Monte Carlo Analysis of Radiation Shielding and Damage in Multi-Layer HDPE Shields
Year 2025,
Volume: 1 Issue: 2, 57 - 73, 30.12.2025
Batuhan Gültekin
,
Enes Öztürk
,
Tunahan Recep Torun
Abstract
In this study, a functionally graded two-layer HDPE composite shield was designed, and its efficacy against secondary space radiation was evaluated using Monte Carlo simulations. The design, combining a neutron-absorbing front layer (6LiH/B2O3 doped) and a gamma-attenuating secondary layer (BiTaO4 doped), significantly outperforms single-layer structures. GEANT4 simulations show that while the front layer efficiently absorbs neutrons, it generates secondary gammas, which are subsequently attenuated by the secondary layer—achieving up to an 85% reduction in the epithermal neutron energy range. FLUKA analyses highlighted a trade-off between shielding and durability: the front layer sustained intense damage (approx. 1200x DPA and 500x TID vs. pure HDPE) due to (n,α) reactions. However, this damage was confined to the first 0.5 cm, preserving the secondary layer's integrity. Consequently, the multi-layer design successfully mitigates primary neutrons and secondary radiation while localizing material degradation.
References
-
D. O’Sullivan, “Exposure to galactic cosmic radiation and solar energetic particles,” Radiation Protection Dosimetry, vol. 125, no. 1–4, pp. 407–411, 2007, doi: 10.1093/rpd/ncm317.
-
T. W. Armstrong and B. L. Colborn, “Predictions of induced radioactivity for spacecraft in low Earth orbit,” Int. J. Radiat. Appl. Instrum. Part D: Nucl. Tracks Radiat. Meas., vol. 20, no. 1, pp. 101–130, 1992, doi: 10.1016/1359-0189(92)90089-E.
-
P. Spillantini et al., “Shielding from cosmic radiation for interplanetary missions: Active and passive methods,” Radiation Measurements, vol. 42, no. 1, pp. 14–23, 2007, doi: 10.1016/j.radmeas.2006.04.028.
-
L. W. Townsend, “Critical analysis of active shielding methods for space radiation protection,” in Proc. IEEE Aerospace Conf., Mar. 2005, pp. 724–730, doi: 10.1109/AERO.2005.1559364.
-
J. W. Wilson et al., “Issues in space radiation protection: Galactic cosmic rays,” Health Physics, vol. 68, no. 1, pp. 50–58, 1995, doi: 10.1097/00004032-199501000-00006.
-
J. M. DeWitt and E. R. Benton, “Shielding effectiveness: A weighted figure of merit for space radiation shielding,” Applied Radiation and Isotopes, vol. 161, p. 109141, 2020, doi: 10.1016/j.apradiso.2020.109141.
-
F. A. Cucinotta and M. Durante, “Cancer risk from exposure to galactic cosmic rays: Implications for space exploration by human beings,” The Lancet Oncology, vol. 7, no. 5, pp. 431–435, 2006, doi: 10.1016/S1470-2045(06)70695-7.
-
J. W. Wilson, Ed., Shielding Strategies for Human Space Exploration, NASA, vol. 3360, 1997.
-
M. Durante and F. A. Cucinotta, “Physical basis of radiation protection in space travel,” Rev. Mod. Phys., vol. 83, no. 4, pp. 1245–1281, 2011, doi: 10.1103/RevModPhys.83.1245.
-
F. Luoni et al., “Dose attenuation in innovative shielding materials for radiation protection in space: Measurements and simulations,” Radiation Research, vol. 198, no. 2, pp. 107–119, 2022, doi: 10.1667/RADE-22-00147.1.
-
M. Naito et al., “Investigation of shielding material properties for effective space radiation protection,” Life Sci. Space Res., vol. 26, pp. 69–76, 2020, doi: 10.1016/j.lssr.2020.05.001.
