Research Article
BibTex RIS Cite

Energy and Exergy Analysis of Green Hydrogen Production

Year 2025, Volume: 28 Issue: 2, 461 - 468
https://doi.org/10.2339/politeknik.1206392

Abstract

Biomass pyrolysis and gasification are recognized as effective thermal technologies for producing green hydrogen obtained through thermal conversion from biomass. This research paper presents a comparatmive analysis of the energy and exergy performance of pyrolysis and gasification systems. The study investigates two critical process conditions: low-temperature pyrolysis at 500°C and high-temperature gasification at 900°C. The analysis integrates thermodynamic equilibrium calculations and modeling to produce hydrogen and offers a comprehensive evaluation of energy and exergy efficiencies. The comparison is carried out between a downdraft gasifier and a pyrolysis process, both employing wood chips as the biomass feedstock. This paper delves into the energy and exergy yields of these distinct thermal conversion methods for energy production. The research identifies pyrolysis at 900°C as the optimal model condition due to its lower energy consumption and the absence of agent materials. Energy and exergy analyses are conducted at both 500°C and 900°C for all processes. The model results demonstrate that pyrolysis yields 60% energy at 500°C and 94% at 900°C. Furthermore, the study reports on the effects of temperature variations on energy and exergy yields. This study contributes to the examination of the performance of thermal conversion methods from biomass for green hydrogen production.

