. Clean. Prod. 112, 620-630, (2016).
  • [25] O. Kelestemur, E. Arıcı, S. Yıldız, B. Gokçer, Performance evaluation of cement mortars containing marble dust and glass fiber exposed to high temperature by using Taguchi method, Constr. Build. Mater. 60 17-24, (2014).
  • [26] I.B. Topçu, T. Bilir, T. Uygunoglu, Effect of waste marble dust content as filler on properties of self-compacting concrete, Constr. Build. Mater. 23 1947-1953, (2009).
  • [27] K. Vardhan, R. Siddique, S. Goyal, Influence of marble waste as partial replacement of fine aggregates on strength and drying shrinkage of concrete, Constr. Build. Mater. 228, 116730, (2019).
  • [28] K. Vardhan, S. Goyal, R. Siddique, M. Singh, Mechanical properties and microstructural analysis of cement mortar incorporating marble powder as partial replacement of cement. Constr. Build. Mater. 96, 615–621, (2015).
  • [29] H. Binici, O. Aksogan, A.H. Sevinc, E. Cinpolat, Mechanical and radioactivity shielding performances of mortars made with cement, sand and egg shells, Constr. Build. Mater. 93, 1145–1150, (2015).
  • [30] C.C. Nwobi-Okoyea, C.U. Uzochukwu, RSM and ANN modeling for production of Al 6351/ egg shell reinforced composite: Multi objective optimization using genetic algorithm. Mater. Today Proc. 22, 100674, (2020).
  • [31] D. Taylor, M. Walsh, A. Cullen, P. O’Reilly, The fracture toughness of eggshell, Acta Biomater. 37 21–27, (2016).
  • [32] M. Sophia, N. Sakthieswaran, Synergistic effect of mineral admixture and bio-carbonate fillers on the physico-mechanical properties of gypsum plaster, Constr. Build. Mater. 204, 419–439, (2019).
  • [33] A.H. Sevinç, M.Y. Durgun, A novel epoxy-based composite with eggshell, PVC sawdust, wood sawdust and vermiculite: An investigation on radiation absorption and various engineering properties, Constr. Build. Mater. 300, 123985, (2021).
  • [34] R.B. Saldanha, Cecília Gravina da Rocha, A.M.L. Caicedo, N.C. Consoli, Technical and environmental performance of eggshell lime for soil stabilization, Constr. Build. Mater. 298, 123648, (2021).
  • [35] M. Hasan, M.S.I. Zaini, L.S. Yie, K.A. Masri, R.P. Jaya, M.H. Hyodo, M.J. Winter, Effect of optimum utilization of silica fume and eggshell ash to the engineering properties of expansive soil, J. Mater. Res. Technol. 14, 1401-1418, (2021).
  • [36] ASTM C230/C230M-14 Standard specification for flow table for use in tests of hydraulic cement, (2014).
  • [37] ASTM WK27311 New test method for measurement of cement paste consistency using a mini-slump cone, (2010).
  • [38] ASTM C127 - 15 Standard test method for relative density (Specific Gravity) and absorption of coarse aggregate, (2015).
  • [39] RILEM Recommendations, Absorption of water by immersion under vacuum, Mater. Struct. RILEM CPC 11.3, 101393-101394, (1984).
  • [40] M.A. Othuman, Y.C. Wang, Elevated-temperature thermal properties of lightweight foamed concrete, Constr. Build. Mater. 25, 705-716, (2011).
  • [41] ASTM C109M-13e1 Standard test method for compressive strength of hydraulic cement mortars (using 2-in. or [50-mm] cube specimens), West Conshohocken, PA, (2013).
  • [42] ASTM C348 Standard Test Method for Flexural Strength of Hydraulic-Cement Mortars, Annual Book of ASTM Standards, ASTM International, West Conshohocken, PA. (2014).
  • [43] R. Yadav, V.K. Dwivedi, S.P. Dwivedi, Eggshell and rice husk ash utilization as reinforcement in development of composite material: A review, Mater. Today Proc. 43 426–433, (2021).
