Research Article
BibTex RIS Cite

Altın Nano Çubuklar ve Gümüş Nano Parçacıklar Kullanılarak Yüzeyde Zenginleştirilmiş Raman Spektroskopisi Yoluyla Saf ve Karışık İdrar Lekelerinin Tanımlanması

Year 2024, Volume: 27 Issue: 4, 1335 - 1343, 25.09.2024
https://doi.org/10.2339/politeknik.1216163

Abstract

Adli bilimlerde, laboratuvar ve olay yeri inceleme uygulamalarında, bulunan lekelerin analizleri büyük önem taşımaktadır. Suça ve olaya karışan değişkenlerin belirlenerek etkin bir soruşturma yürütülebilmesi için numunelerin hızlı, küçük miktarlarda ve hatta karışım halinde analiz edilmesi gerekmektedir. Bu nedenle delil niteliğindeki materyallerin tahribatsız, hızlı ve uygun maliyetli tekniklerle analiz edilmesi büyük önem taşımaktadır. Spektroskopik yöntemler, son yıllarda ışık dedektörlerindeki önemli gelişmelerle birlikte önemli ölçüde ilerlemiş ve adli tıp prosedürleri arasında yerini almıştır. Bu çalışma, saf idrar lekelerini karışım durumunda saptamak için Raman ve Yüzey İyileştirilmiş Raman Spektroskopisi’ne (SERS) odaklanmıştır. İdrarın matriks bileşenlerinin neden olduğu floresans etkisini azaltmak için dilüsyon yapılmış ve dört farklı konsantrasyon için Raman analizleri yapılmıştır. Konsantrasyon azaldıkça gürültü oranının azaldığı ve piklerin daha belirgin hale geldiği gözlenmiştir. Saf idrar, seyreltilmiş idrar (1:2, 1:4 ve 1:8), elma suyu, karışım (elma suyu ve farklı konsantrasyonlarda idrar) ve altın nanoçubuk/gümüş nanopartikül katkılı karışımları içeren simüle edilmiş bir olay yeri, karmaşık bir suç mahallinden idrarın saptanabilirliğini kontrol etmek için yaratılmıştır. Raman spektrumundaki düşük tepe yoğunluğuna rağmen, idrarın varlığı tespit edilebilmiştir. Simüle edilen olay mahallinden elde edilen lekelerin SERS spektrumları önce altın nanoçubuklar ardından gümüş nanoparçacıklar ilave edilerek incelenmiştir. Güçlü plazmonik özellikleriyle bilinen gümüş nanoparçacıkların, altın nanoçubuklara kıyasla daha fazla sinyal zenginleştirmesi sağladığı bulunmuştur.

Supporting Institution

Hacettepe Üniversitesi

Project Number

19679

Thanks

Tez danışmanım Prof. Dr. Necdet Sağlam'a ve çalışmalarımda desteklerini esirgemeyen sayın hocalarım Prof. Dr. Uğur Tamer ve Prof. Dr. Ramazan Akçan'a çok teşekkür ederim.