References

  • [1] Castello D., Fiori L., “Supercritical water gasification of biomass: a stoichiometric thermodynamic model”, Int J Hydrogen Energy, 40:6771-81, (2015).
  • [2] Palomar A., Sundo M., Velasco P., Camus D., “End-of-pipe waste analysis and integrated solid waste management plan”, Civil Eng J., 5:1970-82, (2019).
  • [3] Adnan M.A. and Hossain M.M., “Co-gasification of Indonesian Coal and Microalgae – A Thermodynamic Study and Performance Evaluation”, Chem Eng Process – Process Intensif, 128: 1-9, (2018).
  • [4] Husain Z., Ansari K.B., Chatake V.S., Urunkar Y., Pandit A.B. and Joshi J.B., “Valorisation of Biomass Pellets to Renewable Fuel and Chemicals Using Pyrolysis: Characterisation of Pyrolysis Products and Its Application”, Indian Chem. Eng., 62: 78–91,(2020).
  • [5] https://unfccc.int, “The United Nation Framework Convention on Climate Change”, The Kyoto protocol New York: United Nations, (2009).
  • [6] Khademi M, Jahanmiri A, Rahimpour M., “A novel configuration for hydrogen production from coupling of methanol and benzene synthesis in a hydrogen permselective membrane reactor”, Int J Hydrogen Energy, 34:5091-107 (2009).
  • [7] Saxena R C, Seal D, Kumar S, Goyal H B., “Thermo-chemical routes for hydrogen rich gas from biomass: a review”, Renewable and Sustainable Energy Reviews, 12:1909–1927, (2008).
  • [8] https://data.worldbank.org/indicator/,“WorldBank”, (2021).
  • [9] C.S. Park, P.S. Roy, S.H. Kim, “Current developments in thermochemical conversion of biomass to fuels and chemicals Gasification for Low-grade Feedstock”, Fuel, (2018).
  • [10] Turn SQ, Kinoshita D, Zhang Z, Ishimura D, Zhou J., “An experimental investigation of hydrogen production from biomass gasification” Int J Hydrogen Energy, 23:641–8,(1998).
  • [11] Balu E, Lee U, Chung J., “High temperature steam gasification of woody biomassea combined experimental and mathematical modeling approach”, Int J Hydrogen Energy, 40:14104-15,(2015).
  • [12] Lu Y, Guo L, Zhang X, Yan Q., “Thermodynamic modeling and analysis of biomass gasification for hydrogen production in supercritical water”, Chem Eng J., 131: 233-44, (2007).
  • [13] Sharma S, Sheth PN., “Air steam biomass gasification: experiments, modeling and simulation”, Energy Convers Manage., 110:307-18, (2016).
  • [14] Mahishi MR, Goswami D., “Thermodynamic optimization of biomass gasifier for hydrogen production”, Int J Hydrogen Energy, 32, 3831-40, (2007).
  • [15] Pellegrini LF, de Oliveira Jr S., “Exergy analysis of sugarcane bagasse gasification”, Energy, 32:314-27, (2007).
  • [16] Zhang Y, Li L, Xu P, Liu B, Shuai Y, Li B., “Hydrogen production through biomass gasification in supercritical water: a review from exergy aspect”, Int J Hydrogen Energy, 44: 1572-36, (2019).
  • [17] Mehrpooya M, Khalili M, Sharifzadeh MMM.,“Model development and energy and exergy analysis of the biomass gasification process (Based on the various biomass sources)”, Renew Sustain Energy Rev., 91: 869-87, (2018).
  • [18] Zhang Y, Li B, Li H, Liu H., “ Thermodynamic evaluation of biomass gasification with air in autothermal gasifiers”, Thermochim Acta., 519: 65-71, (2011).
  • [19] Abuadala A, Dincer I, Naterer G., “Exergy analysis of hydrogen production from biomass gasification”, Int J Hydrogen Energy, 35:4981-90, (2010).
  • [20] Eri Q, Wu W, Zhao X., “Numerical investigation of the airsteam biomass gasification process based on thermodynamic equilibrium model”, Energies, 10: 2163, (2017).
  • [21] Dong, J., Chi, Y., Tang, Y., Ni, M., Nzihou, A., Weiss-Hortala, E., Huang, Q., “Effect of operating parameters and moisture content on municipal solid waste pyrolysis and gasification”, Energy Fuel, 30: 3994-4001, (2016).
  • [22] Burhenne, L., Damiani, M., Aicher, T., “Effect of feedstock water content and pyrolysis temperature on the structure and reactivity of spruce wood char produced in fixed bed pyrolysis”, Fuel, 107:836-847,(2013).
  • [23] Di Blasi, C., “Combustion and gasification rates of lignocellulosic chars. Prog.,” Energy Combust, 35:121-140, (2009).
  • [24] Kabalina, N., Costa, M., Yang, W., Martin, A., “Santarelli, M., Exergy analysis of a polygeneration-enabled district heating and cooling system based on gasification of refuse derived fuel”, J. Clean. Prod., 141:760-773, (2017).
  • [25] Soto Veiga, J.P., Romanelli, T.L., “Mitigation of greenhouse gas emissions using exergy”, J. Clean. Prod., 260:121092, (2017).
  • [26] Bejan, A., “Advanced Engineering Thermodynamics”, 978-1-119-28104-7, 4th Edition. (2016).
  • [27] K. Tae, H. Cho, R. Luck, P.J. Mago., “Modeling of reciprocating internal combustion engines for power generation and heat recovery”, Appl. Energy., 102: 327-335, (2013).
  • [28] Xu P, Jin Y, Cheng Y., “Thermodynamic analysis of the gasification of municipal solid waste”, Engineering, 3:416-22, (2017).
  • [29] Prins MJ, Ptasinski KJ, Janssen FJJG., “Thermodynamics of gas-char reactions: first and second law analysis”, Chemical Engineering Science, 58:13– 16, (2003).
  • [30] Manatura K, Lu J-H, Wu K-T, Hsu H-T., “Exergy analysis on torrefied rice husk pellet in fluidized bed gasification”, Appl Therm Eng, 111:1016-24, (2017).
  • [31] N.S. Barman, S. Ghosh, S. De, “Gasification of biomass in a fixed bed downdraft gasifier - a realistic model including tar”, Bioresour. Technol., 107:505–511, (2012).
  • [32] Boateng AA, Mullen CA, Osgood-Jacobs L, Carlson P, Macken N., “Mass balance, energy, and exergy analysis of bio-oil production by fast pyrolysis”, Trans Am Soc Mech Eng J ENERGY Resour Technol, 134:04-2001, (2012).
  • [33] Souza-Santos ML., “Solid fuels combustion and gasification: modeling”, Simulation, and Equipment Operation, New York, (2004).
  • [34] Basu, P., “Biomass Gasifcation and Pyrolysis: Practical Design and Theory”, Academic Press, Burlington, (2010).
  • [35] Dincer I, Rosen MA., “Exergy as a driver for achieving sustainability” , Int J Green Energy, 1: 1-19, (2004).
  • [36] Szargut J., “Exergy Method: Technical and Ecological Applications”, WIT Press.,(2005).
  • [37] Wang J-J, Yang K, Xu Z-L, Fu C., “Energy and exergy analyses of an integrated CCHP system with biomass air gasification”, Appl Energy, 142:317-27, (2015).
  • [38] Y. A. Çengel, M. A. Boles, Thermodynamics: an engineering approach, McGraw-Hill Higher Education, (2006).
  • [39] Szargut J, Morris DR, Steward FR., Exergy analysis of thermal, chemical and metallurgical processes, Hemisphere Publishing, New York, (1988).
  • [40] K.G. Mansaray, A.E. Ghaly, A.M. Al-Taweel, F. Hamdullahpur, V.I. Ugursal, “Air gasification of rice husk in a dual distributor type fluidized bed gasifier”, Biomass Bioenergy, 17:315-332, (1999).
  • [41] Özbay, G., & Kökten, E. S. “ Modeling of Bio-Oil Production by Pyrolysis of Woody Biomass: Artificial Neural Network Approach.”, Politeknik Dergisi, 23(4), 1255-1264.

