Selüloz ve PLA Biyopolimer Nonwoven Malçların Toprak Sağlığına Etkisi
Year 2024,
Volume: 27 Issue: 5, 1773 - 1779, 02.10.2024
Paula Marasović
,
Dragana Kopıtar
,
Ružica Brunšek
,
Ivana Schwarz
Abstract
Rejenere viskoz ve PLA liflerinden ve ayrıca geleneksel tarımsal folyodan üretilen dokunmamış malçlar, rastgele düzenlenmiş dört tekrarlama parselinden oluşan bloklar halinde toprağa yerleştirildi. 50 gün sonra, her bir malç altında ve kontrol alanında toprak numuneleri toplandı ve burada bakteri ve mantar popülasyonunun yanı sıra toprağın fizyo-kimyasal özellikleri ölçüldü. Agro folyo ve PLA liflerinden yapılan malçların altındaki topraktaki bakteri popülasyonundaki ciddi azalma, yüksek toprak sıcaklığının yaygınlığından kaynaklanmaktadır. Viskoz elyaftan yapılan malçların altındaki topraktaki bakteri popülasyonu, sırasıyla toprak sıcaklığı ve nem olmak üzere uygun anaerobik koşullar nedeniyle önemli ölçüde artmıştır. Tüm malçların altında, kontrol alanına kıyasla daha yüksek bir mantar popülasyonu gözlendi. Viskon liflerinden üretilen dokunmamış malç altındaki mantar popülasyonu, kontrol alanına kıyasla %161 daha yüksekti. Dokumasız malçların altındaki toprakların mevcut besin içerikleri, kontrol alanına kıyasla daha yüksekti. Kontrol alanı, geleneksel tarımsal folyo ile kaplanan alana göre toprağın daha yüksek kullanılabilir besin içeriği gösterdi.
Çalışmanın sonuçları, mikrobiyal popülasyonu başarılı bir şekilde artırması ve toprağın fiziko-kimyasal özelliklerini iyileştirmesi nedeniyle kısa süreli malçlama uygulamaları için en uygununun viskon liflerinden yapılan dokunmamış malç kullanımının olduğunu ortaya koymaktadır.
Project Number
KK.01.2.1.02.0270.
References
- [1] Manickam L., Thilagam V.K., Balakrishnan N., Mansour. M. M., “Effect of Plastic Mulch on Soil Properties and Crop Growth - A Review”, Agricultural Reviews, 31(2): 145–149, (2010).
- [2] Lament W. J., “Plastic Mulches for the Production of Vegetable Crops”, HortTechnology, 3(1): 35-39 (1993).
- [3] Lamont W.J., “Plastics: Modifying the Microclimate for the Production of Vegetable Crops”, HortTechnology, 15(3):477-481, (2005).
- [4] Abbate C., Scavo A., Pesce G.R., Fontanazza S., Restuccia A., Mauromicale G., “Soil Bioplastic Mulches for Agroecosystem Sustainability: A Comprehensive Review”, Agriculture, 13(1): 197, (2023).
- [5] Bandopadhyay S., Martin-Closas L., Pelacho A.M., DeBruyn J.M., „Biodegradable Plastic Mulch Films: Impacts on Soil Microbial Communities and Ecosystem Functions”, Front. Microbiol., 9: 819, (2018).
- [6] Qi Y., Beriot N., Gort G., Huerta Lwanga E., Gooren H., Yang X., Geissen V., „Impact of plastic mulch film debris on soil physicochemical and hydrological properties”, Environmental Pollution, 266: 115097, (2020).
- [7] Zhang. J. et.al., „Effects of plastic residues and microplastics on soil ecosystems: A global meta-analysis”, Journal of Hazardous Materials, 435: 129065, (2022).
- [8] Serrano-Ruiz H., Martin-Closas L., Pelacho A.M., „Biodegradable plastic mulches: Impact on the agricultural biotic environment”, Science of the Total Environment, 750: 141228, (2020).