References

  • [1] Virkler, K., & Lednev, I. K., “Blood species identification for forensic purposes using Raman spectroscopy combined with advanced statistical analysis”, Analytical chemistry, 81(18): 7773-7777, (2009).
  • [2] J. Siegel, G. Knupfer, P. Saukko, “Encyclopedia of Forensic Sciences”, Academic Press, London, San Diego, (2000).
  • [3] Bilgili A. K., Akpınar Ö., Öztürk M. K., Özçelik S., Özbay E.“ XRD vs Raman for InGaN/GaN structures”, Politeknik Dergisi, 23(2): 291-296, (2020).
  • [4] Zapata, F., de la Ossa, M. Á. F., & García-Ruiz, C., “Emerging spectrometric techniques for the forensic analysis of body fluids”, TrAC Trends in Analytical Chemistry, 64: 53-63, (2015).
  • [5] Akçan, R., & Yıldırım, M. Ş., “Raman Spectroscopy as a Novel Technology in Forensic Toxicological Analyses”, Current Analytical Chemistry, 17(8), 1082-1096, (2021).
  • [6] Yildirim, M. Ş., Akçan, R., Aras, S., Tamer, U., Evran, E., Taştekin, B., Boyaci, İ. H., “Overcoming obstacles: Analysis of blood and semen stains washed with different chemicals with ATR-FTIR”, Forensic Science International, 344, 111607, (2023).
  • [7] B. Venkatesh, S. Ramasamy, M. Mylrajan, R. Asokan, P.T. Manoharan, J.M. Rifkind, “Fourier transform Raman approach to structural correlation in hemoglobin derivatives, Spectrochim”, Acta A 55,1691-1697, (1999).
  • [8] A.M.K. Enejder, T. Koo, J. Oh, M. Hunter, S. Sasic, M.S. Feld, G.L. Horowitz, “Blood analysis by Raman spectroscopy”, Opt. Lett., 27, 2004-2006, (2002).
  • [9] M. Volkan, “Use of surface enhanced raman spectroscopy (SERS) in bioanalytical chemistry”, Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 2(2), 40-40, (2000).
  • [10] Akçan, R., Yildirim, M. Ş., İlhan, H., Güven, B., Tamer, U., & Sağlam, N., “Surface enhanced Raman spectroscopy as a novel tool for rapid quantification of heroin and metabolites in saliva”, Turkish journal of medical sciences, 50(5), 1470-1479, (2020).
  • [11] Premasiri, W. R., Clarke, R. H., & Womble, M. E., “Urine analysis by laser Raman spectroscopy”, Lasers in Surgery and Medicine: The Official Journal of the American Society for Laser Medicine and Surgery, 28(4): 330-334, (2001).
  • [12] Hidi, I. J., Jahn, M., Pletz, M. W., Weber, K., Cialla-May, D., & Popp, J., “Toward levofloxacin monitoring in human urine samples by employing the LoC-SERS technique”, The Journal of Physical Chemistry C, 120(37): 20613-20623, (2016).
  • [13] Lin, J., Huang, Z., Lin, X., Wu, Q., Quan, K., Cheng, Y., ... & Feng, S. “Rapid and label-free urine test based on surface-enhanced Raman spectroscopy for the non-invasive detection of colorectal cancer at different stages”, Biomedical Optics Express, 11(12), 7109-7119, (2020).
  • [14] Del Mistro, G., Cervo, S., Mansutti, E., Spizzo, R., Colombatti, A., Belmonte, P., ... & Bonifacio, A. “Surface-enhanced Raman spectroscopy of urine for prostate cancer detection: a preliminary study”, Analytical and Bioanalytical Chemistry, 407, 3271-3275, (2015).
  • [15] Aitekenov, S., Sultangaziyev, A., Ilyas, A., Dyussupova, A., Boranova, A., Gaipov, A., & Bukasov, R. “Surface-enhanced Raman spectroscopy (SERS) for protein determination in human urine”, Sensing and Bio-Sensing Research, 38, 100535, (2022).
  • [16] Lin, K. Q., Yi, J., Hu, S., Liu, B. J., Liu, J. Y., Wang, X., & Ren, B. “Size effect on SERS of gold nanorods demonstrated via single nanoparticle spectroscopy”, The Journal of Physical Chemistry C, 120(37), 20806-20813, (2016).
  • [17] Yu, Y., Zeng, P., Yang, C., Gong, J., Liang, R., Ou, Q., & Zhang, S. “Gold-nanorod-coated capillaries for the SERS-based detection of thiram”, ACS Applied Nano Materials, 2(1), 598-606, (2019).
  • [18] Albarghouthi, N., MacMillan, P., & Brosseau, C. L. “Optimization of gold nanorod arrays for surface enhanced Raman spectroscopy (SERS) detection of atrazine”, Analyst, 146(6), 2037-2047, (2021).
  • [19] Herrera, G. M., Padilla, A. C., & Hernandez-Rivera, S. P. “Surface enhanced Raman scattering (SERS) studies of gold and silver nanoparticles prepared by laser ablation”, Nanomaterials, 3(1), 158-172, (2013).
  • [20] Temur, E.; Boyaci, I. H.; Tamer, U.; Unsal, H.; Aydogan, N., “A highly sensitive detection platform based on surface-enhanced Raman scattering for Escherichia coli enumeration”, Anal Bioanal Chem, 397: 1595-1604, (2010).
  • [21] Li, J. J., Zhang, N., Wang, J., Yang, C. Y., Zhu, J., & Zhao, J. W., “Tuning the EDTA-induced self-assembly and plasmonic spectral properties of gold nanorods: application in surface-enhanced Raman scattering”, Journal of Nanoparticle Research, 18, 1-12, (2016).
  • [22] Bhui, D. K., Bar, H., Sarkar, P., Sahoo, G. P., De, S. P., & Misra, A., “Synthesis and UV–vis spectroscopic study of silver nanoparticles in aqueous SDS solution”, Journal of Molecular Liquids, 145(1), 33-37, (2009).
  • [23] Zhang, C., Chen, S., Jiang, Z., Shi, Z., Wang, J., & Du, L, “Highly sensitive and reproducible SERS substrates based on ordered micropyramid array and silver nanoparticles”, ACS Applied Materials & Interfaces, 13(24), 29222-29229, (2021).
  • [24] Smyth, C. A., Mirza, I., Lunney, J. G., & McCabe, E. M., “Surface-enhanced Raman spectroscopy (SERS) using Ag nanoparticle films produced by pulsed laser deposition”, Applied surface science, 264, 31-35, (2013).
  • [25] Lin, D., Wu, Z., Li, S., Zhao, W., Ma, C., Wang, J., ... & Yang, X., “Large-area Au-nanoparticle-functionalized Si nanorod arrays for spatially uniform surface-enhanced Raman spectroscopy”, ACS nano, 11(2), 1478-1487, (2017).
  • [26] Saatkamp, C. J., de Almeida, M. L., Bispo, J. A. M., Pinheiro, A. L. B., Fernandes, A. B., & Silveira Jr, L., “Quantifying creatinine and urea in human urine through Raman spectroscopy aiming at diagnosis of kidney disease”, Journal of biomedical optics, 21(3): 037001, (2016).