Yeşil Hidrojen Üretiminde Enerji ve Ekserji Analizi

Year 2025, Volume: 28 Issue: 2, 461 - 468
https://doi.org/10.2339/politeknik.1206392

Abstract

Biyokütleden termal dönüşüm yöntemi ile elde edilen yeşil hidrojen üretimi için biomass piroliz ve gazifikasyon, sürdürülebilir hidrojen üretimi için etkili termal teknolojiler olarak kabul edilmektedir. Bu araştırma makalesi, piroliz ve gazifikasyon sistemlerinin enerji ve ekserji performansını karşılaştırmalı bir analizini sunmaktadır. Çalışma, düşük sıcaklıkta 500°C'de piroliz ve yüksek sıcaklıkta 900°C'de gazifikasyon olmak üzere iki kritik işlem koşulunu incelemektedir. Analiz, termal denge hesaplamaları ve modellemelerini içeren bir yöntem kullanarak hidrojen üretimini gerçekleştirir ve enerji ve ekserji verimliliğini kapsamlı bir şekilde değerlendirir. Karşılaştırma, biyokütle malzemesi olarak odun yongalarını kullanan bir downdraft gazifikasyon ünitesi ile piroliz işlemi arasında gerçekleştirilir. Bu makale, enerji üretimi için bu farklı termal dönüşüm yöntemlerinin enerji ve ekserji verimini detaylı olarak incelemektedir. Araştırma, düşük enerji tüketimi ve ajan malzeme kullanımının olmaması nedeniyle 900°C'de pirolizin en iyi model koşul olduğunu belirler. Tüm işlemler için hem 500°C hem de 900°C'de enerji ve ekserji analizleri gerçekleştirilir. Model sonuçları, piroliz işleminin 500°C %60 enerji verimi sağladığını ve 900°C'de %94 enerji verimi sağladığını göstermektedir. Ayrıca, çalışma sıcaklığındaki değişikliklerin enerji ve ekserji verimine etkileri de raporlanmıştır. Bu çalışma, yeşil hidrojen üretimi için biyokütleden termal dönüşüm yöntemlerinin performansını inceleyen bir katkı sunmaktadır.

