Determination of the construction material for phononic band gap structures by tribological performance
Year 2025,
Volume: 28 Issue: 1, 27 - 34
Paşa Yaman
,
Erol Türkeş
,
Osman Yuksel
Abstract
This study investigates the tribological performances of commonly used stainless steel alloys (303, 304, 316L, and 420) to determine their suitability as construction materials for periodic structures designed for inertial amplification induced phononic band gap vibration isolators. Stainless steel alloys are extensively employed in engineering structures due to their ability to withstand large stresses and exhibit excellent cyclic loading properties. In this study, stainless steel specimens are examined by dry and lubricated wear test conditions. 420 stainless steel showed highest wear resistant properties for dry and lubricated conditions. Two grades of lubricants are compared in terms of viscosities, and it is revealed that higher viscosity blocked the flow of the lubricant so that semi-dry friction occurred. Low viscosity lubricant enabled less material removal due to friction.
References
- [1] Lo K. H., Shek C. H., and Lai J. K. L., “Recent developments in stainless steels,” Materials Science and Engineering: R: Reports, 65(4–6): 39-104, (2009).
- [2] Baddoo N. R., “Stainless steel in construction: A review of research, applications, challenges and opportunities,” J Constr Steel Res, 64(11): 1199-1206, (2008).
- [3] Gardner L., “The use of stainless steel in structures,” Progress in Structural Engineering and Materials, 7(2): 45-55, (2005).
- [4] Rao S., Mechanical Vibrations, Prentice Hall, New Jersey, (2011).
- [5] Inman D., Engineering Vibration. Pearson Education, New Jersey, (2014).
- [6] Avallone E. and Baumeister T., Marks’ Standard Handbook for Mechanical Engineers, McGraw-Hill, New York, (1996).
- [7] Liu L. and Lee H. P., “A Review: Elastic Metamaterials and Inverse Design Methods for Shock and Vibration Mitigation,” Int J Appl Mech, 13(9): 2150102, (2021).
- [8] Oudich M., Gerard N. J., Deng Y., and Jing Y., “Tailoring Structure‐Borne Sound through Bandgap Engineering in Phononic Crystals and Metamaterials: A Comprehensive Review,” Adv Funct Mater, 33(2): 2206309, (2023).
- [9] Phani A. and Hussein M., Dynamics of Lattice Materials, John Wiley & Sons Ltd, West Sussex, (2017).
- [10] Sharma V. and Chandraprakash C., “Fabrication and bandgaps of microscale metallic phononic crystals,” Int J Adv Eng Sci Appl Math, 15(4): 159-166, (2023).
- [11] Yang C.-L., Zhao S.-D., and Wang Y.-S., “Experimental evidence of large complete bandgaps in zig-zag lattice structures,” Ultrasonics,74: 99-105, (2017).
- [12] Lee K. Il, Kim Y. M., Kang H. S., and Yoon S. W., “Acoustic band structures in two-dimensional phononic crystals consisting of periodic square arrays of stainless-steel cylinders in water,” Journal of the Korean Physical Society, 68(2): 221-226, (2016).
- [13] He C., Zhao H., Wei R., and Wu B., “Existence of complete band gaps in 2D steel-water phononic crystal with square lattice,” Frontiers of Mechanical Engineering in China, 5(4): 450-454, (2010).
- [14] Sigalas M. M. and Economou E. N., “Elastic and acoustic wave band structure,” J Sound Vib, 158(2): 377-382, (1992).
- [15] Yilmaz C., Hulbert G. M., and Kikuchi N., “Phononic band gaps induced by inertial amplification in periodic media,” Phys Rev B, 76(5): 054309, (2007).
- [16] Yuksel O. and Yilmaz C., “Realization of an ultrawide stop band in a 2-D elastic metamaterial with topologically optimized inertial amplification mechanisms,” Int J Solids Struct, 203: 138-150, (2020).
- [17] Yuksel O. and Yilmaz C., “Shape optimization of phononic band gap structures incorporating inertial amplification mechanisms,” J Sound Vib, 355: 232-245, (2015).