-
M. R. Shavers et al., “Implementation of ALARA radiation protection on the ISS through polyethylene shielding augmentation of the service module crew quarters,” Advances in Space Research, vol. 34, no. 6, pp. 1333–1337, 2004, doi: 10.1016/j.asr.2003.10.051.
-
A. Gohel, R. Makwana, and B. Soni, “Evaluating shielding materials for high energy space radiation,” in IOP Conf. Ser.: Mater. Sci. Eng., vol. 1221, no. 1, p. 012003, Mar. 2022, doi: 10.1088/1757-899X/1221/1/012003.
-
S. Guetersloh et al., “Polyethylene as a radiation shielding standard in simulated cosmic-ray environments,” Nucl. Instrum. Methods Phys. Res. B, vol. 252, no. 2, pp. 319–332, 2006, doi: 10.1016/j.nimb.2006.08.019.
-
J. W. Norbury et al., “Comparing HZETRN, SHIELD, FLUKA and GEANT transport codes,” Life Sci. Space Res., vol. 14, pp. 64–73, 2017, doi: 10.1016/j.lssr.2017.04.001.
-
R. C. McCall, “Shielding for thermal neutrons,” Medical Physics, vol. 24, no. 1, pp. 135–136, 1997, doi: 10.1118/1.597914.
-
S. Nambiar and J. T. Yeow, “Polymer-composite materials for radiation protection,” ACS Appl. Mater. Interfaces, vol. 4, no. 11, pp. 5717–5726, 2012, doi: 10.1021/am300783d.
-
V. Unagar et al., “Investigation of HDPE composites with B₄C and LiH fillers for space radiation shielding applications in LEO,” Advances in Space Research, 2025, doi: 10.1016/j.asr.2025.06.078.
-
C. Harrison et al., “Polyethylene/boron composites for radiation shielding applications,” in AIP Conf. Proc., vol. 969, no. 1, pp. 484–491, Jan. 2008, doi: 10.1063/1.2845006.
-
M. B. Chadwick et al., “ENDF/B-VII.1 nuclear data for science and technology,” Nuclear Data Sheets, vol. 112, no. 12, pp. 2887–2996, 2011, doi: 10.1016/j.nds.2011.11.002.
-
K. Saenboonruang et al., “Rare-earth oxides as alternative high-energy photon protective fillers in HDPE composites,” Polymers, vol. 13, no. 12, p. 1930, 2021, doi: 10.3390/polym13121930.
-
A. H. Abdalsalam et al., “Investigation of gamma ray attenuation features of bismuth oxide nanopowder reinforced HDPE composites,” Radiation Physics and Chemistry, vol. 168, p. 108537, 2020, doi: 10.1016/j.radphyschem.2019.108537.
-
Z. Huo et al., “Sm₂O₃ micron plates/B₄C/HDPE composites for neutron and gamma-ray shielding,” Compos. Sci. Technol., vol. 251, p. 110567, 2024, doi: 10.1016/j.compscitech.2024.110567.
-
Ü. Alver et al., “Ulexite/HDPE–Bi₂O₃/HDPE layered composites for neutron and gamma radiation shielding,” Applied Radiation and Isotopes, vol. 200, p. 110940, 2023, doi: 10.1016/j.apradiso.2023.110940.
-
N. I. Cherkashina et al., “Radiation-protective characteristics of polyethylene composites with B₄C and Bi₂O₃,” Nuclear Engineering and Design, vol. 432, p. 113732, 2025, doi: 10.1016/j.nucengdes.2024.113732.
-
Y. O. Chetverikov et al., “Boron-containing plastic composites as neutron shielding material for additive manufacturing,” Nucl. Instrum. Methods Phys. Res. A, vol. 1055, p. 168406, 2023, doi: 10.1016/j.nima.2023.168406.
