Mekanokimyasal Yöntemle FeB ve Fe2B Bileşiklerinin Üretimi ve Karakterizasyonu
Year 2024,
Volume: 27 Issue: 5, 1789 - 1794, 02.10.2024
Ülkü Aslı Çelik
,
Talha Sunar
,
Dursun Özyürek
,
Metin Gürü
Abstract
Bu çalışmada, demir ve bor tozları, farklı oranlarda (molar ağırlıklarına göre) spex tipi öğütme cihazında mekanokimyasal işlemle (katı faz reaksiyonu) FeB ve Fe2B bileşikleri elde edilmiştir. Farklı mol oranlarında karıştırılan demir ve borun muhafazası ve hassas ölçümleri Glove-Box ile argon atmosferinde gerçekleştirilmiştir. Alaşımların sinterleme sıcaklığının tespiti için Termogravimetrik ve Diferansiyel Termal Analiz; faz bileşimlerini ve mikroyapılarını incelemek amacıyla da X-ışını kırınım analizi (XRD) ve Taramalı Elektron Mikroskobu (SEM) analizleri yapılmıştır. Yapılan çalışmalar sonucunda, yüksek oranda amorf yapıda ve ağırlıklı olarak hedeflenen Fe2B ve FeB bileşikleri üretilmiştir. Stokiyometrik katsayılardan kaynaklı olarak FeB bileşimine ait piklerin daha belirgin olduğu görülmüştür. EDS analizinden numunelerin yüzeyinde bulunan demir ve bor elementlerinin yapıda homojen bir dağılım sergilediği anlaşılmıştır. Sertlik sonuçlarına göre, FeB olarak hedeflenen numunenin, Fe2B olarak hedeflenen numunelere göre daha sert olduğu anlaşılmaktadır. Bu çalışma farklı oranlardaki bileşimlerin sentezlenmesiyle bölgesel sertlik rejimlerine sahip ileri malzemelerin üretilebilmesine katkı sağlayacaktır.
Supporting Institution
Karabük Üniversitesi
Project Number
FYL-2019-2046
Thanks
Yazarlar Karabük Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğüne bu çalışmanın gerçekleştirilmesi sırasında yaptıkları finansal yardımları dolayısıyla teşekkür ederler. (FYL-2019-2046)
References
- [1] Zengin A., Aka B., Gençay S. and Uzun M., “Bor Madeninin Endüstriyel Uygulamaları”, European Journal of Science and Technology, 46: 161–178, (2022).
- [2] Turkbay T., Bongono J., Alix T., Laratte B. and Elevli B., “Prior knowledge of the data on the production capacity of boron facilities in Turkey”, Cleaner Engineering and Technology, 10: 100539, (2022).
- [3] www.etimaden.gov.tr/metalurji, “Endüstriyel Mineral Borat”, Eti Maden, (2023).
- [4] www.cevherdenmucevhere.com, “Dünyanın en kaliteli BOR rezervi Türkiye’de”, Eti Maden, (2023).
- [5] Abenojar J., Velasco F., Mota J. M. and Martínez M. A., “Preparation of Fe/B powders by mechanical alloying”, Journal of Solid State Chemistry, 177: 382–388, (2004).
- [6] Sahin S., Meric C. and Saritas S., “Production of ferroboron powders by solid boronizing method”, Advanced Powder Technology, 21: 483–487, (2010).
- [7] Gençer Y. and Tarakçı M., “Kontrollü Atmosferde Üretilmiş Fe-Co İkili Alaşımlarının Borlanması ve Karakterizasyonu”, Politeknik Dergisi, 20: 681-688, (2017).
- [8] Yıldız İ. and Güneş İ. “Borlanmış % 5 Mg Katkılı Ni-Mg Alaşımının Yüzey Özelliklerinin İncelenmesi”. Politeknik Dergisi, 23: 97-104, (2020).
- [9] Gupta R. and Gupta A., “Mechanical alloying of Fe-B powders”, Materials Science and Engineering A, 304–306: 442–445, (2001).
- [10] Krasnowski M., Gierlotka S. and Kulik T., “FeAl-B composites with nanocrystalline matrix produced by consolidation of mechanically alloyed powders”, Journal of Alloys and Compounds, 791: 75-80, (2019).
- [11] Krasnowski M., Grabias A., Ferenc J. and Kulik T., “Structure, thermal stability and magnetic properties of mechanically alloyed (Fe-Al)-30vol%B powders”, Journal of Alloys and Compounds, 776: 215–223, (2019).
- [12] Sviridova T. A., Shelekhov E. V., Bazilyan V. I., Chueva T. R., Shvyndina N. V. and Dyakonova N. P., “Influence of mechanical alloying conditions on amorphous phase formation in Fe67B33”, Journal of Alloys and Compounds, 586: 73–77, (2014).
- [13] Fang H. M. and Xu F., “Research on Properties of Fe-Based Powder Metallurgy Material Strengthened by Boriding”, Strength of Materials, 52: 621–626, (2020).
- [14] Kang S., Xu Z., Choi Y., Fujita K., Matsugi K. and Yu J., “Spark sintering behavior of ubiquitously Fe-B and fe powders and characterization of their hard composites”, Materials Transactions, 57: 600–607, (2016).
- [15] Wei Y., Liu Z., Ran S., Xia A., Yi T. F. and Ji Y., “Synthesis and properties of Fe-B powders by molten salt method”, Journal of Materials Research, 32: 883–889, (2017).
- [16] Fang H., Xu F. and Zhang G., “Investigation of Dry Sliding Wear Behavior of Pack Boriding Fe-Based Powder Metallurgy”, Integrated Ferroelectrics, 208: 67–82, (2020).