- [18] Acar G. and Yilmaz C., “Experimental and numerical evidence for the existence of wide and deep phononic gaps induced by inertial amplification in two-dimensional solid structures,” J Sound Vib, 332(24): 6389-6404, (2013).
- [19] Yıldız U. T., Varol T., Pürçek G., ve Akçay S. B., “A Review on the Surface Treatments Used to Create Wear and Corrosion Resistant Steel Surfaces”, Journal of Polytechnic, 27(1): 227-236, (2024).
- [20] Gül F., Dilipak H., ve Yamanoğlu O., “Kriyojenik İşlem Yapılmış Soğuk İş Takım Çeliklerinin Abrasif Aşınma Davranışlarının İncelenmesi ve İstatistiksel Analizi”, Politeknik Dergisi, 24(3): 1129-1135, (2021).
- [21] Ünlüoğlu O. ve Çelik O. N., “Grafit Partiküllerinin Yağ Katkısı Olarak AISI H11 Çeliğinin Sürtünme ve Aşınma Davranışı Üzerine Etkisi”, Politeknik Dergisi, 25(4): 1495-1503, (2022).
- [22] G99-17, “Standard Test Method for Wear Testing with a Pin-on-Disk Apparatus,” ASTM International, (2017).
- [23] Mertgenc E., Kesici O. F., and Kayali Y., “Investigation of wear properties of borided austenitic stainless steel different temperatures and times,” Mater Res Express, 6(7): 076420, (2019).
- [24] Seriacopi V., Fukumasu N. K., Souza R. M., and Machado I. F., “Analysis of Abrasion Mechanisms in the AISI 303 Stainless Steel: Effect of Deformed Layer,” Procedia CIRP, 45: 187-190, (2016).
- [25] Barcelos M. A., Barcelos M. V., Araújo Filho J. de S., A. Franco Jr. R., and Vieira E. A., “Wear resistance of AISI 304 stainless steel submitted to low temperature plasma carburizing,” REM - International Engineering Journal, 70(3): 293-298, (2017).
- [26] Ramya Sree K., Keerthi Reddy G., Lakshmi Prasanna G., Saranya J., Anitha Lakshmi A., Swetha M., Vineeth Raj T., and Subbiah R., “Dry sliding wear behavior of treated AISI 304 stainless steel by gas nitriding processes,” Mater Today Proc, 44: 1406-1411, (2021).
- [27] Fenili C. P., da Rocha M. R., Al-Rubaie K. S., Arnt Â. B. C., Angioleto E., and Bernardin A. M., “Effect of sensitization on tribological behavior of AISI 304 austenitic stainless steel,” International Journal of Materials Research, 109(3): 234-240, (2018).
- [28] Huang M., Fu Y., Qiao X., and Chen P., “Investigation into Friction and Wear Characteristics of 316L Stainless-Steel Wire at High Temperature,” Materials, 16(1): 213, (2022).
- [29] Karabeyoglu S. S. and Yaman P., “An Experimental Investigation of Martensitic Stainless Steel in Aircraft and Aerospace Industry for Thermal Wear Performance and Corrosion Potential,” Practical Metallography, 59(4): 199-215, (2022).
- [30] Karabeyoğlu S. S., Eker B., Yaman P., and Ekşi O., “Effect of boric acid addition to seawater on wear and corrosion properties of ultrashort physical vapor deposited Ti layer on a 304 stainless steel,” Materials Testing, 65(4): 467-478, (2023).
- [31] Yaman P., Karabeyoğlu S. S., and Moralar A., “Investigation of mechanical and frictional properties of ulexite and colemanite filled acrylonitrile-butadiene-styrene polymer composites for industrial use,” Journal of Thermoplastic Composite Materials, 0(0), Early View, (2023).
- [32] Khan H. M., Yilmaz M. S., Karabeyoğlu S. S., Kisasoz A., and Özer G., “Dry sliding wear behavior of 316 L stainless steel produced by laser powder bed fusion: A comparative study on test temperature,” Mater Today Commun, 34: 105155, (2023).
