Conference Paper
BibTex RIS Cite

Alçak İrtifa Dağıtım Sistemi için Uydu Taşıyıcı Yapısı Analizi ve Aerodinamik Özellikleri

Year 2025, Volume: 28 Issue: 1, 325 - 329
https://doi.org/10.2339/politeknik.810993

Abstract

Bu çalışma, alçak irtifa dağıtım sisteminin optimum parametrelerini bulmak için alçak irtifa uydu taşıyıcı sistemi yapısının ve aerodinamik karakteristik özelliklerinin analizini araştırmaktadır. Hesaplamalı Akışkanlar Dinamiği (CFD) araçları, sistemin yönetim denklemlerini çözmek ve taşıyıcı sistem etrafındaki hava akışını göstermek için kullanılır. Uydu taşıyıcı sistemin Bilgisayar Destekli Tasarım (CAD) yapısı Space-Claim kullanılarak oluşturulur ve ANSYS çözücüsüne aktarılır. Ticari CFD yazılımı, ANSYS Fluent kodu hava akış hızlarını, basıncı, sürükleme kuvvetini ve sürükleme katsayısını hesaplamak için kullanılır ve raporlanır. Bu çalışmada temel amaç, 0.6 ve 4 Mach sayısının hız aralığında sürükleme kuvveti ve sürükleme katsayısını elde etmektir. Ayrıca sistem hızının ve basınç konturlarının aerodinamik analizi farklı koşullarda incelenir ve raporlanır.

References

  • [1] Fedaravičius A., S. Kilikevičius, A. Survila., “Optimization of the rocket’s nose and nozzle design parameters in respect to its aerodynamic characteristics”, Journal of Vibroengineering, Vilnius: Vibromechanika, 14(3) : 1390-1398, (2012).
  • [2] Military Design Handbook, “Design of Aerodynamically Stabilized Free Rockets”, U.S. Army Missile Command, (1990).
  • [3] Schütte A., Einarsson G., Madrane A., Schöning B., Mönnich W., Krüger W.R.,”Numerical simulation of maneuvering aircraft by CFD and flight mechanic coupling”, RTO Symposium, Paris, (2002).
  • [4] Kroll N., Rossow C.C., Schwamborn D., Becker K., Heller G., “MEGAFLOW-a numerical flow simulation tool for transport aircraft design”. In Proceedings of ICAS Congress, 1105.1-1105.20, (2002).
  • [5] Langtry R.B., Kuntz M., Menter F., “Drag prediction of engineairframe interference effects with CFX-5”, Journal of Aircraft, 42(6) : 1523-1529, (2005).
  • [6] Menter F.R., Kuntz M., Langtry R., “Ten years of industrial experience with the SST turbulence model”. In Turbulence, Heat and Mass Transfer 4, (ed.: K. Hanjalic, Y. Nagano and M. Tummers), 625-632. Begell House, Inc, (2003).
  • [7] Mills A.F., Irwin R.D., “Basic Heat and Mass Transfer”, University of California, Los Angeles, (1995).
  • [8] ANSYS CFX-Solver Theory Guide. ANSYS, Inc., Southpointe 275 Technology Drive Canonsburg, PA 15317: 23–96 (2006).
  • [9] Fedaravičius, A., Jonevičius, V., Kilikevičius, S., Paukštaitis, L., & Šaulys, P., “Estimation of the drag coefficient of mine imitator in longitudinal air flow using numerical methods”, Transport, 26(2), 166-170, (2011).
  • [10] ANSYS FLUENT-Solver Theory Guide, ANSYS, Inc., Southpointe 275 Technology Drive Canonsburg, PA 15317 (2013).
  • [11] McCormick , B. W., “Aerodynamics, Aeronautics, and Flight Mechanics”, 2nd edition. Wiley . 652 p, (1994).
  • [12] Fedaravičius , A. Jonevičius , V. Ragulskis , M., Development of mortar training equipment with shell-in-shell system , in Abstracts: 75th Shock & Vibration Symposium, 18–22 October, 2004. Virginia Beach , VA , 70 – 71, (2004).
  • [13] Fedaravičius, A., Ragulskis, M. and Klimavičius, Z., Computational support of the development of a mortar simulator with re-usable shells. WIT Transactions on Modelling and Simulation: Computational Ballistics II, 40: 381–389 (2005).
  • [14] Lee , J. J. ; Kang , S. K. ; Yoon , S. J. ; Park , G. C. ; Lee , W. J., “Assessment of turbulence models in CFD code and its application to pebble bed reactor”, in 4th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, 19–22 September 2005 . Cairo , Egypt, (2005).
  • [15] Fedaravičius, A., Jonevičius, V. and Ragulskis, M. “Development of mortar simulator with shell-in-shell system problem of external ballistics”, Shock and Vibration, 14(5): 371–376, (2007).
  • [16] Fedaravičius, A., Šaulys, P. and Griškevičius, P., “Research of mine imitator interaction with nondeformable surface”, Mechanika, 6: 25–29, (2008).
  • [17] Fedaravičius , A. Griškevičius , P. Šaulys , P. “Interaction modeling of the shell imitator and nondeformable surface”,in Mechanika 2008: Proceedings of 13th International Conference, 3–4 April, 2008 . Kaunas , Lithuania , 134 – 138, (2008).
  • [18] Fedaravičius , A ; Griškevičius , P. Jonevičius , V. Šaulys , P. Ragulskis , M. K., Theoretical basis for creation of mortar firing simulators , in Mechanika 2009: Proceedings of 14th International Conference, 2–3 April 2009 . Kaunas , Lithuania , 102 – 110 (2009).
  • [19] Fedaravičius, A, Šaulys, P and Griskevičius, P, “ Research of mine imitator interaction with deformable surface”, Mechanika, 2: 24–27, (2009).
  • [20] Puoti , V. Izzo , C. Valenza , F. Fedaravičius , A. Survila, A. Patašienė , L. Ragulskis , M., “Experimental Drag Estimation on a Mortar Warhead” , in Transport Means – 2009: Proceedings of 13th International Conference, 22–23 October 2009 . Kaunas , Lithuania , 214 – 216, (2009).
  • [21] Gokce H., Kucuk U.C., Sahin I., “Effects of Curvature and Area Distribution on S-Shaped Subsonic Diffuser Performance”, Mechanics, 24(6):770-776, (2018).

