Research Article
BibTex RIS Cite

Uzaktan Algılama Verileri ile Uluslararası Suların İzlenmesi

Year 2020, Volume: 4 Issue: 1, 77 - 88, 30.06.2020
https://doi.org/10.32569/resilience.618176

Abstract

Su kaynaklarının pek çoğu iki ya da daha fazla ülke tarafından paylaşılmaktadır. Gelişmemiş ve gelişmekte olan bazı ülkeler için su yönetiminden kaynaklanan anlaşmazlıklar çok büyük sorunlar meydana getirebilir. Bundan dolayı, sınır aşan su kaynaklarının sürdürülebilirliğinin sağlanabilmesi için sürekli izlenmesi gerekmektedir.

Son yıllarda uzaktan algılama verileri ile su alanlarının izlenmesi başarılı bir şekilde yapılmaktadır. Bu çalışmada, Kuzey Makedonya ile Yunanistan arasında paylaşılan Dojran Gölünün otuz yıllık değişimleri uzaktan algılama teknikleri kullanılarak incelenmiştir. Landsat görüntülerinden elde edilen endeksler gölün izlenmesi için kullanılmıştır. Su seviyesi ölçüm istasyonundan elde edilen veriler ile karşılaştırıldığında, sonuçlar 0,79'dan yüksek determinasyon katsayısı göstermiştir. Çalışmanın sonucunda göl için en kritik yıl 2002 iken, 2017 yılında 1986 yılındaki su seviyesine ulaştığı görülmüştür.

Sürdürülebilirlik ve eşitlik içeren uzun vadeli su planlama ve yönetimine yönelik yeni yaklaşımlar, su hakkı konusundaki ihtilafların azaltılması ve özellikle paydaş olan ülkeleri de etkileyebilecek ekolojik ve çevresel felaketlerin önlenmesi için gereklidir.

Bu tür uluslararası sınır aşan su kütlelerinin ortak kullanımı, paydaş ülkeler için su kıtlığına ve ekolojik sorunlara direnç sağlayabilir. Bu nedenle, uzaktan algılama teknolojilerini kullanarak su kütlelerinin belirlenmesi ve gerekli ölçümlerin yapılması büyük önem taşımaktadır. Bu çalışma böyle bir değişimin yüksek doğrulukla belirlenebileceğinin önemli bir örneğidir.
Anahtar Kelimeler: Uzaktan Algılama, Su Alanı, Jeopolitik, Uluslararası İlişkiler.