- [33] Özer G. and Kisasöz A., “The role of heat treatments on wear behaviour of 316L stainless steel produced by additive manufacturing,” Mater Lett, 327: 133014, (2022).
- [34] Shen M., Rong K., Li C., Xu B., Xiong G., and Zhang R., “In situ Friction-Induced Copper Nanoparticles at the Sliding Interface Between Steel Tribo-Pairs and their Tribological Properties,” Tribol Lett, 68(4): 98, (2020).
- [35] Xi Y., Liu D., and Han D., “Improvement of corrosion and wear resistances of AISI 420 martensitic stainless steel using plasma nitriding at low temperature,” Surf Coat Technol, 202(12): 2577-2583, (2008).
- [36] Brühl S. P., Charadia R., Sanchez C., and Staia M. H., “Wear behavior of plasma nitrided AISI 420 stainless steel,” International Journal of Materials Research, 99(7): 779-786, (2008).
- [37] Boonruang C. and Sanumang W., “Effect of nano-grain carbide formation on electrochemical behavior of 316L stainless steel,” Sci Rep, 11(1): 12602, (2021).
- [38] Dadfar M., Fathi M. Karimzadeh H., Dadfar F., M. R., and Saatchi A., “Effect of TIG welding on corrosion behavior of 316L stainless steel,” Mater Lett, 61(11–12): 2343-2346, (2007).
- [39] Scheuer C. J., Cardoso R. P., das Neves J. C. K., and Brunatto S. F., “Micro-abrasive wear behaviour of low-temperature plasma carburized aisi 420 martensitic stainless steel,” Anais do Congresso Anual da ABM, São Paulo, 391-405, (2017).
- [40] Filho M. V. M., Naeem M., Monção R. M., Díaz-Guillén J. C., Hdz-García H. M., Costa T. H. C., Safeen K., Iqbal J., Khan K. H., and Sousa R. R. M., “Improved mechanical and wear properties of AISI-420 steel by cathodic cage plasma vanadium nitride deposition,” Phys Scr, 98(11): 115602, (2023).
- [41] Trevisiol C., Jourani A., and Bouvier S., “Effect of hardness, microstructure, normal load and abrasive size on friction and on wear behaviour of 35NCD16 steel,” Wear, 388-389: 101-111, (2017).
- [42] Marenych O. O., Ding D., Pan Z., Kostryzhev A. G., Li H., and van Duin S., “Effect of chemical composition on microstructure, strength and wear resistance of wire deposited Ni-Cu alloys,” Addit Manuf, 24: 30-36, (2018).
- [43] Özer G., Khan H. M., Tarakçı G., Yılmaz M. S., Yaman P., Karabeyoğlu S. S., and Kısasöz A., “Effect of heat treatments on the microstructure and wear behaviour of a selective laser melted maraging steel,” Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 236(6): 2526-2535, (2022).
- [44] Duman K., Karabeyoğlu S. S., and Yaman P., “Effect of nitriding conditions and operation temperatures on dry sliding wear properties of the aluminum extrusion die steel in the industry,” Mater Today Commun, 31: 103628, (2022).
- [45] Gu W., Chu K., Lu Z., Zhang G., and Qi S., “Synergistic effects of 3D porous graphene and T161 as hybrid lubricant additives on 316 ASS surface,” Tribol Int, 161: 107072, (2021).
- [46] Li D., Kong N., Zhang B., Zhang B., Li R., and Zhang Q., “Comparative study on the effects of oil viscosity on typical coatings for automotive engine components under simulated lubrication conditions,” Diam Relat Mater, 112: 108226, (2021).