  • [44] M. Atiyeh, E. Aydin, Carbon-fiber enriched cement-based composites for better sustainability, Materials, 13:8, 1899, (2020).
  • [45] B.W. Chong, R. Othman, P.J. Ramadhansyah, S. Doh, X. Li, Properties of concrete with eggshell powder: A review, Phys. Chem. Earth 120, 102951, (2020).
  • [46] R. Siddique, S. Goyal, Strength, permeation and micro-structural characteristics of concrete incorporating waste marble, Constr. Build. Mater. 203, 45–55, (2019).
  • [47] K.I.S.A. Kabeer, K. Bisht, T.J. Saravanan, A.K. Vyas, Effect of marble slurry on the microstructure of cement mortars subjected to salt crystallization and alternate wetting and drying cycles, J. Build. Eng. 44 103342, (2021).
  • [48] I. Yüksel, T. Bilir, Usage of industrial by-products to produce plain concrete elements. Constr. Build. Mater. 21 686-694, (2007).
  • [49] C.B. Wei, R. Othman, C.Y. Ying, R.P. Jaya, D.S. Ing, S.A. Mangi, Properties of mortar with fine eggshell powder as partial cement replacement, Mater. Today Proc. 46, 1574–1581, (2021).
  • [50] A. Teara, D.S. Ing, Mechanical properties of high strength concrete that replace cement partly by using fly ash and eggshell powder, Phys Chem Earth 120, 102942, (2020).
  • [51] K.E. Ogundipe, B.F. Ogunbayo, O.M. Olofinnade, L.M. Amusan, C.O. Aigbavboa, Affordable housing issue: Experimental investigation on properties of eco-friendly lightweight concrete produced from incorporating periwinkle and palm kernel shells, Results Eng. 9, 100193, (2021).
  • [52] A. Laca, A. Laca, M. Díaz, Eggshell waste as catalyst: A review. J. Environ. Manage. 197, 351-359,. (2017).
  • [53] Torman Kayalar M., Erdoğan G., Yavas A., Guler S. and Sutcu M., “Fabrication of porous anorthite ceramics using eggshell waste as a calcium source and expanded polystyrene granules”, Politeknik Dergisi, 25(3): 1235-1241, (2022).
  • [54] Külekçi G., ve Çullu M., “The investigation of mechanical properties of polypropylene fiber-reinforced composites produced with the use of alternative wastes”, Politeknik Dergisi, 24(3): 1171-1180, (2021).
  • [55] Şimşek O. ve Demir Ş., “Mermer tozu katkılı lifli betonun fiziksel ve mekanik özeliklerine lif tipi ve oranının etkisi”, Politeknik Dergisi, 25(3): 1043-1055, (2022).

Çeşitli Endüstriyel ve Yumurta Kabuk Atıklarının Sürdürülebilir İnşaat Sektörü için Kullanılması

Year 2024, Volume: 27 Issue: 4, 1293 - 1304, 25.09.2024
https://doi.org/10.2339/politeknik.1207602

Abstract

Alternatif kompozitlerin üretimi, küresel ısınmanın yarattığı ciddi sorunu hafifletmektedir. Örneğin, beton üretiminde kullanılan çimento miktarını azaltma yöntemleri, birçok uygulamada karbondioksit emisyonlarının nasıl azaltılacağını belirlemek için araştırılmaktadır. Uygun bir oranda inşaat sektöründe kullanılması tavsiye edilen yumurta kabukları ve çeşitli endüstriyel atıklar da ciddi çevresel tahribatlara neden olmaktadır. Mermer tozu ve taban külü atıkları günümüzde inşaat mühendisliği uygulamalarında kullanılmaktadır. Ayrıca, zengin kalsiyum karbonat içeriği nedeniyle yumurta kabuğu kullanımının arttırılması önemlidir. Bu çalışmada, taban külü ve mermer tozu atıkları, yumurta kabukları ile harmanlanarak çimento hamuru kompozitleri üretilmiştir. Bu çalışma sırasında iki farklı kompozit seti hazırlanmıştır. Kompozitler, ağırlıkça %80 çimento ve %20 mermer tozu ile %20 taban külü olacak şekilde çimento ağırlığının %0.3, %0.75, %1.5 ve %2.5 ‘ı kadarı yumurta kabuğu karıştırılarak hazırlanmıştır. Çalışma kapsamında taze (akma tablası), fiziksel (kuru birim ağırlık, görünür özgül ağırlık, gözeneklilik), mekanik (basınç ve eğilme dayanımı) ve dayanıklılık (su emme ve deniz suyuna karşı direnç) deneyleri yapılmıştır. Deneysel sonuçlara göre kompozitler hafif yapı malzemeleri olarak sınıflandırılabilir. Test sonuçları, taban külü ve mermer tozu içindeki çimento ağırlığının % 0,75'i kadar yumurta kabuğunun daha iyi performans için optimum bir değer olarak kullanılabileceğini göstermiştir. Taban külü gruplarının mermer tozu gruplarına göre daha yüksek su emme ve gözeneklilik değerine sahip olduğu görülmüştür. Ellialtı günlük test sonuçlarına göre en yüksek basınç dayanımı mermer tozu gruplarında 56.0 3 MPa ve taban külü gruplarında ise 52.79 MPa olarak elde edilmiştir. Mermer tozu gruplarının deniz suyuna karşı direnci taban külü gruplarına göre daha yüksektir. Laboratuvarda üretilen kompozitler, uygun maliyetli ve çevre dostu yapı malzemeleri için bir alternatiftir. Yumurta kabukları yakın gelecekte beton için ümit vaat eden alternatif bir bağlayıcı olup, sürdürülebilir beton yapımında taban külü ve mermer tozu gibi endüstriyel atıklarla birlikte değerlendirilmektedir.

References

  • [1] N. Sathiparan, Utilization prospects of eggshell powder in sustainable construction material–A review, Constr. Build. Mater. 293, 123465, (2021).
  • [2] W. Ferdous, A. Manalo, R. Siddique, P. Mendis, Y. Zhuge, H.S. Wong, W. Lokuge, T. Aravinthan, P. Schubel, Recycling of landfill wastes (tyres, plastics and glass) in construction – A review on global waste generation, performance, application and future opportunities, Resour. Conserv. Recy. 173, 10574, (2021).
  • [3] E. Aydin, Use of industrial wastes as an alternative binder to cement for better sustainable building construction, International Conference on Cement–Based Materials Tailored for a Sustainable Future, – Istanbul/Turkey, 567-575, (2021).
  • [4] E. Aydın, Alternative approaches to sustainable concrete construction, 10th International concrete conference, Bursa, Turkey, 419-429, (2019).
  • [5] N. Gupta, R. Siddique, R. Belarbi, Sustainable and greener self-compacting concrete incorporating industrial by-products: a review, J. Clean. Prod. 284 124803, (2021).
  • [6] H.Ş. Arel, E. Aydin, Use of industrial and agricultural wastes in construction concrete, ACI Mater. J, 115: 1, 55-64, (2018).
  • [7] E. Aydin, H.Ş. Arel, High-volume marble substitution in cement-paste: towards a better sustainability, J. Clean. Prod, 237, 117801, (2019).
  • [8] J. Kleib, G. Aouad, N.E Abriak, M. Benzerzour, Production of Portland cement clinker from French municipal solid waste incineration bottom ash, Case Stud. Constr. Mater. 15, e00629, (2021).
  • [9] H.M. Hamada, B.A. Tayeh, A. Al-Attar, F.M. Yahaya, K. Muthusamy, A.M. Humada, The present state of the use of eggshell powder in concrete: A review. J. Build. Eng. 32, 101583, (2020).
  • [10] T.A. Prasath, P. Sudharsan, B.S. Kumar, A study on incorporation of supplementary cementitious materials for sustainable development, Mater. Today Proc. 37 3363–3366, (2021).