  • [27] Trachta, G., Schwarze, B., Sägmüller, B., Brehm, G., & Schneider, S., “Combination of high-performance liquid chromatography and SERS detection applied to the analysis of drugs in human blood and urine”, Journal of molecular structure, 693(1-3): 175-185, (2004).
  • [28] Moisoiu, V., Socaciu, A., Stefancu, A., Iancu, S. D., Boros, I., Alecsa, C. D., ... & Eniu, D. T., “Breast cancer diagnosis by surface-enhanced Raman scattering (SERS) of urine”, Applied Sciences, 9(4): 806, (2019). [29] Phyo, J. B., Woo, A., Yu, H. J., Lim, K., Cho, B. H., Jung, H. S., & Lee, M. Y. “Label-free SERS analysis of urine using a 3D-stacked AgNW-glass fiber filter sensor for the diagnosis of pancreatic cancer and prostate cancer”, Analytical Chemistry, 93(8), 3778-3785: (2021).
  • [30] Moisoiu, T., Dragomir, M. P., Iancu, S. D., Schallenberg, S., Birolo, G., Ferrero, G., ... & Elec, F. “Combined miRNA and SERS urine liquid biopsy for the point-of-care diagnosis and molecular stratification of bladder cancer”, Molecular Medicine, 28(1): 1-13, (2022).
  • [31] Li, M., Du, Y., Zhao, F., Zeng, J., Mohan, C., & Shih, W. C., “Reagent-and separation-free measurements of urine creatinine concentration using stamping surface enhanced Raman scattering (S-SERS)”, Biomedical optics express, 6(3): 849-858, (2015).
  • [32] Iancu, S. D., Cozan, R. G., Stefancu, A., David, M., Moisoiu, T., Moroz-Dubenco, C., ... & Leopold, N., “SERS liquid biopsy in breast cancer. What can we learn from SERS on serum and urine”, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 273: 120992, (2022).
  • [33] Guimarães, A. E., Pacheco, M. T. T., Silveira Jr, L., Barsottini, D., Duarte, J., Villaverde, A. B., & Zângaro, R. A., “Near Infrared Raman Spectroscopy (NIRS): A technique for doping control”, Spectroscopy, 20(4): 185-194, (2006).
  • [34] Flores-Guerrero, J. L., Muñoz-Morales, A., Narea-Jimenez, F., Perez-Fuentes, R., Torres-Rasgado, E., Ruiz-Vivanco, G., ... & Castro-Ramos, J., “Novel assessment of urinary albumin excretion in type 2 diabetes patients by Raman spectroscopy”, Diagnostics, 10(3): 141, (2020).
  • [35] Mizrach, A., Schmilovitch, Z. E., Korotic, R., Irudayaraj, J., & Shapira, R., “Yeast detection in apple juice using Raman spectroscopy and chemometric methods”., Transactions of the ASABE, 50(6): 2143-2149, (2007).
  • [36 ] Mizrach, A., Schmilovitch, Z. E., Korotic, R., Irudayaraj, J., & Shapira, R., “Yeast Detection in Apple Juice Using Raman Spectroscopy. In 2006 ASAE Annual Meeting”(p. 1), American Society of Agricultural and Biological Engineers, (2006).
  • [37] Zhang, Z., Yu, Q., Li, H., Mustapha, A., & Lin, M., “Standing gold nanorod arrays as reproducible SERS substrates for measurement of pesticides in apple juice and vegetables”, Journal of food science, 80(2), N450-N458, (2015).
  • [38] Chattopadhyay, S., Lo, H.C., Hsu, C.H., Chen, L. C., Chen, K.H., “Surface-enhanced Raman spectroscopy using self-assembled silver nanoparticles on silicon nanotips”, Chemistry of materials, 17(3), 553-559, (2005).
  • [39] Turkevich, J., Stevenson, P.C., Hillier, J., “A study of the nucleation and growth processes in the synthesis of colloidal gold”, Discussions of the Faraday Society, 11, 55-75, (1951).
  • [40] Altunbek, M., Kuku, G., Culha, M., “Gold nanoparticles in single-cell analysis for surface enhanced Raman scattering”, Molecules, 21(12), 1617, (2016).
  • [41] Kumar, R., Binetti, L., Nguyen, T. H., Alwis, L. S., Agrawal, A., Sun, T., & Grattan, K. T., “Determination of the Aspect-ratio Distribution of Gold Nanorods in a Colloidal Solution using UV-visible absorption spectroscopy”, Scientific Reports, 9(1), 17469, (2019).
  • [42] Ou, Y., Wang, X., Lai, K., Huang, Y., Rasco, B. A., & Fan, Y., “Gold nanorods as surface-enhanced Raman spectroscopy substrates for rapid and sensitive analysis of allura red and sunset yellow in beverages”, Journal of agricultural and food chemistry, 66(11), 2954-2961, (2018).
  • [43] Desai, R., Mankad, V., Gupta, S. K., & Jha, P. K., “Size distribution of silver nanoparticles: UV-visible spectroscopic assessment”, Nanoscience and nanotechnology letters, 4(1), 30-34, (2012).
  • [44] Ateş M., Yılmaz E., Kar B. ve Kars Durukan İ., “Synthesis and characterization silver nanoparticles and coating with chitosan”, Politeknik Dergisi, 24(4): 1401-1408, (2021).
  • [45]. Lin, J., Huang, Z., Lin, X., Wu, Q., Quan, K., Cheng, Y., ... & Feng, S., “Rapid and label-free urine test based on surface-enhanced Raman spectroscopy for the non-invasive detection of colorectal cancer at different stages”, Biomedical Optics Express, 11(12), 7109-7119, (2020).
  • [46] Chen, C., Yang, L., Zhao, J., Yuan, Y., Chen, C., Tang, J., ... & Lv, X., “Urine Raman spectroscopy for rapid and inexpensive diagnosis of chronic renal failure (CRF) using multiple classification algorithms”, Optik, 203, 164043, (2020).
  • [47] West, M. J., & Went, M. J., “Detection of drugs of abuse by Raman spectroscopy”, Drug testing and analysis, 3(9), 532-538, (2011).
  • [48] Chi, J., Zaw, T., Cardona, I., Hosnain, M., Garg, N., Lefkowitz, H. R., ... & Du, H., “Use of surface-enhanced Raman scattering as a prognostic indicator of acute kidney transplant rejection”, Biomedical Optics Express, 6(3): 761-769, (2015).
  • [49] De Almeida, M. L., Saatkamp, C. J., Fernandes, A. B., Pinheiro, A. L. B., & Silveira, L., “Estimating the concentration of urea and creatinine in the human serum of normal and dialysis patients through Raman spectroscopy”, Lasers in medical science, 31(7): 1415-1423, (2016).