Fonon bant aralığı gösteren yapılar için yapı malzemesinin tribolojik performansla belirlenmesi
Year 2025,
Volume: 28 Issue: 1, 27 - 34
Paşa Yaman
,
Erol Türkeş
,
Osman Yuksel
Abstract
Bu çalışmada, yaygın olarak kullanılan paslanmaz çelik alaşımlarının (303, 304, 316L ve 420) atalet artırımının tetiklediği fonon bant aralığı gösteren titreşim yalıtıcıları olarak tasarlanan periyodik yapılar için yapı malzemesi olarak uygunluklarını belirlemek amacıyla tribolojik performansları incelenmiştir. Paslanmaz çelik alaşımları, büyük gerilmelere dayanma yetenekleri ve iyi döngüsel yükleme özellikleri sergilemeleri nedeniyle mühendislik yapılarında yaygın olarak kullanılmaktadır. Bu çalışmada paslanmaz çelik numuneler kuru ve yağlamalı aşınma testi koşullarında incelenmiştir. Çalışmada 420 paslanmaz çeliğin, kuru ve yağlı koşullar için en yüksek aşınma direnci özelliklerini gösterdiği görülmüştür. İki tür yağlayıcı viskozite açısından karşılaştırıldığında, yüksek viskoziteli yağlayıcının akışı bloke ettiği ve dolayısıyla yarı kuru sürtünme oluşturduğu ortaya çıkmıştır. Düşük viskoziteli yağlayıcının, sürtünme nedeniyle daha az malzeme kaybına sebep olduğu gözlemlenmiştir.
References
- [1] Lo K. H., Shek C. H., and Lai J. K. L., “Recent developments in stainless steels,” Materials Science and Engineering: R: Reports, 65(4–6): 39-104, (2009).
- [2] Baddoo N. R., “Stainless steel in construction: A review of research, applications, challenges and opportunities,” J Constr Steel Res, 64(11): 1199-1206, (2008).
- [3] Gardner L., “The use of stainless steel in structures,” Progress in Structural Engineering and Materials, 7(2): 45-55, (2005).
- [4] Rao S., Mechanical Vibrations, Prentice Hall, New Jersey, (2011).
- [5] Inman D., Engineering Vibration. Pearson Education, New Jersey, (2014).
- [6] Avallone E. and Baumeister T., Marks’ Standard Handbook for Mechanical Engineers, McGraw-Hill, New York, (1996).
- [7] Liu L. and Lee H. P., “A Review: Elastic Metamaterials and Inverse Design Methods for Shock and Vibration Mitigation,” Int J Appl Mech, 13(9): 2150102, (2021).
- [8] Oudich M., Gerard N. J., Deng Y., and Jing Y., “Tailoring Structure‐Borne Sound through Bandgap Engineering in Phononic Crystals and Metamaterials: A Comprehensive Review,” Adv Funct Mater, 33(2): 2206309, (2023).
- [9] Phani A. and Hussein M., Dynamics of Lattice Materials, John Wiley & Sons Ltd, West Sussex, (2017).
- [10] Sharma V. and Chandraprakash C., “Fabrication and bandgaps of microscale metallic phononic crystals,” Int J Adv Eng Sci Appl Math, 15(4): 159-166, (2023).
- [11] Yang C.-L., Zhao S.-D., and Wang Y.-S., “Experimental evidence of large complete bandgaps in zig-zag lattice structures,” Ultrasonics,74: 99-105, (2017).
- [12] Lee K. Il, Kim Y. M., Kang H. S., and Yoon S. W., “Acoustic band structures in two-dimensional phononic crystals consisting of periodic square arrays of stainless-steel cylinders in water,” Journal of the Korean Physical Society, 68(2): 221-226, (2016).
- [13] He C., Zhao H., Wei R., and Wu B., “Existence of complete band gaps in 2D steel-water phononic crystal with square lattice,” Frontiers of Mechanical Engineering in China, 5(4): 450-454, (2010).
- [14] Sigalas M. M. and Economou E. N., “Elastic and acoustic wave band structure,” J Sound Vib, 158(2): 377-382, (1992).
- [15] Yilmaz C., Hulbert G. M., and Kikuchi N., “Phononic band gaps induced by inertial amplification in periodic media,” Phys Rev B, 76(5): 054309, (2007).
