Research Article
BibTex RIS Cite

Investigation of In-cylinder Heat Transfer in a Low Heat Rejection Diesel Engine

Year 2024, Volume: 27 Issue: 4, 1603 - 1616, 25.09.2024
https://doi.org/10.2339/politeknik.1325890

Abstract

In this study, it is investigated heat transfer characteristics of combustion chamber of a direct-injection diesel engine. The piston bowls were coated with a material with low heat transfer coefficient. The tests were performed at constant speed and four different engine loads. Piston bowls were coated with Yttria stabilized zirconia by plasma spray method. Woschni, Hohenberg and Eichelberg models, adopted frequently in the literature, were based on for the heat transfer calculation. As main heat transfer parameters, heat transfer coefficient, heat flux, cumulative gross heat release and cumulative heat transfer were handled. From the study, it was concluded that cumulative gross heat release and heat flux in combustion chamber increased in a significant rate with enhanced loads and piston coating application. In compression period, it was determined that Hohenberg’s model usually gave higher heat transfer rate values; whereas, Woschni’s model gave lower heat transfer rate values. With Woschni model, the heat transfer parameters were lower at low load, while they achieved to maximum values at high load. At highest load, cumulative heat release rate values were founded further close to each other for all used models in both engines.

References

  • [1] Ferguson C. R. and Kirkpatrick A. T., “Internal Combustion Engines—Applied Thermosciences”, 2nd ed., John Wiley & Sons, New York, (2001).
  • [2] Şanlı A., Özsezen A. N., Kılıçaslan I. and Çanakcı M., “The influence of engine speed and load on the heat transfer between gases and in-cylinder walls at fired and motored conditions of an IDI diesel engine”, Applied Thermal Engineering, 28: 1395-1404, (2008).
  • [3] Dabbaghi M. F., Baharom M. B., Abdul Karim Z. A., Aziz A. R. A., Muhammed S. E. and Zainal E. Z. A., “Comparative evaluation of different heat transfer correlations on a single curved-cylinder spark ignition crank-rocker engine”, Alexandria Engineering Journal, 60(3): 2963-2978, (2021).
  • [4] Rashedul H. K., Kalam M. A., Masjuki H. H., Ashraful A. M., Imtenan S., Sajjad H. and Wee L. K., “Numerical study on convective heat transfer of a spark ignition engine fueled with bioethanol”, International Communications in Heat and Mass Transfer, 58: 33-39, (2014).
  • [5] Janjua A. A., Shah S. R., Din E. U., Aslam J., Khan M. Z. A. and Tauzia X., “Simplistic Comparative Analytical Methodology for Accuracy Determination of In-Cylinder Convective Heat Transfer Coefficient Models of Diesel Engine Operating with Water Injection using Experimental Pressure Signals”, Arabian Journal for Science and Engineering, (2023).
  • [6] Sanli A., Sayin C., Gumus M., Kilicaslan I. and Canakci M., “Numerical evaluation by models of load and spark timing effects on the in-cylinder heat transfer of a SI engine”, Numerical Heat Transfer, Part A: Applications: An International Journal of Computation and Methodology, 56(5): 444-458, (2009).
  • [7] Przybyla G., Postrzednik S., Zmudka Z., “The heat transfer calculations of internal combustion engine fuelled with natural gas”, Mechanika, 87(1/15): 71-80, (2015).
  • [8] Climent H., Tiseira A., Soriano J. G. and Darbhamalla A., “In-cylinder heat transfer model proposal compatible with 1D simulations in uniflow scavenged engines”, Applied Sciences, 13(6): 3996, (2023).
  • [9] Depcik C., Alam S. S., Madani S., Ahlgren N., McDaniel E., Burugupally S. P., and Hobeck J. D., “Determination of a heat transfer correlation for small internal combustion engines”, Applied Thermal Engineering, 228: 120524, (2023) https://doi.org/10.1016/j.applthermaleng.2023.120524.
  • [10] Assanis D., Wiese K., Schwarz E. and Bryzik W., “The effects of ceramic coatings on diesel engine performance and exhaust emissions”, Society of Automotive Engineering Technical Paper, (1991).
  • [11] Aabid A. and Khan S.A., “Optimization of heat transfer on thermal barrier coated gas turbine blade”, IOP Conference Series: Material Science Engineering, 370: 012022, (2018).