Identification of Pure and Mixed Urine Stains Through Surface Enhanced Raman Spectroscopy Using Gold Nanorods & Silver Nanoparticles

Year 2024, Volume: 27 Issue: 4, 1335 - 1343, 25.09.2024
https://doi.org/10.2339/politeknik.1216163

Abstract

In forensic science laboratories and crime scene investigation applications, analyses of discovered stains are crucial. In order to carry out an effective investigation by determining the variables related to the crime and those involved in the event, it is necessary to analyze the samples quickly, in small quantities, and even in the form of mixtures. Therefore, it is of high importance to analyze evidential materials with non-destructive, fast, cost-effective techniques. Spectroscopic methods have advanced significantly in recent years with important developments in light detectors and take place among forensic procedures. This study focused on Raman and Surface Enhanced Raman Spectroscopy (SERS) for detecting pure urine mixed stains. In order to reduce the fluorescence effect caused by the matrix components of the urine, dilution was made and Raman analyses were performed for four different concentrations. It was observed that as the concentration decreased, the noise ratio decreased and the peaks became more pronounced. A simulated crime scene containing stains of pure urine, diluted urine (1:2, 1:4, and 1:8), apple juice, mixture (apple juice and different concentrations of urine), and gold nanorod/silver nanoparticle doped mixtures were created to check the detectability of urine from a complex crime scene. Despite the low peak intensity in the Raman spectrum, the presence of urine was still detectable. The SERS spectrums of the stains obtained from the simulated crime scene were examined first with the addition of gold nanorods and subsequently with the addition of silver nanoparticles. Silver nanoparticles, known for their strong plasmonic properties, were found to provide greater signal enhancement compared to gold nanorods.