Satellite Carrier Structure Analysis and Aerodynamic Characteristics for Low Altitude Delivery System

Year 2025, Volume: 28 Issue: 1, 325 - 329
https://doi.org/10.2339/politeknik.810993

Abstract

This study investigates analysis of low altitude satellite carrier system structure and aerodynamic characteristic properties to find the optimum parameters of low altitude delivery system. Computational Fluid Dynamics (CFD) tools are used to solve the governing equations of the system and to illustrate the airflow around the carrier system. Computer Aided Design (CAD) structure of the satellite carrier system is generated using Space-Claim and exported to ANSYS solver. Commercial CFD software, ANSYS Fluent code is used to compute airflow velocities, pressure, the drag force and the drag coefficient and reported. In this study, the main goal is to obtain the drag force and the drag coefficient in the velocity range of 0.6 and 4 Mach number. Also aerodynamic analysis of the system velocity and pressure contours are investigated and reported in different conditions.

References

  • [1] Fedaravičius A., S. Kilikevičius, A. Survila., “Optimization of the rocket’s nose and nozzle design parameters in respect to its aerodynamic characteristics”, Journal of Vibroengineering, Vilnius: Vibromechanika, 14(3) : 1390-1398, (2012).
  • [2] Military Design Handbook, “Design of Aerodynamically Stabilized Free Rockets”, U.S. Army Missile Command, (1990).
  • [3] Schütte A., Einarsson G., Madrane A., Schöning B., Mönnich W., Krüger W.R.,”Numerical simulation of maneuvering aircraft by CFD and flight mechanic coupling”, RTO Symposium, Paris, (2002).
  • [4] Kroll N., Rossow C.C., Schwamborn D., Becker K., Heller G., “MEGAFLOW-a numerical flow simulation tool for transport aircraft design”. In Proceedings of ICAS Congress, 1105.1-1105.20, (2002).
  • [5] Langtry R.B., Kuntz M., Menter F., “Drag prediction of engineairframe interference effects with CFX-5”, Journal of Aircraft, 42(6) : 1523-1529, (2005).
  • [6] Menter F.R., Kuntz M., Langtry R., “Ten years of industrial experience with the SST turbulence model”. In Turbulence, Heat and Mass Transfer 4, (ed.: K. Hanjalic, Y. Nagano and M. Tummers), 625-632. Begell House, Inc, (2003).
  • [7] Mills A.F., Irwin R.D., “Basic Heat and Mass Transfer”, University of California, Los Angeles, (1995).
  • [8] ANSYS CFX-Solver Theory Guide. ANSYS, Inc., Southpointe 275 Technology Drive Canonsburg, PA 15317: 23–96 (2006).
  • [9] Fedaravičius, A., Jonevičius, V., Kilikevičius, S., Paukštaitis, L., & Šaulys, P., “Estimation of the drag coefficient of mine imitator in longitudinal air flow using numerical methods”, Transport, 26(2), 166-170, (2011).
  • [10] ANSYS FLUENT-Solver Theory Guide, ANSYS, Inc., Southpointe 275 Technology Drive Canonsburg, PA 15317 (2013).
  • [11] McCormick , B. W., “Aerodynamics, Aeronautics, and Flight Mechanics”, 2nd edition. Wiley . 652 p, (1994).
  • [12] Fedaravičius , A. Jonevičius , V. Ragulskis , M., Development of mortar training equipment with shell-in-shell system , in Abstracts: 75th Shock & Vibration Symposium, 18–22 October, 2004. Virginia Beach , VA , 70 – 71, (2004).
  • [13] Fedaravičius, A., Ragulskis, M. and Klimavičius, Z., Computational support of the development of a mortar simulator with re-usable shells. WIT Transactions on Modelling and Simulation: Computational Ballistics II, 40: 381–389 (2005).
  • [14] Lee , J. J. ; Kang , S. K. ; Yoon , S. J. ; Park , G. C. ; Lee , W. J., “Assessment of turbulence models in CFD code and its application to pebble bed reactor”, in 4th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, 19–22 September 2005 . Cairo , Egypt, (2005).
  • [15] Fedaravičius, A., Jonevičius, V. and Ragulskis, M. “Development of mortar simulator with shell-in-shell system problem of external ballistics”, Shock and Vibration, 14(5): 371–376, (2007).
  • [16] Fedaravičius, A., Šaulys, P. and Griškevičius, P., “Research of mine imitator interaction with nondeformable surface”, Mechanika, 6: 25–29, (2008).
  • [17] Fedaravičius , A. Griškevičius , P. Šaulys , P. “Interaction modeling of the shell imitator and nondeformable surface”,in Mechanika 2008: Proceedings of 13th International Conference, 3–4 April, 2008 . Kaunas , Lithuania , 134 – 138, (2008).
  • [18] Fedaravičius , A ; Griškevičius , P. Jonevičius , V. Šaulys , P. Ragulskis , M. K., Theoretical basis for creation of mortar firing simulators , in Mechanika 2009: Proceedings of 14th International Conference, 2–3 April 2009 . Kaunas , Lithuania , 102 – 110 (2009).
  • [19] Fedaravičius, A, Šaulys, P and Griskevičius, P, “ Research of mine imitator interaction with deformable surface”, Mechanika, 2: 24–27, (2009).
  • [20] Puoti , V. Izzo , C. Valenza , F. Fedaravičius , A. Survila, A. Patašienė , L. Ragulskis , M., “Experimental Drag Estimation on a Mortar Warhead” , in Transport Means – 2009: Proceedings of 13th International Conference, 22–23 October 2009 . Kaunas , Lithuania , 214 – 216, (2009).
  • [21] Gokce H., Kucuk U.C., Sahin I., “Effects of Curvature and Area Distribution on S-Shaped Subsonic Diffuser Performance”, Mechanics, 24(6):770-776, (2018).
There are 21 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Hasan Köten 0000-0002-1907-9420