  • [12] Schulz U., Leyens C., Fritscher K., Peters M., Saruhan-Brings B., Lavigne O., Dorvaux J. M., Poulain M., Mevrel R. and Caliez M., “Some recent trends in research and technology of advanced thermal barrier coatings”, Aero Science and Technology,7: 73-80, (2003).
  • [13] Goud G. B., Singh C. T. D. K., “Investigation of CI diesel engine emission control and performance parameters using biodiesel with YSZ coated piston crown”, International Journal of Engineering and Technology 2(3): 467-474, (2015).
  • [14] Selvam M., Shanmugan S. and Palani S., “Performance analysis of IC engine with ceramic-coated piston”, Environmental Science and Pollution Research, 25:35210-35220, (2018).
  • [15] Motwani R., Gandolfo J., Gainey B., Levi A., Moser S., Filipi Z. and Lawler B., “Assessing the impact of a novel TBC material on heat transfer in a spark ignition engine through 3D CFD-FEA Co-simulation routine”, Society of Automotive Engineering Technical Paper, (2022).
  • [16] Ramasamy N., Kalam M. A., Varman M. and Teoh Y. H., “Comparative studies of piston crown coating with YSZ and AL2O3.SiO2 on engine out responses using conventional diesel and palm oil biodiesel”, Coatings,11(8): 885, (2021).
  • [17] Hazar H., Ozturk U. and Gül, H., “Characterization and effect of using peanut seed oil methyl ester as a fuel in a low heat rejection diesel engine”, Energy&Fuels,30(10): 8425-8431, (2016).
  • [18] Holman J. P., “Experimental Methods for Engineers” 8th Edition, McGraw-Hill, New York, (2021).
  • [19] Tan D., Chen Z., Li J., Luo J., Yang D., Cui S. and Zhang Z., “Effects of Swirl and Boiling Heat Transfer on the Performance Enhancement and Emission Reduction for a Medium Diesel Engine Fueled with Biodiesel”, Processes, 9(3): 568, (2021).
  • [20] Zak Z., Emrich M., Takats M. and Macek J., “In-cylinder heat transfer modeling”. Journal of Middle European Construction and Design of Cars, 14(3): 2-10, (2016).
  • [21] Borman G. and Nishiwaki K., “Internal combustion engine heat transfer”, Progress in Energy and Combustion Science, 13: 1-46, (1987).
  • [22] Woschni G. and Spindler W., “Heat transfer with insulated combustion chamber walls and its influence on the performance of diesel engines”, Journal of Engineering for Gas Turbines and Power, 110: 482–488, 1988.
  • [23] Woschni G., “A universally applicable equation for the instantaneous heat transfer coefficient in the internal combustion engine”, Society of Automotive Engineering Technical Paper, 1967.
  • [24] Hohenberg G. F., “Advanced approaches for heat transfer calculations”. Society of Automotive Engineering Technical Paper, 1979.
  • [25] Eichelberg G., “Some new investigations on old combustion engine problems”. Engineering, 148(1-2): 446-463, (1939).
  • [26] Bothun L. B., “Numerical simulation of nanofluid cooling in a single-cylinder diesel engine”, MSc, University of Bergen, Geophysical Institute, (2023).
  • [27] Şanlı A., Gümüş M., “Farklı sıkıştırma oranı ve motor momentlerinde direkt püskürtmeli bir dizel motorun yanma odasında ısı geçişinin incelenmesi”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 28(1): 91-103, (2022).
  • [28] Heywood J. B., “ Internal combustion Engine Fundamentals”, Mc-Graw Hill, New York, (1988).
  • [29] Calam A. “Homojen dolgulu sıkıştırma ile ateşlemeli bir motorda n-heptan-tetrahidrofuran karışımlarının yanma, performans ve emisyona etkisi”, Politeknik dergisi, 24(3):1033-1043, (2021).
  • [30] Uyumaz A. and Solmaz H. “Emme havası giriş sıcaklığı ve ön karışımlı yakıt oranının RCCI yanma karakteristiklerine ve motor performansına etkileri”, Politeknik dergisi, 20(3):689-698, (2017).
  • [31] İlçin K., Fırat M., Altun Ş., Okcu M., “Effect of blending ratio and injection timing on combustion and emissions of a common-rail diesel engine fueled by iso-propanol-butanol-ethanol (IBE) and conventional diesel”, Journal of Polytechnic, (baskıda). DOI: 10.2339/politeknik.1027649.
  • [32] Trung K. N., “Effect of heat transfer correlation on wet cylinder liner temperature distribution when converting an old engine into a turbocharged engine”, Archives of Thermodynamics 42(3): 159–172, (2021).
  • [33] Finol C. A., Robinson K., “Thermal modelling of modern engines: a review of empirical correlations to estimate the in-cylinder heat transfer coefficients”, Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 220(12): 1765-1781, (2006).