  • [11] V. Vandeginste, Food waste eggshell valorization through development of new composites: A review, SM&T, 29, e00317, (2021).
  • [12] https://arastirma.tarimorman.gov.tr/tepge (accessed 02 October 2021).
  • [13] D. Nath, K. Jangid, A. Susaniya, R. Kumar, R. Vaish, Eggshell derived CaO-Portland cement antibacterial composites, JCOMC 5, 100123, (2021).
  • [14] E. Aydin, Novel coal bottom ash waste composites for sustainable construction, Constr. Build. Mater, 124, 582-588, (2016).
  • [15] M. Atiyeh, E. Aydin, Data for bottom ash and marble powder utilization as an alternative binder for sustainable concrete construction, Data in Brief, 29, 105160, (2020).
  • [16] N. Ankur, N. Singh, Performance of cement mortars and concretes containing coal bottom ash: A comprehensive review, Renew. Sust. Energy. Rev. 149 111361, (2021).
  • [17] S. Siddique, H. Kim, J.G. Jang, Properties of high-volume slag cement mortar incorporating circulating fluidized bed combustion fly ash and bottom ash, Constr. Build. Mater, 289, 123150, (2021).
  • [18] M.H. Kumar, I.S. Macharyulu, T. Ray, N.R. Mohanta, M. Jain, S. Samantaray, A. Sahoo, Effect of water absorption and curing period on strength and porosity of triple blended concrete, Mater. Today Proc. 43, 2162–2169, (2021).
  • [19] S. Zhang, Z. Ghouleh, Y. Shao, Green concrete made from MSWI residues derived eco-cement and bottom ash aggregates, Constr. Build. Mater, 297, 123818, (2021).
  • [20] K-H. Yang, H-Y. Kim, H-J. Lee, Shrinkage behavior of concrete containing bottom ash granules as partial replacement of natural sands, Constr. Build. Mater, 300 124188, (2021).
  • [21] K. Muthusamy, M.H. Rasid, N.N. Isa, N.H. Hamdan, N.A.S. Jamil, A.M.A. Budiea, S.W. Ahmad, Mechanical properties and acid resistance of oil palm shell lightweight aggregate concrete containing coal bottom ash, Mater. Today Proc. 41, 47–50, (2021).
  • [22] Y-H. Kim, H-Y. Kim, K-H. Yang, J-S. Ha, Effect of concrete unit weight on the mechanical properties of bottom ash aggregate concrete, Constr. Build. Mater, 273, 121998, (2021).
  • [23] A. Taherlou, G. Asadollahfardi, A. Salehi, A. Katebi, Sustainable use of municipal solid waste incinerator bottom ash and the treated industrial wastewater in self-compacting concrete, Constr. Build. Mater, 297, 123814, (2021).
  • [24] M. Singh, R. Siddique, Effect of coal bottom ash as partial replacement of sand on workability and strength properties of concrete, J. Clean. Prod. 112, 620-630, (2016).
  • [25] O. Kelestemur, E. Arıcı, S. Yıldız, B. Gokçer, Performance evaluation of cement mortars containing marble dust and glass fiber exposed to high temperature by using Taguchi method, Constr. Build. Mater. 60 17-24, (2014).
  • [26] I.B. Topçu, T. Bilir, T. Uygunoglu, Effect of waste marble dust content as filler on properties of self-compacting concrete, Constr. Build. Mater. 23 1947-1953, (2009).
  • [27] K. Vardhan, R. Siddique, S. Goyal, Influence of marble waste as partial replacement of fine aggregates on strength and drying shrinkage of concrete, Constr. Build. Mater. 228, 116730, (2019).
  • [28] K. Vardhan, S. Goyal, R. Siddique, M. Singh, Mechanical properties and microstructural analysis of cement mortar incorporating marble powder as partial replacement of cement. Constr. Build. Mater. 96, 615–621, (2015).