Project Number

19679

References

  • [1] Virkler, K., & Lednev, I. K., “Blood species identification for forensic purposes using Raman spectroscopy combined with advanced statistical analysis”, Analytical chemistry, 81(18): 7773-7777, (2009).
  • [2] J. Siegel, G. Knupfer, P. Saukko, “Encyclopedia of Forensic Sciences”, Academic Press, London, San Diego, (2000).
  • [3] Bilgili A. K., Akpınar Ö., Öztürk M. K., Özçelik S., Özbay E.“ XRD vs Raman for InGaN/GaN structures”, Politeknik Dergisi, 23(2): 291-296, (2020).
  • [4] Zapata, F., de la Ossa, M. Á. F., & García-Ruiz, C., “Emerging spectrometric techniques for the forensic analysis of body fluids”, TrAC Trends in Analytical Chemistry, 64: 53-63, (2015).
  • [5] Akçan, R., & Yıldırım, M. Ş., “Raman Spectroscopy as a Novel Technology in Forensic Toxicological Analyses”, Current Analytical Chemistry, 17(8), 1082-1096, (2021).
  • [6] Yildirim, M. Ş., Akçan, R., Aras, S., Tamer, U., Evran, E., Taştekin, B., Boyaci, İ. H., “Overcoming obstacles: Analysis of blood and semen stains washed with different chemicals with ATR-FTIR”, Forensic Science International, 344, 111607, (2023).
  • [7] B. Venkatesh, S. Ramasamy, M. Mylrajan, R. Asokan, P.T. Manoharan, J.M. Rifkind, “Fourier transform Raman approach to structural correlation in hemoglobin derivatives, Spectrochim”, Acta A 55,1691-1697, (1999).
  • [8] A.M.K. Enejder, T. Koo, J. Oh, M. Hunter, S. Sasic, M.S. Feld, G.L. Horowitz, “Blood analysis by Raman spectroscopy”, Opt. Lett., 27, 2004-2006, (2002).
  • [9] M. Volkan, “Use of surface enhanced raman spectroscopy (SERS) in bioanalytical chemistry”, Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 2(2), 40-40, (2000).
  • [10] Akçan, R., Yildirim, M. Ş., İlhan, H., Güven, B., Tamer, U., & Sağlam, N., “Surface enhanced Raman spectroscopy as a novel tool for rapid quantification of heroin and metabolites in saliva”, Turkish journal of medical sciences, 50(5), 1470-1479, (2020).
  • [11] Premasiri, W. R., Clarke, R. H., & Womble, M. E., “Urine analysis by laser Raman spectroscopy”, Lasers in Surgery and Medicine: The Official Journal of the American Society for Laser Medicine and Surgery, 28(4): 330-334, (2001).
  • [12] Hidi, I. J., Jahn, M., Pletz, M. W., Weber, K., Cialla-May, D., & Popp, J., “Toward levofloxacin monitoring in human urine samples by employing the LoC-SERS technique”, The Journal of Physical Chemistry C, 120(37): 20613-20623, (2016).
  • [13] Lin, J., Huang, Z., Lin, X., Wu, Q., Quan, K., Cheng, Y., ... & Feng, S. “Rapid and label-free urine test based on surface-enhanced Raman spectroscopy for the non-invasive detection of colorectal cancer at different stages”, Biomedical Optics Express, 11(12), 7109-7119, (2020).
  • [14] Del Mistro, G., Cervo, S., Mansutti, E., Spizzo, R., Colombatti, A., Belmonte, P., ... & Bonifacio, A. “Surface-enhanced Raman spectroscopy of urine for prostate cancer detection: a preliminary study”, Analytical and Bioanalytical Chemistry, 407, 3271-3275, (2015).
  • [15] Aitekenov, S., Sultangaziyev, A., Ilyas, A., Dyussupova, A., Boranova, A., Gaipov, A., & Bukasov, R. “Surface-enhanced Raman spectroscopy (SERS) for protein determination in human urine”, Sensing and Bio-Sensing Research, 38, 100535, (2022).
  • [16] Lin, K. Q., Yi, J., Hu, S., Liu, B. J., Liu, J. Y., Wang, X., & Ren, B. “Size effect on SERS of gold nanorods demonstrated via single nanoparticle spectroscopy”, The Journal of Physical Chemistry C, 120(37), 20806-20813, (2016).
  • [17] Yu, Y., Zeng, P., Yang, C., Gong, J., Liang, R., Ou, Q., & Zhang, S. “Gold-nanorod-coated capillaries for the SERS-based detection of thiram”, ACS Applied Nano Materials, 2(1), 598-606, (2019).
  • [18] Albarghouthi, N., MacMillan, P., & Brosseau, C. L. “Optimization of gold nanorod arrays for surface enhanced Raman spectroscopy (SERS) detection of atrazine”, Analyst, 146(6), 2037-2047, (2021).