- [16] Yuksel O. and Yilmaz C., “Realization of an ultrawide stop band in a 2-D elastic metamaterial with topologically optimized inertial amplification mechanisms,” Int J Solids Struct, 203: 138-150, (2020).
- [17] Yuksel O. and Yilmaz C., “Shape optimization of phononic band gap structures incorporating inertial amplification mechanisms,” J Sound Vib, 355: 232-245, (2015).
- [18] Acar G. and Yilmaz C., “Experimental and numerical evidence for the existence of wide and deep phononic gaps induced by inertial amplification in two-dimensional solid structures,” J Sound Vib, 332(24): 6389-6404, (2013).
- [19] Yıldız U. T., Varol T., Pürçek G., ve Akçay S. B., “A Review on the Surface Treatments Used to Create Wear and Corrosion Resistant Steel Surfaces”, Journal of Polytechnic, 27(1): 227-236, (2024).
- [20] Gül F., Dilipak H., ve Yamanoğlu O., “Kriyojenik İşlem Yapılmış Soğuk İş Takım Çeliklerinin Abrasif Aşınma Davranışlarının İncelenmesi ve İstatistiksel Analizi”, Politeknik Dergisi, 24(3): 1129-1135, (2021).
- [21] Ünlüoğlu O. ve Çelik O. N., “Grafit Partiküllerinin Yağ Katkısı Olarak AISI H11 Çeliğinin Sürtünme ve Aşınma Davranışı Üzerine Etkisi”, Politeknik Dergisi, 25(4): 1495-1503, (2022).
- [22] G99-17, “Standard Test Method for Wear Testing with a Pin-on-Disk Apparatus,” ASTM International, (2017).
- [23] Mertgenc E., Kesici O. F., and Kayali Y., “Investigation of wear properties of borided austenitic stainless steel different temperatures and times,” Mater Res Express, 6(7): 076420, (2019).
- [24] Seriacopi V., Fukumasu N. K., Souza R. M., and Machado I. F., “Analysis of Abrasion Mechanisms in the AISI 303 Stainless Steel: Effect of Deformed Layer,” Procedia CIRP, 45: 187-190, (2016).
- [25] Barcelos M. A., Barcelos M. V., Araújo Filho J. de S., A. Franco Jr. R., and Vieira E. A., “Wear resistance of AISI 304 stainless steel submitted to low temperature plasma carburizing,” REM - International Engineering Journal, 70(3): 293-298, (2017).
- [26] Ramya Sree K., Keerthi Reddy G., Lakshmi Prasanna G., Saranya J., Anitha Lakshmi A., Swetha M., Vineeth Raj T., and Subbiah R., “Dry sliding wear behavior of treated AISI 304 stainless steel by gas nitriding processes,” Mater Today Proc, 44: 1406-1411, (2021).
- [27] Fenili C. P., da Rocha M. R., Al-Rubaie K. S., Arnt Â. B. C., Angioleto E., and Bernardin A. M., “Effect of sensitization on tribological behavior of AISI 304 austenitic stainless steel,” International Journal of Materials Research, 109(3): 234-240, (2018).
- [28] Huang M., Fu Y., Qiao X., and Chen P., “Investigation into Friction and Wear Characteristics of 316L Stainless-Steel Wire at High Temperature,” Materials, 16(1): 213, (2022).
- [29] Karabeyoglu S. S. and Yaman P., “An Experimental Investigation of Martensitic Stainless Steel in Aircraft and Aerospace Industry for Thermal Wear Performance and Corrosion Potential,” Practical Metallography, 59(4): 199-215, (2022).
- [30] Karabeyoğlu S. S., Eker B., Yaman P., and Ekşi O., “Effect of boric acid addition to seawater on wear and corrosion properties of ultrashort physical vapor deposited Ti layer on a 304 stainless steel,” Materials Testing, 65(4): 467-478, (2023).
- [31] Yaman P., Karabeyoğlu S. S., and Moralar A., “Investigation of mechanical and frictional properties of ulexite and colemanite filled acrylonitrile-butadiene-styrene polymer composites for industrial use,” Journal of Thermoplastic Composite Materials, 0(0), Early View, (2023).