  • [29] H. Binici, O. Aksogan, A.H. Sevinc, E. Cinpolat, Mechanical and radioactivity shielding performances of mortars made with cement, sand and egg shells, Constr. Build. Mater. 93, 1145–1150, (2015).
  • [30] C.C. Nwobi-Okoyea, C.U. Uzochukwu, RSM and ANN modeling for production of Al 6351/ egg shell reinforced composite: Multi objective optimization using genetic algorithm. Mater. Today Proc. 22, 100674, (2020).
  • [31] D. Taylor, M. Walsh, A. Cullen, P. O’Reilly, The fracture toughness of eggshell, Acta Biomater. 37 21–27, (2016).
  • [32] M. Sophia, N. Sakthieswaran, Synergistic effect of mineral admixture and bio-carbonate fillers on the physico-mechanical properties of gypsum plaster, Constr. Build. Mater. 204, 419–439, (2019).
  • [33] A.H. Sevinç, M.Y. Durgun, A novel epoxy-based composite with eggshell, PVC sawdust, wood sawdust and vermiculite: An investigation on radiation absorption and various engineering properties, Constr. Build. Mater. 300, 123985, (2021).
  • [34] R.B. Saldanha, Cecília Gravina da Rocha, A.M.L. Caicedo, N.C. Consoli, Technical and environmental performance of eggshell lime for soil stabilization, Constr. Build. Mater. 298, 123648, (2021).
  • [35] M. Hasan, M.S.I. Zaini, L.S. Yie, K.A. Masri, R.P. Jaya, M.H. Hyodo, M.J. Winter, Effect of optimum utilization of silica fume and eggshell ash to the engineering properties of expansive soil, J. Mater. Res. Technol. 14, 1401-1418, (2021).
  • [36] ASTM C230/C230M-14 Standard specification for flow table for use in tests of hydraulic cement, (2014).
  • [37] ASTM WK27311 New test method for measurement of cement paste consistency using a mini-slump cone, (2010).
  • [38] ASTM C127 - 15 Standard test method for relative density (Specific Gravity) and absorption of coarse aggregate, (2015).
  • [39] RILEM Recommendations, Absorption of water by immersion under vacuum, Mater. Struct. RILEM CPC 11.3, 101393-101394, (1984).
  • [40] M.A. Othuman, Y.C. Wang, Elevated-temperature thermal properties of lightweight foamed concrete, Constr. Build. Mater. 25, 705-716, (2011).
  • [41] ASTM C109M-13e1 Standard test method for compressive strength of hydraulic cement mortars (using 2-in. or [50-mm] cube specimens), West Conshohocken, PA, (2013).
  • [42] ASTM C348 Standard Test Method for Flexural Strength of Hydraulic-Cement Mortars, Annual Book of ASTM Standards, ASTM International, West Conshohocken, PA. (2014).
  • [43] R. Yadav, V.K. Dwivedi, S.P. Dwivedi, Eggshell and rice husk ash utilization as reinforcement in development of composite material: A review, Mater. Today Proc. 43 426–433, (2021).
  • [44] M. Atiyeh, E. Aydin, Carbon-fiber enriched cement-based composites for better sustainability, Materials, 13:8, 1899, (2020).
  • [45] B.W. Chong, R. Othman, P.J. Ramadhansyah, S. Doh, X. Li, Properties of concrete with eggshell powder: A review, Phys. Chem. Earth 120, 102951, (2020).
  • [46] R. Siddique, S. Goyal, Strength, permeation and micro-structural characteristics of concrete incorporating waste marble, Constr. Build. Mater. 203, 45–55, (2019).
  • [47] K.I.S.A. Kabeer, K. Bisht, T.J. Saravanan, A.K. Vyas, Effect of marble slurry on the microstructure of cement mortars subjected to salt crystallization and alternate wetting and drying cycles, J. Build. Eng. 44 103342, (2021).
  • [48] I. Yüksel, T. Bilir, Usage of industrial by-products to produce plain concrete elements. Constr. Build. Mater. 21 686-694, (2007).