  • [19] Herrera, G. M., Padilla, A. C., & Hernandez-Rivera, S. P. “Surface enhanced Raman scattering (SERS) studies of gold and silver nanoparticles prepared by laser ablation”, Nanomaterials, 3(1), 158-172, (2013).
  • [20] Temur, E.; Boyaci, I. H.; Tamer, U.; Unsal, H.; Aydogan, N., “A highly sensitive detection platform based on surface-enhanced Raman scattering for Escherichia coli enumeration”, Anal Bioanal Chem, 397: 1595-1604, (2010).
  • [21] Li, J. J., Zhang, N., Wang, J., Yang, C. Y., Zhu, J., & Zhao, J. W., “Tuning the EDTA-induced self-assembly and plasmonic spectral properties of gold nanorods: application in surface-enhanced Raman scattering”, Journal of Nanoparticle Research, 18, 1-12, (2016).
  • [22] Bhui, D. K., Bar, H., Sarkar, P., Sahoo, G. P., De, S. P., & Misra, A., “Synthesis and UV–vis spectroscopic study of silver nanoparticles in aqueous SDS solution”, Journal of Molecular Liquids, 145(1), 33-37, (2009).
  • [23] Zhang, C., Chen, S., Jiang, Z., Shi, Z., Wang, J., & Du, L, “Highly sensitive and reproducible SERS substrates based on ordered micropyramid array and silver nanoparticles”, ACS Applied Materials & Interfaces, 13(24), 29222-29229, (2021).
  • [24] Smyth, C. A., Mirza, I., Lunney, J. G., & McCabe, E. M., “Surface-enhanced Raman spectroscopy (SERS) using Ag nanoparticle films produced by pulsed laser deposition”, Applied surface science, 264, 31-35, (2013).
  • [25] Lin, D., Wu, Z., Li, S., Zhao, W., Ma, C., Wang, J., ... & Yang, X., “Large-area Au-nanoparticle-functionalized Si nanorod arrays for spatially uniform surface-enhanced Raman spectroscopy”, ACS nano, 11(2), 1478-1487, (2017).
  • [26] Saatkamp, C. J., de Almeida, M. L., Bispo, J. A. M., Pinheiro, A. L. B., Fernandes, A. B., & Silveira Jr, L., “Quantifying creatinine and urea in human urine through Raman spectroscopy aiming at diagnosis of kidney disease”, Journal of biomedical optics, 21(3): 037001, (2016).
  • [27] Trachta, G., Schwarze, B., Sägmüller, B., Brehm, G., & Schneider, S., “Combination of high-performance liquid chromatography and SERS detection applied to the analysis of drugs in human blood and urine”, Journal of molecular structure, 693(1-3): 175-185, (2004).
  • [28] Moisoiu, V., Socaciu, A., Stefancu, A., Iancu, S. D., Boros, I., Alecsa, C. D., ... & Eniu, D. T., “Breast cancer diagnosis by surface-enhanced Raman scattering (SERS) of urine”, Applied Sciences, 9(4): 806, (2019). [29] Phyo, J. B., Woo, A., Yu, H. J., Lim, K., Cho, B. H., Jung, H. S., & Lee, M. Y. “Label-free SERS analysis of urine using a 3D-stacked AgNW-glass fiber filter sensor for the diagnosis of pancreatic cancer and prostate cancer”, Analytical Chemistry, 93(8), 3778-3785: (2021).
  • [30] Moisoiu, T., Dragomir, M. P., Iancu, S. D., Schallenberg, S., Birolo, G., Ferrero, G., ... & Elec, F. “Combined miRNA and SERS urine liquid biopsy for the point-of-care diagnosis and molecular stratification of bladder cancer”, Molecular Medicine, 28(1): 1-13, (2022).
  • [31] Li, M., Du, Y., Zhao, F., Zeng, J., Mohan, C., & Shih, W. C., “Reagent-and separation-free measurements of urine creatinine concentration using stamping surface enhanced Raman scattering (S-SERS)”, Biomedical optics express, 6(3): 849-858, (2015).
  • [32] Iancu, S. D., Cozan, R. G., Stefancu, A., David, M., Moisoiu, T., Moroz-Dubenco, C., ... & Leopold, N., “SERS liquid biopsy in breast cancer. What can we learn from SERS on serum and urine”, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 273: 120992, (2022).
  • [33] Guimarães, A. E., Pacheco, M. T. T., Silveira Jr, L., Barsottini, D., Duarte, J., Villaverde, A. B., & Zângaro, R. A., “Near Infrared Raman Spectroscopy (NIRS): A technique for doping control”, Spectroscopy, 20(4): 185-194, (2006).