Düşük Isı Kayıplı Bir Dizel Motorda Silindir İçi Isı Transferinin İncelenmesi

Year 2024, Volume: 27 Issue: 4, 1603 - 1616, 25.09.2024
https://doi.org/10.2339/politeknik.1325890

Abstract

Bu çalışmada, piston oyukları düşük ısı iletim katsayısına sahip bir malzemeyle kaplanmış direkt püskürtmeli bir dizel motorun yanma odası ısı transfer karakteristikleri incelenmiştir. Testler, sabit devirde ve dört farklı motor yükünde yapılmıştır. Piston oyukları plazma sprey yöntemiyle itriya stabilize zirkonya maddesi ile kaplanmıştır. Isı taşınım katsayısı hesaplanmasında dizel motorlar için literatürde sıklıkla kullanılan Hohenberg, Eichelberg ve Woschni modelleri esas alınmıştır. Başlıca ısı geçişi parametreleri olarak ısı transfer katsayısı, ısı akısı, birim krank açısında toplam ısı çıkışı ve ısı geçişi ele alınmıştır. Yapılan çalışma sonucunda; artan motor yükü ve piston kaplama uygulamasıyla birlikte yanma odasında ısı taşınım katsayısının, ısı akısının, toplam ısı çıkışının ve ısı akısının önemli oranda arttığı gözlenmiştir. Sıkıştırma periyodunda, Hohenberg modelinin genel olarak daha yüksek ısı transfer oranı değerleri verdiği buna karşılık Woschni modelinin daha düşük ısı transfer oranı değerleri verdiği tespit edilmiştir. Isı geçişi parametreleri düşük yükte Woschni modeliyle en düşük değerdeyken en yüksek yükte maksimum değerlere ulaşmıştır. En yüksek yükte her iki motorda da toplam ısı çıkışı değerleri kullanılan tüm modellerle birbirine oldukça yakın bulunmuştur.