- [9] Manna K., Kundu M.C., Saha B., Ghosh G.K., “Effect of nonwoven jute agrotextile mulch on soil health and productivity of broccoli (Brassica oleracea L.) in lateritic soil”, Environmental Monitoring and Assessment, 190(2): 82, (2018).
- [10] Parasar Das S. et al., “Efficacy of Geotextile Jute Mulches on Yield. Soil Nutrient Dynamics and Weed Suppression in French bean (Phaseolus vulgaris L.)–Capsicum (Capsicum annum L.) Cropping System”, International Journal of Bio-resource and Stress Management, 8(1): 057-063, (2017).
- [11] Zawiska I. and Siwek P., “The effects of PLA biodegradable and polypropylene nonwoven crop mulches on selected components of tomato grown in the field”, Folia Hort., 26(2): 163-167, (2014).
- [12] Li C., Moore-Kucera J., Lee J., Corbin A., Brodhagen M., Miles C., Inglis D., “Effects of biodegradable mulch on soil quality”, Applied Soil Ecology, 79: 59–69, (2014).
- [13] Wadsworth L.C., Hayes D.G., Wszelaki A.L., et al., “Evaluation of Degradable Spun-Melt 100% Polylactic Acid Nonwoven Mulch Materials in a Greenhouse Environment”, Journal of Engineered Fibers and Fabrics, 8(4): 50-59, (2013).
- [14] Gabrys T., Fryczkowska B., Grzybowska-Pietras J., Binias D., “Modification and Properties of Cellulose Nonwoven Fabric—Multifunctional Mulching Material for Agricultural Applications”, Materials, 14(15): 4335, (2021).
- [15] Xiukang W., Zhanbin L., Yingying X., “Effects of mulching and nitrogen on soil temperature, water content, nitrate-N content and maize yield in the Loess Plateau of China”, Agricultural Water Management, 161: 53–64, (2015).
- [16] Liu X., Chen C., Sun J., Wang X., “Development of natural fiber-based degradable nonwoven mulch from recyclable mill waste”, Waste Management, 121: 432-440, (2021).
- [17] Wortman S.E., Kadoma I., Crandall M.D., “Assessing the potential for spunbond, nonwoven biodegradable fabric as mulches for tomato and bell pepper crops”, Scientia Horticulturae, 193: 209–217, (2015).
- [18] Tofanelli M. B. D. nad Wortman S.E., “Benchmarking the Agronomic Performance of Biodegradable Mulches against Polyethylene Mulch Film: A Meta-Analysis”, Agronomy, 10(10): 1618, (2020).
- [19] Buyer J. S., Teasdale J. R., Roberts D. P., Zasada I. A., Maul J. E., “Factors affecting soil microbial community structure in tomato cropping systems”, Soil Biology & Biochemistry, 42:831-841,(2010).
- [20] Li, F.M., Song Q. H., Jjemba P. K., Shi Y. C., “Dynamics of soil microbial biomass C and soil fertility in cropland mulched with plastic film in a semiarid agro-ecosystem”, Soil Biology and Biochemistry, 36(11): 1893-1902, (2004).
- [21] Hankin l., Hill D. E., Stephens G. R., “Effect of mulches on bacterial populations and enzyme activity in soil and vegetable yields”, Plant and Soil, 64: 193-201, (1982).
- [22] Zhang S., Wang Y., Sun L., et al., „Organic mulching positively regulates the soil microbial communities and ecosystem functions in tea plantation”, BMC Microbiol, 20: 103, (2020).
- [23] Bandopadhyay S., Liquet y González J. E., Henderson K. B., Anunciado M. B., Hayes D. G., DeBruyn J.M., “Soil Microbial Communities Associated With Biodegradable Plastic Mulch Films”, Front. Microbiol., 11: 587074, (2020).