References

  • [1] Castello D., Fiori L., “Supercritical water gasification of biomass: a stoichiometric thermodynamic model”, Int J Hydrogen Energy, 40:6771-81, (2015).
  • [2] Palomar A., Sundo M., Velasco P., Camus D., “End-of-pipe waste analysis and integrated solid waste management plan”, Civil Eng J., 5:1970-82, (2019).
  • [3] Adnan M.A. and Hossain M.M., “Co-gasification of Indonesian Coal and Microalgae – A Thermodynamic Study and Performance Evaluation”, Chem Eng Process – Process Intensif, 128: 1-9, (2018).
  • [4] Husain Z., Ansari K.B., Chatake V.S., Urunkar Y., Pandit A.B. and Joshi J.B., “Valorisation of Biomass Pellets to Renewable Fuel and Chemicals Using Pyrolysis: Characterisation of Pyrolysis Products and Its Application”, Indian Chem. Eng., 62: 78–91,(2020).
  • [5] https://unfccc.int, “The United Nation Framework Convention on Climate Change”, The Kyoto protocol New York: United Nations, (2009).
  • [6] Khademi M, Jahanmiri A, Rahimpour M., “A novel configuration for hydrogen production from coupling of methanol and benzene synthesis in a hydrogen permselective membrane reactor”, Int J Hydrogen Energy, 34:5091-107 (2009).
  • [7] Saxena R C, Seal D, Kumar S, Goyal H B., “Thermo-chemical routes for hydrogen rich gas from biomass: a review”, Renewable and Sustainable Energy Reviews, 12:1909–1927, (2008).
  • [8] https://data.worldbank.org/indicator/,“WorldBank”, (2021).
  • [9] C.S. Park, P.S. Roy, S.H. Kim, “Current developments in thermochemical conversion of biomass to fuels and chemicals Gasification for Low-grade Feedstock”, Fuel, (2018).
  • [10] Turn SQ, Kinoshita D, Zhang Z, Ishimura D, Zhou J., “An experimental investigation of hydrogen production from biomass gasification” Int J Hydrogen Energy, 23:641–8,(1998).
  • [11] Balu E, Lee U, Chung J., “High temperature steam gasification of woody biomassea combined experimental and mathematical modeling approach”, Int J Hydrogen Energy, 40:14104-15,(2015).
  • [12] Lu Y, Guo L, Zhang X, Yan Q., “Thermodynamic modeling and analysis of biomass gasification for hydrogen production in supercritical water”, Chem Eng J., 131: 233-44, (2007).
  • [13] Sharma S, Sheth PN., “Air steam biomass gasification: experiments, modeling and simulation”, Energy Convers Manage., 110:307-18, (2016).
  • [14] Mahishi MR, Goswami D., “Thermodynamic optimization of biomass gasifier for hydrogen production”, Int J Hydrogen Energy, 32, 3831-40, (2007).
  • [15] Pellegrini LF, de Oliveira Jr S., “Exergy analysis of sugarcane bagasse gasification”, Energy, 32:314-27, (2007).
  • [16] Zhang Y, Li L, Xu P, Liu B, Shuai Y, Li B., “Hydrogen production through biomass gasification in supercritical water: a review from exergy aspect”, Int J Hydrogen Energy, 44: 1572-36, (2019).
  • [17] Mehrpooya M, Khalili M, Sharifzadeh MMM.,“Model development and energy and exergy analysis of the biomass gasification process (Based on the various biomass sources)”, Renew Sustain Energy Rev., 91: 869-87, (2018).
  • [18] Zhang Y, Li B, Li H, Liu H., “ Thermodynamic evaluation of biomass gasification with air in autothermal gasifiers”, Thermochim Acta., 519: 65-71, (2011).
  • [19] Abuadala A, Dincer I, Naterer G., “Exergy analysis of hydrogen production from biomass gasification”, Int J Hydrogen Energy, 35:4981-90, (2010).
  • [20] Eri Q, Wu W, Zhao X., “Numerical investigation of the airsteam biomass gasification process based on thermodynamic equilibrium model”, Energies, 10: 2163, (2017).
  • [21] Dong, J., Chi, Y., Tang, Y., Ni, M., Nzihou, A., Weiss-Hortala, E., Huang, Q., “Effect of operating parameters and moisture content on municipal solid waste pyrolysis and gasification”, Energy Fuel, 30: 3994-4001, (2016).
  • [22] Burhenne, L., Damiani, M., Aicher, T., “Effect of feedstock water content and pyrolysis temperature on the structure and reactivity of spruce wood char produced in fixed bed pyrolysis”, Fuel, 107:836-847,(2013).
  • [23] Di Blasi, C., “Combustion and gasification rates of lignocellulosic chars. Prog.,” Energy Combust, 35:121-140, (2009).
  • [24] Kabalina, N., Costa, M., Yang, W., Martin, A., “Santarelli, M., Exergy analysis of a polygeneration-enabled district heating and cooling system based on gasification of refuse derived fuel”, J. Clean. Prod., 141:760-773, (2017).
  • [25] Soto Veiga, J.P., Romanelli, T.L., “Mitigation of greenhouse gas emissions using exergy”, J. Clean. Prod., 260:121092, (2017).
  • [26] Bejan, A., “Advanced Engineering Thermodynamics”, 978-1-119-28104-7, 4th Edition. (2016).
  • [27] K. Tae, H. Cho, R. Luck, P.J. Mago., “Modeling of reciprocating internal combustion engines for power generation and heat recovery”, Appl. Energy., 102: 327-335, (2013).
  • [28] Xu P, Jin Y, Cheng Y., “Thermodynamic analysis of the gasification of municipal solid waste”, Engineering, 3:416-22, (2017).
  • [29] Prins MJ, Ptasinski KJ, Janssen FJJG., “Thermodynamics of gas-char reactions: first and second law analysis”, Chemical Engineering Science, 58:13– 16, (2003).
  • [30] Manatura K, Lu J-H, Wu K-T, Hsu H-T., “Exergy analysis on torrefied rice husk pellet in fluidized bed gasification”, Appl Therm Eng, 111:1016-24, (2017).
  • [31] N.S. Barman, S. Ghosh, S. De, “Gasification of biomass in a fixed bed downdraft gasifier - a realistic model including tar”, Bioresour. Technol., 107:505–511, (2012).
  • [32] Boateng AA, Mullen CA, Osgood-Jacobs L, Carlson P, Macken N., “Mass balance, energy, and exergy analysis of bio-oil production by fast pyrolysis”, Trans Am Soc Mech Eng J ENERGY Resour Technol, 134:04-2001, (2012).
  • [33] Souza-Santos ML., “Solid fuels combustion and gasification: modeling”, Simulation, and Equipment Operation, New York, (2004).
  • [34] Basu, P., “Biomass Gasifcation and Pyrolysis: Practical Design and Theory”, Academic Press, Burlington, (2010).
  • [35] Dincer I, Rosen MA., “Exergy as a driver for achieving sustainability” , Int J Green Energy, 1: 1-19, (2004).
  • [36] Szargut J., “Exergy Method: Technical and Ecological Applications”, WIT Press.,(2005).
  • [37] Wang J-J, Yang K, Xu Z-L, Fu C., “Energy and exergy analyses of an integrated CCHP system with biomass air gasification”, Appl Energy, 142:317-27, (2015).
  • [38] Y. A. Çengel, M. A. Boles, Thermodynamics: an engineering approach, McGraw-Hill Higher Education, (2006).
  • [39] Szargut J, Morris DR, Steward FR., Exergy analysis of thermal, chemical and metallurgical processes, Hemisphere Publishing, New York, (1988).
  • [40] K.G. Mansaray, A.E. Ghaly, A.M. Al-Taweel, F. Hamdullahpur, V.I. Ugursal, “Air gasification of rice husk in a dual distributor type fluidized bed gasifier”, Biomass Bioenergy, 17:315-332, (1999).
  • [41] Özbay, G., & Kökten, E. S. “ Modeling of Bio-Oil Production by Pyrolysis of Woody Biomass: Artificial Neural Network Approach.”, Politeknik Dergisi, 23(4), 1255-1264.
There are 41 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Pinar Büyük 0000-0002-5821-7865