- [32] Khan H. M., Yilmaz M. S., Karabeyoğlu S. S., Kisasoz A., and Özer G., “Dry sliding wear behavior of 316 L stainless steel produced by laser powder bed fusion: A comparative study on test temperature,” Mater Today Commun, 34: 105155, (2023).
- [33] Özer G. and Kisasöz A., “The role of heat treatments on wear behaviour of 316L stainless steel produced by additive manufacturing,” Mater Lett, 327: 133014, (2022).
- [34] Shen M., Rong K., Li C., Xu B., Xiong G., and Zhang R., “In situ Friction-Induced Copper Nanoparticles at the Sliding Interface Between Steel Tribo-Pairs and their Tribological Properties,” Tribol Lett, 68(4): 98, (2020).
- [35] Xi Y., Liu D., and Han D., “Improvement of corrosion and wear resistances of AISI 420 martensitic stainless steel using plasma nitriding at low temperature,” Surf Coat Technol, 202(12): 2577-2583, (2008).
- [36] Brühl S. P., Charadia R., Sanchez C., and Staia M. H., “Wear behavior of plasma nitrided AISI 420 stainless steel,” International Journal of Materials Research, 99(7): 779-786, (2008).
- [37] Boonruang C. and Sanumang W., “Effect of nano-grain carbide formation on electrochemical behavior of 316L stainless steel,” Sci Rep, 11(1): 12602, (2021).
- [38] Dadfar M., Fathi M. Karimzadeh H., Dadfar F., M. R., and Saatchi A., “Effect of TIG welding on corrosion behavior of 316L stainless steel,” Mater Lett, 61(11–12): 2343-2346, (2007).
- [39] Scheuer C. J., Cardoso R. P., das Neves J. C. K., and Brunatto S. F., “Micro-abrasive wear behaviour of low-temperature plasma carburized aisi 420 martensitic stainless steel,” Anais do Congresso Anual da ABM, São Paulo, 391-405, (2017).
- [40] Filho M. V. M., Naeem M., Monção R. M., Díaz-Guillén J. C., Hdz-García H. M., Costa T. H. C., Safeen K., Iqbal J., Khan K. H., and Sousa R. R. M., “Improved mechanical and wear properties of AISI-420 steel by cathodic cage plasma vanadium nitride deposition,” Phys Scr, 98(11): 115602, (2023).
- [41] Trevisiol C., Jourani A., and Bouvier S., “Effect of hardness, microstructure, normal load and abrasive size on friction and on wear behaviour of 35NCD16 steel,” Wear, 388-389: 101-111, (2017).
- [42] Marenych O. O., Ding D., Pan Z., Kostryzhev A. G., Li H., and van Duin S., “Effect of chemical composition on microstructure, strength and wear resistance of wire deposited Ni-Cu alloys,” Addit Manuf, 24: 30-36, (2018).
- [43] Özer G., Khan H. M., Tarakçı G., Yılmaz M. S., Yaman P., Karabeyoğlu S. S., and Kısasöz A., “Effect of heat treatments on the microstructure and wear behaviour of a selective laser melted maraging steel,” Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 236(6): 2526-2535, (2022).
- [44] Duman K., Karabeyoğlu S. S., and Yaman P., “Effect of nitriding conditions and operation temperatures on dry sliding wear properties of the aluminum extrusion die steel in the industry,” Mater Today Commun, 31: 103628, (2022).
- [45] Gu W., Chu K., Lu Z., Zhang G., and Qi S., “Synergistic effects of 3D porous graphene and T161 as hybrid lubricant additives on 316 ASS surface,” Tribol Int, 161: 107072, (2021).
- [46] Li D., Kong N., Zhang B., Zhang B., Li R., and Zhang Q., “Comparative study on the effects of oil viscosity on typical coatings for automotive engine components under simulated lubrication conditions,” Diam Relat Mater, 112: 108226, (2021).