- [24] Wang Y., Liu L., Luo Y., Awasthi M.K., Yang J., Duan Y., Li H., Zhao Z., “Mulching practices alter the bacterial-fungal community and network in favor of soil quality in a semiarid orchard system”, Science of the Total Environment, 725: 138527, (2020).
The Impact of Cellulose and PLA Biopolymer Nonwoven Mulches on the Soil Health
Year 2024,
Volume: 27 Issue: 5, 1773 - 1779, 02.10.2024
Paula Marasović
,
Dragana Kopıtar
,
Ružica Brunšek
,
Ivana Schwarz
Abstract
The nonwoven mulches produced from regenerated viscose and PLA fibres as well as conventional agro foil were placed on the soil by randomly arranged blocks of four replication plots. After 50 days, the soil samples beneath each mulch and on the control field were collected, where the bacteria and fungi population as well as the physio-chemical properties of the soil were measured. The severe reduction in bacterial population in soil under the agro foil and mulches made of PLA fibres occurs due to the prevalence of high soil temperature. The bacterial population of soil beneath the mulches made of viscose fibre significantly increased due to favourable anaerobic conditions, respectively soil temperature and moisture. Under all mulches, compared to the control field, a higher fungal population was observed. The fungal population under the nonwoven mulch produced by viscose fibres was 161% higher in comparison to the control field. The available nutrient contents of soils under the nonwoven mulches were higher compared to the control field. The control field showed higher available nutrient contents of soil than the field covered by conventional agro foil.
The results of the study reveal that usage of nonwoven mulches made of viscose fibres is most appropriate for short-term mulching application since successfully increases microbial population and improves the physio-chemical properties of soil.
Supporting Institution
European Union from the European Structural and Investment Funds, the Operational programme Competitiveness and Cohesion, the European Regional Development Fund
Project Number
KK.01.2.1.02.0270.
Thanks
This research has been supported by the European Union from the European Structural and Investment Funds, the Operational programme Competitiveness and Cohesion, the European Regional Development Fund under the project KK.01.2.1.02.0270.
References
- [1] Manickam L., Thilagam V.K., Balakrishnan N., Mansour. M. M., “Effect of Plastic Mulch on Soil Properties and Crop Growth - A Review”, Agricultural Reviews, 31(2): 145–149, (2010).
- [2] Lament W. J., “Plastic Mulches for the Production of Vegetable Crops”, HortTechnology, 3(1): 35-39 (1993).
- [3] Lamont W.J., “Plastics: Modifying the Microclimate for the Production of Vegetable Crops”, HortTechnology, 15(3):477-481, (2005).
- [4] Abbate C., Scavo A., Pesce G.R., Fontanazza S., Restuccia A., Mauromicale G., “Soil Bioplastic Mulches for Agroecosystem Sustainability: A Comprehensive Review”, Agriculture, 13(1): 197, (2023).
- [5] Bandopadhyay S., Martin-Closas L., Pelacho A.M., DeBruyn J.M., „Biodegradable Plastic Mulch Films: Impacts on Soil Microbial Communities and Ecosystem Functions”, Front. Microbiol., 9: 819, (2018).
- [6] Qi Y., Beriot N., Gort G., Huerta Lwanga E., Gooren H., Yang X., Geissen V., „Impact of plastic mulch film debris on soil physicochemical and hydrological properties”, Environmental Pollution, 266: 115097, (2020).
- [7] Zhang. J. et.al., „Effects of plastic residues and microplastics on soil ecosystems: A global meta-analysis”, Journal of Hazardous Materials, 435: 129065, (2022).
- [8] Serrano-Ruiz H., Martin-Closas L., Pelacho A.M., „Biodegradable plastic mulches: Impact on the agricultural biotic environment”, Science of the Total Environment, 750: 141228, (2020).
- [9] Manna K., Kundu M.C., Saha B., Ghosh G.K., “Effect of nonwoven jute agrotextile mulch on soil health and productivity of broccoli (Brassica oleracea L.) in lateritic soil”, Environmental Monitoring and Assessment, 190(2): 82, (2018).