-
J. Allison et al., “Recent developments in Geant4,” Nucl. Instrum. Methods Phys. Res. A, vol. 835, pp. 186–225, 2016, doi: 10.1016/j.nima.2016.06.125.
-
T. T. Böhlen et al., “The FLUKA code: Developments and challenges,” Nuclear Data Sheets, vol. 120, pp. 211–214, 2014, doi: 10.1016/j.nds.2014.07.049.
-
G. Battistoni et al., “Overview of the FLUKA code,” Annals of Nuclear Energy, vol. 82, pp. 10–18, 2015, doi: 10.1016/j.anucene.2014.11.007.
-
T. Sato et al., “Features of particle and heavy ion transport code system PHITS version 3.02,” J. Nucl. Sci. Technol., vol. 55, no. 6, pp. 684–690, 2018, doi: 10.1080/00223131.2017.1419890.
-
Y. Iwamoto et al., “Benchmark study of the recent version of the PHITS code,” J. Nucl. Sci. Technol., vol. 54, no. 5, pp. 617–635, 2017, doi: 10.1080/00223131.2017.1297742.
-
S. Agostinelli et al., “Geant4—a simulation toolkit,” Nucl. Instrum. Methods Phys. Res. A, vol. 506, no. 3, pp. 250–303, 2003, doi: 10.1016/S0168-9002(03)01368-8.
-
E. Şakar et al., “Phy-X/PSD: Development of a user friendly online software for radiation shielding and dosimetry,” Radiation Physics and Chemistry, vol. 166, p. 108496, 2020, doi: 10.1016/j.radphyschem.2019.108496.
-
H. Oğul, “Design and evaluation of multi-layer polybenzoxazine composites for enhanced gamma and neutron shielding,” Radiochimica Acta, 2025, doi: 10.1515/ract-2025-0067.
Çok Katmanlı HDPE Zırhlarında Radyasyon Zırhlaması ve Hasarının Monte Carlo Analizi
Year 2025,
Volume: 1 Issue: 2, 57 - 73, 30.12.2025
Batuhan Gültekin
,
Enes Öztürk
,
Tunahan Recep Torun
Abstract
Bu çalışmada, fonksiyonel derecelendirilmiş iki katmanlı bir HDPE kompozit kalkan tasarlanmış ve ikincil uzay radyasyonuna karşı etkinliği Monte Carlo simülasyonları ile değerlendirilmiştir. Nötron yutucu ön katman (6LiH/B2O3 katkılı) ile gama zayıflatıcı ikincil katmanı (BiTaO4 katkılı) birleştiren bu tasarım, tek katmanlı yapılara göre üstün performans göstermektedir. GEANT4 sonuçları, ön katmanın nötronları soğururken ürettiği ikincil gamaların, ikincil katman tarafından zayıflatıldığını ve epitermal enerji aralığında %85'e varan bir azalma sağlandığını göstermektedir. FLUKA analizleri, zırhlama ve dayanıklılık arasında bir ödünleşim olduğunu vurgulamıştır: (n,α) reaksiyonları nedeniyle ön katman, saf HDPE'ye kıyasla yoğun hasar (yaklaşık 1200 kat DPA ve 500 kat TID) görmüştür. Ancak bu hasarın ilk 0,5 cm ile sınırlı kalması, ikincil katmanın bütünlüğünü korumuş; böylece tasarımın hem radyasyonu hem de lokal malzeme bozunumunu başarıyla yönettiği gösterilmiştir.
References
-
D. O’Sullivan, “Exposure to galactic cosmic radiation and solar energetic particles,” Radiation Protection Dosimetry, vol. 125, no. 1–4, pp. 407–411, 2007, doi: 10.1093/rpd/ncm317.
-
T. W. Armstrong and B. L. Colborn, “Predictions of induced radioactivity for spacecraft in low Earth orbit,” Int. J. Radiat. Appl. Instrum. Part D: Nucl. Tracks Radiat. Meas., vol. 20, no. 1, pp. 101–130, 1992, doi: 10.1016/1359-0189(92)90089-E.