  • [49] C.B. Wei, R. Othman, C.Y. Ying, R.P. Jaya, D.S. Ing, S.A. Mangi, Properties of mortar with fine eggshell powder as partial cement replacement, Mater. Today Proc. 46, 1574–1581, (2021).
  • [50] A. Teara, D.S. Ing, Mechanical properties of high strength concrete that replace cement partly by using fly ash and eggshell powder, Phys Chem Earth 120, 102942, (2020).
  • [51] K.E. Ogundipe, B.F. Ogunbayo, O.M. Olofinnade, L.M. Amusan, C.O. Aigbavboa, Affordable housing issue: Experimental investigation on properties of eco-friendly lightweight concrete produced from incorporating periwinkle and palm kernel shells, Results Eng. 9, 100193, (2021).
  • [52] A. Laca, A. Laca, M. Díaz, Eggshell waste as catalyst: A review. J. Environ. Manage. 197, 351-359,. (2017).
  • [53] Torman Kayalar M., Erdoğan G., Yavas A., Guler S. and Sutcu M., “Fabrication of porous anorthite ceramics using eggshell waste as a calcium source and expanded polystyrene granules”, Politeknik Dergisi, 25(3): 1235-1241, (2022).
  • [54] Külekçi G., ve Çullu M., “The investigation of mechanical properties of polypropylene fiber-reinforced composites produced with the use of alternative wastes”, Politeknik Dergisi, 24(3): 1171-1180, (2021).
  • [55] Şimşek O. ve Demir Ş., “Mermer tozu katkılı lifli betonun fiziksel ve mekanik özeliklerine lif tipi ve oranının etkisi”, Politeknik Dergisi, 25(3): 1043-1055, (2022).
There are 55 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Ertuğ Aydın 0000-0001-5660-0687

Early Pub Date June 14, 2023
Publication Date September 25, 2024
Submission Date November 20, 2022
Published in Issue Year 2024 Volume: 27 Issue: 4

Cite

APA Aydın, E. (2024). Use of Various Industrial and Eggshell Wastes for the Sustainable Construction Sector. Politeknik Dergisi, 27(4), 1293-1304. https://doi.org/10.2339/politeknik.1207602
AMA Aydın E. Use of Various Industrial and Eggshell Wastes for the Sustainable Construction Sector. Politeknik Dergisi. September 2024;27(4):1293-1304. doi:10.2339/politeknik.1207602
Chicago Aydın, Ertuğ. “Use of Various Industrial and Eggshell Wastes for the Sustainable Construction Sector”. Politeknik Dergisi 27, no. 4 (September 2024): 1293-1304. https://doi.org/10.2339/politeknik.1207602.
EndNote Aydın E (September 1, 2024) Use of Various Industrial and Eggshell Wastes for the Sustainable Construction Sector. Politeknik Dergisi 27 4 1293–1304.
IEEE E. Aydın, “Use of Various Industrial and Eggshell Wastes for the Sustainable Construction Sector”, Politeknik Dergisi, vol. 27, no. 4, pp. 1293–1304, 2024, doi: 10.2339/politeknik.1207602.
ISNAD Aydın, Ertuğ. “Use of Various Industrial and Eggshell Wastes for the Sustainable Construction Sector”. Politeknik Dergisi 27/4 (September 2024), 1293-1304. https://doi.org/10.2339/politeknik.1207602.
JAMA Aydın E. Use of Various Industrial and Eggshell Wastes for the Sustainable Construction Sector. Politeknik Dergisi. 2024;27:1293–1304.
MLA Aydın, Ertuğ. “Use of Various Industrial and Eggshell Wastes for the Sustainable Construction Sector”. Politeknik Dergisi, vol. 27, no. 4, 2024, pp. 1293-04, doi:10.2339/politeknik.1207602.
Vancouver Aydın E. Use of Various Industrial and Eggshell Wastes for the Sustainable Construction Sector. Politeknik Dergisi. 2024;27(4):1293-304.