References

  • [1] Ferguson C. R. and Kirkpatrick A. T., “Internal Combustion Engines—Applied Thermosciences”, 2nd ed., John Wiley & Sons, New York, (2001).
  • [2] Şanlı A., Özsezen A. N., Kılıçaslan I. and Çanakcı M., “The influence of engine speed and load on the heat transfer between gases and in-cylinder walls at fired and motored conditions of an IDI diesel engine”, Applied Thermal Engineering, 28: 1395-1404, (2008).
  • [3] Dabbaghi M. F., Baharom M. B., Abdul Karim Z. A., Aziz A. R. A., Muhammed S. E. and Zainal E. Z. A., “Comparative evaluation of different heat transfer correlations on a single curved-cylinder spark ignition crank-rocker engine”, Alexandria Engineering Journal, 60(3): 2963-2978, (2021).
  • [4] Rashedul H. K., Kalam M. A., Masjuki H. H., Ashraful A. M., Imtenan S., Sajjad H. and Wee L. K., “Numerical study on convective heat transfer of a spark ignition engine fueled with bioethanol”, International Communications in Heat and Mass Transfer, 58: 33-39, (2014).
  • [5] Janjua A. A., Shah S. R., Din E. U., Aslam J., Khan M. Z. A. and Tauzia X., “Simplistic Comparative Analytical Methodology for Accuracy Determination of In-Cylinder Convective Heat Transfer Coefficient Models of Diesel Engine Operating with Water Injection using Experimental Pressure Signals”, Arabian Journal for Science and Engineering, (2023).
  • [6] Sanli A., Sayin C., Gumus M., Kilicaslan I. and Canakci M., “Numerical evaluation by models of load and spark timing effects on the in-cylinder heat transfer of a SI engine”, Numerical Heat Transfer, Part A: Applications: An International Journal of Computation and Methodology, 56(5): 444-458, (2009).
  • [7] Przybyla G., Postrzednik S., Zmudka Z., “The heat transfer calculations of internal combustion engine fuelled with natural gas”, Mechanika, 87(1/15): 71-80, (2015).
  • [8] Climent H., Tiseira A., Soriano J. G. and Darbhamalla A., “In-cylinder heat transfer model proposal compatible with 1D simulations in uniflow scavenged engines”, Applied Sciences, 13(6): 3996, (2023).
  • [9] Depcik C., Alam S. S., Madani S., Ahlgren N., McDaniel E., Burugupally S. P., and Hobeck J. D., “Determination of a heat transfer correlation for small internal combustion engines”, Applied Thermal Engineering, 228: 120524, (2023) https://doi.org/10.1016/j.applthermaleng.2023.120524.
  • [10] Assanis D., Wiese K., Schwarz E. and Bryzik W., “The effects of ceramic coatings on diesel engine performance and exhaust emissions”, Society of Automotive Engineering Technical Paper, (1991).
  • [11] Aabid A. and Khan S.A., “Optimization of heat transfer on thermal barrier coated gas turbine blade”, IOP Conference Series: Material Science Engineering, 370: 012022, (2018).
  • [12] Schulz U., Leyens C., Fritscher K., Peters M., Saruhan-Brings B., Lavigne O., Dorvaux J. M., Poulain M., Mevrel R. and Caliez M., “Some recent trends in research and technology of advanced thermal barrier coatings”, Aero Science and Technology,7: 73-80, (2003).
  • [13] Goud G. B., Singh C. T. D. K., “Investigation of CI diesel engine emission control and performance parameters using biodiesel with YSZ coated piston crown”, International Journal of Engineering and Technology 2(3): 467-474, (2015).
  • [14] Selvam M., Shanmugan S. and Palani S., “Performance analysis of IC engine with ceramic-coated piston”, Environmental Science and Pollution Research, 25:35210-35220, (2018).
  • [15] Motwani R., Gandolfo J., Gainey B., Levi A., Moser S., Filipi Z. and Lawler B., “Assessing the impact of a novel TBC material on heat transfer in a spark ignition engine through 3D CFD-FEA Co-simulation routine”, Society of Automotive Engineering Technical Paper, (2022).
  • [16] Ramasamy N., Kalam M. A., Varman M. and Teoh Y. H., “Comparative studies of piston crown coating with YSZ and AL2O3.SiO2 on engine out responses using conventional diesel and palm oil biodiesel”, Coatings,11(8): 885, (2021).
  • [17] Hazar H., Ozturk U. and Gül, H., “Characterization and effect of using peanut seed oil methyl ester as a fuel in a low heat rejection diesel engine”, Energy&Fuels,30(10): 8425-8431, (2016).
  • [18] Holman J. P., “Experimental Methods for Engineers” 8th Edition, McGraw-Hill, New York, (2021).
  • [19] Tan D., Chen Z., Li J., Luo J., Yang D., Cui S. and Zhang Z., “Effects of Swirl and Boiling Heat Transfer on the Performance Enhancement and Emission Reduction for a Medium Diesel Engine Fueled with Biodiesel”, Processes, 9(3): 568, (2021).
  • [20] Zak Z., Emrich M., Takats M. and Macek J., “In-cylinder heat transfer modeling”. Journal of Middle European Construction and Design of Cars, 14(3): 2-10, (2016).
  • [21] Borman G. and Nishiwaki K., “Internal combustion engine heat transfer”, Progress in Energy and Combustion Science, 13: 1-46, (1987).
  • [22] Woschni G. and Spindler W., “Heat transfer with insulated combustion chamber walls and its influence on the performance of diesel engines”, Journal of Engineering for Gas Turbines and Power, 110: 482–488, 1988.
  • [23] Woschni G., “A universally applicable equation for the instantaneous heat transfer coefficient in the internal combustion engine”, Society of Automotive Engineering Technical Paper, 1967.
  • [24] Hohenberg G. F., “Advanced approaches for heat transfer calculations”. Society of Automotive Engineering Technical Paper, 1979.
  • [25] Eichelberg G., “Some new investigations on old combustion engine problems”. Engineering, 148(1-2): 446-463, (1939).
  • [26] Bothun L. B., “Numerical simulation of nanofluid cooling in a single-cylinder diesel engine”, MSc, University of Bergen, Geophysical Institute, (2023).
  • [27] Şanlı A., Gümüş M., “Farklı sıkıştırma oranı ve motor momentlerinde direkt püskürtmeli bir dizel motorun yanma odasında ısı geçişinin incelenmesi”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 28(1): 91-103, (2022).
  • [28] Heywood J. B., “ Internal combustion Engine Fundamentals”, Mc-Graw Hill, New York, (1988).
  • [29] Calam A. “Homojen dolgulu sıkıştırma ile ateşlemeli bir motorda n-heptan-tetrahidrofuran karışımlarının yanma, performans ve emisyona etkisi”, Politeknik dergisi, 24(3):1033-1043, (2021).
  • [30] Uyumaz A. and Solmaz H. “Emme havası giriş sıcaklığı ve ön karışımlı yakıt oranının RCCI yanma karakteristiklerine ve motor performansına etkileri”, Politeknik dergisi, 20(3):689-698, (2017).
  • [31] İlçin K., Fırat M., Altun Ş., Okcu M., “Effect of blending ratio and injection timing on combustion and emissions of a common-rail diesel engine fueled by iso-propanol-butanol-ethanol (IBE) and conventional diesel”, Journal of Polytechnic, (baskıda). DOI: 10.2339/politeknik.1027649.
  • [32] Trung K. N., “Effect of heat transfer correlation on wet cylinder liner temperature distribution when converting an old engine into a turbocharged engine”, Archives of Thermodynamics 42(3): 159–172, (2021).
  • [33] Finol C. A., Robinson K., “Thermal modelling of modern engines: a review of empirical correlations to estimate the in-cylinder heat transfer coefficients”, Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 220(12): 1765-1781, (2006).
There are 33 citations in total.