- [10] Parasar Das S. et al., “Efficacy of Geotextile Jute Mulches on Yield. Soil Nutrient Dynamics and Weed Suppression in French bean (Phaseolus vulgaris L.)–Capsicum (Capsicum annum L.) Cropping System”, International Journal of Bio-resource and Stress Management, 8(1): 057-063, (2017).
- [11] Zawiska I. and Siwek P., “The effects of PLA biodegradable and polypropylene nonwoven crop mulches on selected components of tomato grown in the field”, Folia Hort., 26(2): 163-167, (2014).
- [12] Li C., Moore-Kucera J., Lee J., Corbin A., Brodhagen M., Miles C., Inglis D., “Effects of biodegradable mulch on soil quality”, Applied Soil Ecology, 79: 59–69, (2014).
- [13] Wadsworth L.C., Hayes D.G., Wszelaki A.L., et al., “Evaluation of Degradable Spun-Melt 100% Polylactic Acid Nonwoven Mulch Materials in a Greenhouse Environment”, Journal of Engineered Fibers and Fabrics, 8(4): 50-59, (2013).
- [14] Gabrys T., Fryczkowska B., Grzybowska-Pietras J., Binias D., “Modification and Properties of Cellulose Nonwoven Fabric—Multifunctional Mulching Material for Agricultural Applications”, Materials, 14(15): 4335, (2021).
- [15] Xiukang W., Zhanbin L., Yingying X., “Effects of mulching and nitrogen on soil temperature, water content, nitrate-N content and maize yield in the Loess Plateau of China”, Agricultural Water Management, 161: 53–64, (2015).
- [16] Liu X., Chen C., Sun J., Wang X., “Development of natural fiber-based degradable nonwoven mulch from recyclable mill waste”, Waste Management, 121: 432-440, (2021).
- [17] Wortman S.E., Kadoma I., Crandall M.D., “Assessing the potential for spunbond, nonwoven biodegradable fabric as mulches for tomato and bell pepper crops”, Scientia Horticulturae, 193: 209–217, (2015).
- [18] Tofanelli M. B. D. nad Wortman S.E., “Benchmarking the Agronomic Performance of Biodegradable Mulches against Polyethylene Mulch Film: A Meta-Analysis”, Agronomy, 10(10): 1618, (2020).
- [19] Buyer J. S., Teasdale J. R., Roberts D. P., Zasada I. A., Maul J. E., “Factors affecting soil microbial community structure in tomato cropping systems”, Soil Biology & Biochemistry, 42:831-841,(2010).
- [20] Li, F.M., Song Q. H., Jjemba P. K., Shi Y. C., “Dynamics of soil microbial biomass C and soil fertility in cropland mulched with plastic film in a semiarid agro-ecosystem”, Soil Biology and Biochemistry, 36(11): 1893-1902, (2004).
- [21] Hankin l., Hill D. E., Stephens G. R., “Effect of mulches on bacterial populations and enzyme activity in soil and vegetable yields”, Plant and Soil, 64: 193-201, (1982).
- [22] Zhang S., Wang Y., Sun L., et al., „Organic mulching positively regulates the soil microbial communities and ecosystem functions in tea plantation”, BMC Microbiol, 20: 103, (2020).
- [23] Bandopadhyay S., Liquet y González J. E., Henderson K. B., Anunciado M. B., Hayes D. G., DeBruyn J.M., “Soil Microbial Communities Associated With Biodegradable Plastic Mulch Films”, Front. Microbiol., 11: 587074, (2020).
- [24] Wang Y., Liu L., Luo Y., Awasthi M.K., Yang J., Duan Y., Li H., Zhao Z., “Mulching practices alter the bacterial-fungal community and network in favor of soil quality in a semiarid orchard system”, Science of the Total Environment, 725: 138527, (2020).