  • [34] Flores-Guerrero, J. L., Muñoz-Morales, A., Narea-Jimenez, F., Perez-Fuentes, R., Torres-Rasgado, E., Ruiz-Vivanco, G., ... & Castro-Ramos, J., “Novel assessment of urinary albumin excretion in type 2 diabetes patients by Raman spectroscopy”, Diagnostics, 10(3): 141, (2020).
  • [35] Mizrach, A., Schmilovitch, Z. E., Korotic, R., Irudayaraj, J., & Shapira, R., “Yeast detection in apple juice using Raman spectroscopy and chemometric methods”., Transactions of the ASABE, 50(6): 2143-2149, (2007).
  • [36 ] Mizrach, A., Schmilovitch, Z. E., Korotic, R., Irudayaraj, J., & Shapira, R., “Yeast Detection in Apple Juice Using Raman Spectroscopy. In 2006 ASAE Annual Meeting”(p. 1), American Society of Agricultural and Biological Engineers, (2006).
  • [37] Zhang, Z., Yu, Q., Li, H., Mustapha, A., & Lin, M., “Standing gold nanorod arrays as reproducible SERS substrates for measurement of pesticides in apple juice and vegetables”, Journal of food science, 80(2), N450-N458, (2015).
  • [38] Chattopadhyay, S., Lo, H.C., Hsu, C.H., Chen, L. C., Chen, K.H., “Surface-enhanced Raman spectroscopy using self-assembled silver nanoparticles on silicon nanotips”, Chemistry of materials, 17(3), 553-559, (2005).
  • [39] Turkevich, J., Stevenson, P.C., Hillier, J., “A study of the nucleation and growth processes in the synthesis of colloidal gold”, Discussions of the Faraday Society, 11, 55-75, (1951).
  • [40] Altunbek, M., Kuku, G., Culha, M., “Gold nanoparticles in single-cell analysis for surface enhanced Raman scattering”, Molecules, 21(12), 1617, (2016).
  • [41] Kumar, R., Binetti, L., Nguyen, T. H., Alwis, L. S., Agrawal, A., Sun, T., & Grattan, K. T., “Determination of the Aspect-ratio Distribution of Gold Nanorods in a Colloidal Solution using UV-visible absorption spectroscopy”, Scientific Reports, 9(1), 17469, (2019).
  • [42] Ou, Y., Wang, X., Lai, K., Huang, Y., Rasco, B. A., & Fan, Y., “Gold nanorods as surface-enhanced Raman spectroscopy substrates for rapid and sensitive analysis of allura red and sunset yellow in beverages”, Journal of agricultural and food chemistry, 66(11), 2954-2961, (2018).
  • [43] Desai, R., Mankad, V., Gupta, S. K., & Jha, P. K., “Size distribution of silver nanoparticles: UV-visible spectroscopic assessment”, Nanoscience and nanotechnology letters, 4(1), 30-34, (2012).
  • [44] Ateş M., Yılmaz E., Kar B. ve Kars Durukan İ., “Synthesis and characterization silver nanoparticles and coating with chitosan”, Politeknik Dergisi, 24(4): 1401-1408, (2021).
  • [45]. Lin, J., Huang, Z., Lin, X., Wu, Q., Quan, K., Cheng, Y., ... & Feng, S., “Rapid and label-free urine test based on surface-enhanced Raman spectroscopy for the non-invasive detection of colorectal cancer at different stages”, Biomedical Optics Express, 11(12), 7109-7119, (2020).
  • [46] Chen, C., Yang, L., Zhao, J., Yuan, Y., Chen, C., Tang, J., ... & Lv, X., “Urine Raman spectroscopy for rapid and inexpensive diagnosis of chronic renal failure (CRF) using multiple classification algorithms”, Optik, 203, 164043, (2020).
  • [47] West, M. J., & Went, M. J., “Detection of drugs of abuse by Raman spectroscopy”, Drug testing and analysis, 3(9), 532-538, (2011).
  • [48] Chi, J., Zaw, T., Cardona, I., Hosnain, M., Garg, N., Lefkowitz, H. R., ... & Du, H., “Use of surface-enhanced Raman scattering as a prognostic indicator of acute kidney transplant rejection”, Biomedical Optics Express, 6(3): 761-769, (2015).
  • [49] De Almeida, M. L., Saatkamp, C. J., Fernandes, A. B., Pinheiro, A. L. B., & Silveira, L., “Estimating the concentration of urea and creatinine in the human serum of normal and dialysis patients through Raman spectroscopy”, Lasers in medical science, 31(7): 1415-1423, (2016).
There are 48 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Uğur Köroğlu 0000-0003-1623-7259