Details

Primary Language Turkish
Subjects Mechanical Engineering (Other)
Journal Section Research Article
Authors

Ali Şanlı 0000-0002-7965-5637

Mustafa Cihad Bilgiç 0009-0001-5043-2923

İlker Turgut Yılmaz 0000-0002-0398-7635

Ali Öz 0000-0002-0814-4020

Early Pub Date September 11, 2023
Publication Date September 25, 2024
Submission Date July 11, 2023
Published in Issue Year 2024 Volume: 27 Issue: 4

Cite

APA Şanlı, A., Bilgiç, M. C., Yılmaz, İ. T., Öz, A. (2024). Düşük Isı Kayıplı Bir Dizel Motorda Silindir İçi Isı Transferinin İncelenmesi. Politeknik Dergisi, 27(4), 1603-1616. https://doi.org/10.2339/politeknik.1325890
AMA Şanlı A, Bilgiç MC, Yılmaz İT, Öz A. Düşük Isı Kayıplı Bir Dizel Motorda Silindir İçi Isı Transferinin İncelenmesi. Politeknik Dergisi. September 2024;27(4):1603-1616. doi:10.2339/politeknik.1325890
Chicago Şanlı, Ali, Mustafa Cihad Bilgiç, İlker Turgut Yılmaz, and Ali Öz. “Düşük Isı Kayıplı Bir Dizel Motorda Silindir İçi Isı Transferinin İncelenmesi”. Politeknik Dergisi 27, no. 4 (September 2024): 1603-16. https://doi.org/10.2339/politeknik.1325890.
EndNote Şanlı A, Bilgiç MC, Yılmaz İT, Öz A (September 1, 2024) Düşük Isı Kayıplı Bir Dizel Motorda Silindir İçi Isı Transferinin İncelenmesi. Politeknik Dergisi 27 4 1603–1616.
IEEE A. Şanlı, M. C. Bilgiç, İ. T. Yılmaz, and A. Öz, “Düşük Isı Kayıplı Bir Dizel Motorda Silindir İçi Isı Transferinin İncelenmesi”, Politeknik Dergisi, vol. 27, no. 4, pp. 1603–1616, 2024, doi: 10.2339/politeknik.1325890.
ISNAD Şanlı, Ali et al. “Düşük Isı Kayıplı Bir Dizel Motorda Silindir İçi Isı Transferinin İncelenmesi”. Politeknik Dergisi 27/4 (September 2024), 1603-1616. https://doi.org/10.2339/politeknik.1325890.
JAMA Şanlı A, Bilgiç MC, Yılmaz İT, Öz A. Düşük Isı Kayıplı Bir Dizel Motorda Silindir İçi Isı Transferinin İncelenmesi. Politeknik Dergisi. 2024;27:1603–1616.
MLA Şanlı, Ali et al. “Düşük Isı Kayıplı Bir Dizel Motorda Silindir İçi Isı Transferinin İncelenmesi”. Politeknik Dergisi, vol. 27, no. 4, 2024, pp. 1603-16, doi:10.2339/politeknik.1325890.
Vancouver Şanlı A, Bilgiç MC, Yılmaz İT, Öz A. Düşük Isı Kayıplı Bir Dizel Motorda Silindir İçi Isı Transferinin İncelenmesi. Politeknik Dergisi. 2024;27(4):1603-16.