-
P. Spillantini et al., “Shielding from cosmic radiation for interplanetary missions: Active and passive methods,” Radiation Measurements, vol. 42, no. 1, pp. 14–23, 2007, doi: 10.1016/j.radmeas.2006.04.028.
-
L. W. Townsend, “Critical analysis of active shielding methods for space radiation protection,” in Proc. IEEE Aerospace Conf., Mar. 2005, pp. 724–730, doi: 10.1109/AERO.2005.1559364.
-
J. W. Wilson et al., “Issues in space radiation protection: Galactic cosmic rays,” Health Physics, vol. 68, no. 1, pp. 50–58, 1995, doi: 10.1097/00004032-199501000-00006.
-
J. M. DeWitt and E. R. Benton, “Shielding effectiveness: A weighted figure of merit for space radiation shielding,” Applied Radiation and Isotopes, vol. 161, p. 109141, 2020, doi: 10.1016/j.apradiso.2020.109141.
-
F. A. Cucinotta and M. Durante, “Cancer risk from exposure to galactic cosmic rays: Implications for space exploration by human beings,” The Lancet Oncology, vol. 7, no. 5, pp. 431–435, 2006, doi: 10.1016/S1470-2045(06)70695-7.
-
J. W. Wilson, Ed., Shielding Strategies for Human Space Exploration, NASA, vol. 3360, 1997.
-
M. Durante and F. A. Cucinotta, “Physical basis of radiation protection in space travel,” Rev. Mod. Phys., vol. 83, no. 4, pp. 1245–1281, 2011, doi: 10.1103/RevModPhys.83.1245.
-
F. Luoni et al., “Dose attenuation in innovative shielding materials for radiation protection in space: Measurements and simulations,” Radiation Research, vol. 198, no. 2, pp. 107–119, 2022, doi: 10.1667/RADE-22-00147.1.
-
M. Naito et al., “Investigation of shielding material properties for effective space radiation protection,” Life Sci. Space Res., vol. 26, pp. 69–76, 2020, doi: 10.1016/j.lssr.2020.05.001.
-
M. R. Shavers et al., “Implementation of ALARA radiation protection on the ISS through polyethylene shielding augmentation of the service module crew quarters,” Advances in Space Research, vol. 34, no. 6, pp. 1333–1337, 2004, doi: 10.1016/j.asr.2003.10.051.
-
A. Gohel, R. Makwana, and B. Soni, “Evaluating shielding materials for high energy space radiation,” in IOP Conf. Ser.: Mater. Sci. Eng., vol. 1221, no. 1, p. 012003, Mar. 2022, doi: 10.1088/1757-899X/1221/1/012003.
-
S. Guetersloh et al., “Polyethylene as a radiation shielding standard in simulated cosmic-ray environments,” Nucl. Instrum. Methods Phys. Res. B, vol. 252, no. 2, pp. 319–332, 2006, doi: 10.1016/j.nimb.2006.08.019.
-
J. W. Norbury et al., “Comparing HZETRN, SHIELD, FLUKA and GEANT transport codes,” Life Sci. Space Res., vol. 14, pp. 64–73, 2017, doi: 10.1016/j.lssr.2017.04.001.
-
R. C. McCall, “Shielding for thermal neutrons,” Medical Physics, vol. 24, no. 1, pp. 135–136, 1997, doi: 10.1118/1.597914.
-
S. Nambiar and J. T. Yeow, “Polymer-composite materials for radiation protection,” ACS Appl. Mater. Interfaces, vol. 4, no. 11, pp. 5717–5726, 2012, doi: 10.1021/am300783d.
-
V. Unagar et al., “Investigation of HDPE composites with B₄C and LiH fillers for space radiation shielding applications in LEO,” Advances in Space Research, 2025, doi: 10.1016/j.asr.2025.06.078.