- [17] Krasnowski M., Grabias A. and Kulik T., “Phase transformations during mechanical alloying of Fe-50% Al and subsequent heating of the milling product”, Journal of Alloys and Compounds, 424: 119–127, (2006).
- [18] Suryanarayana C., “Mechanical alloying and milling”, Progress in Materials Science, 46: 1–184 (2001).
Production and Characterization of FeB and Fe2B Compounds by Mechanochemical Method.
Year 2024,
Volume: 27 Issue: 5, 1789 - 1794, 02.10.2024
Ülkü Aslı Çelik
,
Talha Sunar
,
Dursun Özyürek
,
Metin Gürü
Abstract
In this study, iron and boron powders were alloyed at different rates (according to their molar weights) in a spex-type grinding device, and FeB and Fe2B compounds were obtained by mechanochemical method (the solid phase reaction). The containment and precise measurements of iron and boron mixed in different mole ratios were carried out with the Glove-Box in an argon atmosphere. Thermogravimetric and Differential Thermal Analysis for the determination of the sintering temperature of alloys; X-ray Diffraction and Scanning Electron Microscopy analyzes were performed to examine the phase compositions and microstructures. The samples produced are highly amorphous and predominantly composed of Fe2B composition. For the sample targeted as FeB, it was observed that the peaks of the FeB composition were more pronounced due to the stoichiometric coefficients. From the EDS analysis, it was understood that the iron and boron elements on the surface of the samples exhibited a homogeneous distribution in the structure. According to the hardness results, it is understood that the sample targeted as FeB is harder than the samples targeted as Fe2B. This study will contribute to the production of advanced materials with regional hardness regimes by synthesizing different compositions.
Project Number
FYL-2019-2046
References
- [1] Zengin A., Aka B., Gençay S. and Uzun M., “Bor Madeninin Endüstriyel Uygulamaları”, European Journal of Science and Technology, 46: 161–178, (2022).
- [2] Turkbay T., Bongono J., Alix T., Laratte B. and Elevli B., “Prior knowledge of the data on the production capacity of boron facilities in Turkey”, Cleaner Engineering and Technology, 10: 100539, (2022).
- [3] www.etimaden.gov.tr/metalurji, “Endüstriyel Mineral Borat”, Eti Maden, (2023).
- [4] www.cevherdenmucevhere.com, “Dünyanın en kaliteli BOR rezervi Türkiye’de”, Eti Maden, (2023).
- [5] Abenojar J., Velasco F., Mota J. M. and Martínez M. A., “Preparation of Fe/B powders by mechanical alloying”, Journal of Solid State Chemistry, 177: 382–388, (2004).
- [6] Sahin S., Meric C. and Saritas S., “Production of ferroboron powders by solid boronizing method”, Advanced Powder Technology, 21: 483–487, (2010).
- [7] Gençer Y. and Tarakçı M., “Kontrollü Atmosferde Üretilmiş Fe-Co İkili Alaşımlarının Borlanması ve Karakterizasyonu”, Politeknik Dergisi, 20: 681-688, (2017).
- [8] Yıldız İ. and Güneş İ. “Borlanmış % 5 Mg Katkılı Ni-Mg Alaşımının Yüzey Özelliklerinin İncelenmesi”. Politeknik Dergisi, 23: 97-104, (2020).
- [9] Gupta R. and Gupta A., “Mechanical alloying of Fe-B powders”, Materials Science and Engineering A, 304–306: 442–445, (2001).
- [10] Krasnowski M., Gierlotka S. and Kulik T., “FeAl-B composites with nanocrystalline matrix produced by consolidation of mechanically alloyed powders”, Journal of Alloys and Compounds, 791: 75-80, (2019).
- [11] Krasnowski M., Grabias A., Ferenc J. and Kulik T., “Structure, thermal stability and magnetic properties of mechanically alloyed (Fe-Al)-30vol%B powders”, Journal of Alloys and Compounds, 776: 215–223, (2019).
- [12] Sviridova T. A., Shelekhov E. V., Bazilyan V. I., Chueva T. R., Shvyndina N. V. and Dyakonova N. P., “Influence of mechanical alloying conditions on amorphous phase formation in Fe67B33”, Journal of Alloys and Compounds, 586: 73–77, (2014).
- [13] Fang H. M. and Xu F., “Research on Properties of Fe-Based Powder Metallurgy Material Strengthened by Boriding”, Strength of Materials, 52: 621–626, (2020).
- [14] Kang S., Xu Z., Choi Y., Fujita K., Matsugi K. and Yu J., “Spark sintering behavior of ubiquitously Fe-B and fe powders and characterization of their hard composites”, Materials Transactions, 57: 600–607, (2016).
- [15] Wei Y., Liu Z., Ran S., Xia A., Yi T. F. and Ji Y., “Synthesis and properties of Fe-B powders by molten salt method”, Journal of Materials Research, 32: 883–889, (2017).
- [16] Fang H., Xu F. and Zhang G., “Investigation of Dry Sliding Wear Behavior of Pack Boriding Fe-Based Powder Metallurgy”, Integrated Ferroelectrics, 208: 67–82, (2020).
- [17] Krasnowski M., Grabias A. and Kulik T., “Phase transformations during mechanical alloying of Fe-50% Al and subsequent heating of the milling product”, Journal of Alloys and Compounds, 424: 119–127, (2006).
- [18] Suryanarayana C., “Mechanical alloying and milling”, Progress in Materials Science, 46: 1–184 (2001).