Tarık Tufan 0000-0001-9324-2401

Enes Demir 0009-0000-6695-2897

Early Pub Date April 1, 2024
Publication Date
Submission Date October 15, 2020
Published in Issue Year 2025 Volume: 28 Issue: 1

Cite

APA Köten, H., Tufan, T., & Demir, E. (n.d.). Satellite Carrier Structure Analysis and Aerodynamic Characteristics for Low Altitude Delivery System. Politeknik Dergisi, 28(1), 325-329. https://doi.org/10.2339/politeknik.810993
AMA Köten H, Tufan T, Demir E. Satellite Carrier Structure Analysis and Aerodynamic Characteristics for Low Altitude Delivery System. Politeknik Dergisi. 28(1):325-329. doi:10.2339/politeknik.810993
Chicago Köten, Hasan, Tarık Tufan, and Enes Demir. “Satellite Carrier Structure Analysis and Aerodynamic Characteristics for Low Altitude Delivery System”. Politeknik Dergisi 28, no. 1 n.d.: 325-29. https://doi.org/10.2339/politeknik.810993.
EndNote Köten H, Tufan T, Demir E Satellite Carrier Structure Analysis and Aerodynamic Characteristics for Low Altitude Delivery System. Politeknik Dergisi 28 1 325–329.
IEEE H. Köten, T. Tufan, and E. Demir, “Satellite Carrier Structure Analysis and Aerodynamic Characteristics for Low Altitude Delivery System”, Politeknik Dergisi, vol. 28, no. 1, pp. 325–329, doi: 10.2339/politeknik.810993.
ISNAD Köten, Hasan et al. “Satellite Carrier Structure Analysis and Aerodynamic Characteristics for Low Altitude Delivery System”. Politeknik Dergisi 28/1 (n.d.), 325-329. https://doi.org/10.2339/politeknik.810993.
JAMA Köten H, Tufan T, Demir E. Satellite Carrier Structure Analysis and Aerodynamic Characteristics for Low Altitude Delivery System. Politeknik Dergisi.;28:325–329.
MLA Köten, Hasan et al. “Satellite Carrier Structure Analysis and Aerodynamic Characteristics for Low Altitude Delivery System”. Politeknik Dergisi, vol. 28, no. 1, pp. 325-9, doi:10.2339/politeknik.810993.
Vancouver Köten H, Tufan T, Demir E. Satellite Carrier Structure Analysis and Aerodynamic Characteristics for Low Altitude Delivery System. Politeknik Dergisi. 28(1):325-9.