Ahmet Eryaşar 0000-0003-4865-4049

Early Pub Date August 8, 2024
Publication Date
Submission Date November 18, 2022
Published in Issue Year 2025 Volume: 28 Issue: 2

Cite

APA Büyük, P., & Eryaşar, A. (n.d.). Energy and Exergy Analysis of Green Hydrogen Production. Politeknik Dergisi, 28(2), 461-468. https://doi.org/10.2339/politeknik.1206392
AMA Büyük P, Eryaşar A. Energy and Exergy Analysis of Green Hydrogen Production. Politeknik Dergisi. 28(2):461-468. doi:10.2339/politeknik.1206392
Chicago Büyük, Pinar, and Ahmet Eryaşar. “Energy and Exergy Analysis of Green Hydrogen Production”. Politeknik Dergisi 28, no. 2 n.d.: 461-68. https://doi.org/10.2339/politeknik.1206392.
EndNote Büyük P, Eryaşar A Energy and Exergy Analysis of Green Hydrogen Production. Politeknik Dergisi 28 2 461–468.
IEEE P. Büyük and A. Eryaşar, “Energy and Exergy Analysis of Green Hydrogen Production”, Politeknik Dergisi, vol. 28, no. 2, pp. 461–468, doi: 10.2339/politeknik.1206392.
ISNAD Büyük, Pinar - Eryaşar, Ahmet. “Energy and Exergy Analysis of Green Hydrogen Production”. Politeknik Dergisi 28/2 (n.d.), 461-468. https://doi.org/10.2339/politeknik.1206392.
JAMA Büyük P, Eryaşar A. Energy and Exergy Analysis of Green Hydrogen Production. Politeknik Dergisi.;28:461–468.
MLA Büyük, Pinar and Ahmet Eryaşar. “Energy and Exergy Analysis of Green Hydrogen Production”. Politeknik Dergisi, vol. 28, no. 2, pp. 461-8, doi:10.2339/politeknik.1206392.
Vancouver Büyük P, Eryaşar A. Energy and Exergy Analysis of Green Hydrogen Production. Politeknik Dergisi. 28(2):461-8.