-
C. Harrison et al., “Polyethylene/boron composites for radiation shielding applications,” in AIP Conf. Proc., vol. 969, no. 1, pp. 484–491, Jan. 2008, doi: 10.1063/1.2845006.
-
M. B. Chadwick et al., “ENDF/B-VII.1 nuclear data for science and technology,” Nuclear Data Sheets, vol. 112, no. 12, pp. 2887–2996, 2011, doi: 10.1016/j.nds.2011.11.002.
-
K. Saenboonruang et al., “Rare-earth oxides as alternative high-energy photon protective fillers in HDPE composites,” Polymers, vol. 13, no. 12, p. 1930, 2021, doi: 10.3390/polym13121930.
-
A. H. Abdalsalam et al., “Investigation of gamma ray attenuation features of bismuth oxide nanopowder reinforced HDPE composites,” Radiation Physics and Chemistry, vol. 168, p. 108537, 2020, doi: 10.1016/j.radphyschem.2019.108537.
-
Z. Huo et al., “Sm₂O₃ micron plates/B₄C/HDPE composites for neutron and gamma-ray shielding,” Compos. Sci. Technol., vol. 251, p. 110567, 2024, doi: 10.1016/j.compscitech.2024.110567.
-
Ü. Alver et al., “Ulexite/HDPE–Bi₂O₃/HDPE layered composites for neutron and gamma radiation shielding,” Applied Radiation and Isotopes, vol. 200, p. 110940, 2023, doi: 10.1016/j.apradiso.2023.110940.
-
N. I. Cherkashina et al., “Radiation-protective characteristics of polyethylene composites with B₄C and Bi₂O₃,” Nuclear Engineering and Design, vol. 432, p. 113732, 2025, doi: 10.1016/j.nucengdes.2024.113732.
-
Y. O. Chetverikov et al., “Boron-containing plastic composites as neutron shielding material for additive manufacturing,” Nucl. Instrum. Methods Phys. Res. A, vol. 1055, p. 168406, 2023, doi: 10.1016/j.nima.2023.168406.
-
J. Allison et al., “Recent developments in Geant4,” Nucl. Instrum. Methods Phys. Res. A, vol. 835, pp. 186–225, 2016, doi: 10.1016/j.nima.2016.06.125.
-
T. T. Böhlen et al., “The FLUKA code: Developments and challenges,” Nuclear Data Sheets, vol. 120, pp. 211–214, 2014, doi: 10.1016/j.nds.2014.07.049.
-
G. Battistoni et al., “Overview of the FLUKA code,” Annals of Nuclear Energy, vol. 82, pp. 10–18, 2015, doi: 10.1016/j.anucene.2014.11.007.
-
T. Sato et al., “Features of particle and heavy ion transport code system PHITS version 3.02,” J. Nucl. Sci. Technol., vol. 55, no. 6, pp. 684–690, 2018, doi: 10.1080/00223131.2017.1419890.
-
Y. Iwamoto et al., “Benchmark study of the recent version of the PHITS code,” J. Nucl. Sci. Technol., vol. 54, no. 5, pp. 617–635, 2017, doi: 10.1080/00223131.2017.1297742.
-
S. Agostinelli et al., “Geant4—a simulation toolkit,” Nucl. Instrum. Methods Phys. Res. A, vol. 506, no. 3, pp. 250–303, 2003, doi: 10.1016/S0168-9002(03)01368-8.
-
E. Şakar et al., “Phy-X/PSD: Development of a user friendly online software for radiation shielding and dosimetry,” Radiation Physics and Chemistry, vol. 166, p. 108496, 2020, doi: 10.1016/j.radphyschem.2019.108496.
-
H. Oğul, “Design and evaluation of multi-layer polybenzoxazine composites for enhanced gamma and neutron shielding,” Radiochimica Acta, 2025, doi: 10.1515/ract-2025-0067.