Necdet Saglam 0000-0002-5463-8355

Uğur Tamer 0000-0001-9989-6123

Ramazan Akçan 0000-0002-4100-9488

Project Number 19679
Early Pub Date June 14, 2023
Publication Date September 25, 2024
Submission Date December 8, 2022
Published in Issue Year 2024 Volume: 27 Issue: 4

Cite

APA Köroğlu, U., Saglam, N., Tamer, U., Akçan, R. (2024). Altın Nano Çubuklar ve Gümüş Nano Parçacıklar Kullanılarak Yüzeyde Zenginleştirilmiş Raman Spektroskopisi Yoluyla Saf ve Karışık İdrar Lekelerinin Tanımlanması. Politeknik Dergisi, 27(4), 1335-1343. https://doi.org/10.2339/politeknik.1216163
AMA Köroğlu U, Saglam N, Tamer U, Akçan R. Altın Nano Çubuklar ve Gümüş Nano Parçacıklar Kullanılarak Yüzeyde Zenginleştirilmiş Raman Spektroskopisi Yoluyla Saf ve Karışık İdrar Lekelerinin Tanımlanması. Politeknik Dergisi. September 2024;27(4):1335-1343. doi:10.2339/politeknik.1216163
Chicago Köroğlu, Uğur, Necdet Saglam, Uğur Tamer, and Ramazan Akçan. “Altın Nano Çubuklar Ve Gümüş Nano Parçacıklar Kullanılarak Yüzeyde Zenginleştirilmiş Raman Spektroskopisi Yoluyla Saf Ve Karışık İdrar Lekelerinin Tanımlanması”. Politeknik Dergisi 27, no. 4 (September 2024): 1335-43. https://doi.org/10.2339/politeknik.1216163.
EndNote Köroğlu U, Saglam N, Tamer U, Akçan R (September 1, 2024) Altın Nano Çubuklar ve Gümüş Nano Parçacıklar Kullanılarak Yüzeyde Zenginleştirilmiş Raman Spektroskopisi Yoluyla Saf ve Karışık İdrar Lekelerinin Tanımlanması. Politeknik Dergisi 27 4 1335–1343.
IEEE U. Köroğlu, N. Saglam, U. Tamer, and R. Akçan, “Altın Nano Çubuklar ve Gümüş Nano Parçacıklar Kullanılarak Yüzeyde Zenginleştirilmiş Raman Spektroskopisi Yoluyla Saf ve Karışık İdrar Lekelerinin Tanımlanması”, Politeknik Dergisi, vol. 27, no. 4, pp. 1335–1343, 2024, doi: 10.2339/politeknik.1216163.
ISNAD Köroğlu, Uğur et al. “Altın Nano Çubuklar Ve Gümüş Nano Parçacıklar Kullanılarak Yüzeyde Zenginleştirilmiş Raman Spektroskopisi Yoluyla Saf Ve Karışık İdrar Lekelerinin Tanımlanması”. Politeknik Dergisi 27/4 (September 2024), 1335-1343. https://doi.org/10.2339/politeknik.1216163.
JAMA Köroğlu U, Saglam N, Tamer U, Akçan R. Altın Nano Çubuklar ve Gümüş Nano Parçacıklar Kullanılarak Yüzeyde Zenginleştirilmiş Raman Spektroskopisi Yoluyla Saf ve Karışık İdrar Lekelerinin Tanımlanması. Politeknik Dergisi. 2024;27:1335–1343.
MLA Köroğlu, Uğur et al. “Altın Nano Çubuklar Ve Gümüş Nano Parçacıklar Kullanılarak Yüzeyde Zenginleştirilmiş Raman Spektroskopisi Yoluyla Saf Ve Karışık İdrar Lekelerinin Tanımlanması”. Politeknik Dergisi, vol. 27, no. 4, 2024, pp. 1335-43, doi:10.2339/politeknik.1216163.
Vancouver Köroğlu U, Saglam N, Tamer U, Akçan R. Altın Nano Çubuklar ve Gümüş Nano Parçacıklar Kullanılarak Yüzeyde Zenginleştirilmiş Raman Spektroskopisi Yoluyla Saf ve Karışık İdrar Lekelerinin Tanımlanması. Politeknik Dergisi. 2024;27(4):1335-43.