References

  • Artis, D. A., & Carnahan, W. H. (1982). Survey of emissivity variability in thermography of urban areas. Remote Sensing of Environment, 12(4), 313-329.
  • Avdan, U., & Jovanovska, G. (2016). Algorithm for Automated Mapping of Land Surface Temperature Using LANDSAT 8 Satellite Data. Journal of Sensors. doi:Artn 148030710.1155/2016/1480307
  • Bogning, S., Frappart, F., Blarel, F., Niño, F., Mahé, G., Bricquet, J.-P., . . . Paiz, M.-C. (2018). Monitoring Water Levels and Discharges Using Radar Altimetry in an Ungauged River Basin: The Case of the Ogooué. Remote Sensing, 10(2), 350.
  • Bonacci, O., Popovska, C., & Geshovska, V. (2015). Analysis of transboundary Dojran Lake mean annual water level changes. Environmental Earth Sciences, 73(7), 3177-3185. doi:10.1007/s12665-014-3618-6
  • Dojran-info. http://www.dojran-info.com/.
  • Elkollaly, M., Khadr, M., & Zeidan, B. (2017). Drought analysis in the Eastern Nile basin using the standardized precipitation index. Environmental Science and Pollution Research, 1-15.
  • Gao, Z., Gao, W., & Chang, N.-B. (2011). Integrating temperature vegetation dryness index (TVDI) and regional water stress index (RWSI) for drought assessment with the aid of LANDSAT TM/ETM+ images. International Journal of Applied Earth Observation and Geoinformation, 13(3), 495-503.
  • Gleason, C. J., & Smith, L. C. (2014). Toward global mapping of river discharge using satellite images and at-many-stations hydraulic geometry. Proceedings of the National Academy of Sciences, 111(13), 4788-4791.
  • Gleason, C. J., Smith, L. C., & Lee, J. (2014). Retrieval of river discharge solely from satellite imagery and at‐many‐stations hydraulic geometry: Sensitivity to river form and optimization parameters. Water Resources Research, 50(12), 9604-9619.
  • Isaya Ndossi, M., & Avdan, U. (2016). Application of open source coding technologies in the production of land surface temperature (LST) maps from Landsat: A PYQGIS plugin. Remote Sensing, 8(5), 413.
  • Keshavarz, M. R., Vazifedoust, M., & Alizadeh, A. (2014). Drought monitoring using a Soil Wetness Deficit Index (SWDI) derived from MODIS satellite data. Agricultural Water Management, 132, 37-45. doi:10.1016/j.agwat.2013.10.004
  • Khadr, M. (2017). Temporal and spatial analysis of meteorological drought characteristics in the upper Blue Nile river region. Hydrology Research, 48(1), 265-276. Li, P., Jiang, L. G., & Feng, Z. M. (2014). Cross-Comparison of Vegetation Indices Derived from Landsat-7 Enhanced Thematic Mapper Plus ( ETM plus ) and Landsat-8 Operational Land Imager ( OLI) Sensors. Remote Sensing, 6(1), 310-329. doi:10.3390/rs6010310
  • Matlievska, M. ОСВРТ НА ПРОЕКТОТ “СПАС НА ДОЈРАНСКОТО ЕЗЕРО”.
  • McFeeters, S. K. (1996). The use of the normalized difference water index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, 17(7), 1425-1432.
  • Munyaneza, O., Wali, U. G., Uhlenbrook, S., Maskey, S., & Mlotha, M. J. (2009). Water level monitoring using radar remote sensing data: Application to Lake Kivu, central Africa. Physics and Chemistry of the Earth, Parts A/B/C, 34(13-16), 722-728.
  • Nakmuenwai, P., Yamazaki, F., & Liu, W. (2017). Automated Extraction of Inundated Areas from Multi-Temporal Dual-Polarization RADARSAT-2 Images of the 2011 Central Thailand Flood. Remote Sensing, 9(1), 78.
  • Nemani, R. R., & Running, S. W. (1989). Estimation of Regional Surface-Resistance to Evapotranspiration from Ndvi and Thermal-Ir Avhrr Data. Journal of Applied Meteorology, 28(4), 276-284. doi:Doi 10.1175/1520-0450(1989)028<0276:Eorsrt>2.0.Co;2
  • Omute, P., Corner, R., & Awange, J. L. (2012). The use of NDVI and its derivatives for monitoring Lake Victoria’s water level and drought conditions. Water resources management, 26(6), 1591-1613.
  • Orhan, O., Ekercin, S., & Dadaser-Celik, F. (2014). Use of Landsat Land Surface Temperature and Vegetation Indices for Monitoring Drought in the Salt Lake Basin Area, Turkey. Scientific World Journal. doi:Artn 14293910.1155/2014/142939
  • Sabins, F. F. (1997). Remote Sensing: Principles and Interpretation. 92, 754-754.
  • Sichangi, A. W., Wang, L., Yang, K., Chen, D., Wang, Z., Li, X., . . . Kuria, D. (2016). Estimating continental river basin discharges using multiple remote sensing data sets. Remote Sensing of Environment, 179, 36-53.
  • Sigdel, M., & Ikeda, M. (2010). Spatial and temporal analysis of drought in Nepal using standardized precipitation index and its relationship with climate indices. Journal of Hydrology and Meteorology, 7(1), 59-74.
  • Sobrino, J. A., & Raissouni, N. (2000). Toward remote sensing methods for land cover dynamic monitoring: application to Morocco. International Journal of Remote Sensing, 21(2), 353-366. doi:Doi 10.1080/014311600210876
  • USGS. https://www.usgs.gov/.
  • Ustin, S. L. (2004). Remote sensing of environment: State of the science and new directions. Remote Sensing of Natural Resources Management and Environmental Monitoring.
  • Zhang, X. S., Reed, J., Wagner, B., Francke, A., & Levkov, Z. (2014). Lateglacial and Holocene climate and environmental change in the northeastern Mediterranean region: diatom evidence from Lake Dojran (Republic of Macedonia/Greece). Quaternary Science Reviews, 103, 51-66. doi:10.1016/j.quascirev.2014.09.004

Monitoring Shared International Waters with Remote Sensing Data

Year 2020, Volume: 4 Issue: 1, 77 - 88, 30.06.2020
https://doi.org/10.32569/resilience.618176

Abstract

Many freshwater bodies are shared by two or more countries. Managing shared water can cause conflicts over freshwater rights and may become a brake on development for some struggling nations. Frequent water bodies monitoring is a crucial part of their sustainable management.

As remote sensing data can be useful in monitoring water bodies, in this study, three-decade changes of a shared lake between North Macedonia and Greece, Dojran Lake, have been investigated using remote sensing techniques. For that purpose, several indices retrieved from the Landsat have been used for monitoring the Lake. The results from the analyses have been compared with the data from a water level gauging station, and the results showed a strong coefficient of determination higher than 0.79. Results show that the most critical year for the Lake has been 2002 when it started recovering and by the year of 2017 has gained its water area as in 1986. New approaches to long‐term water planning and management that incorporate principles of sustainability and equity are required for lowering the conflicts over water rights, and especially to avoid ecological and environmental catastrophes that may affect both of the sharing countries.

The joint use of such international cross-border water bodies can create resilience to water scarcity or ecological problems for each country. Therefore, it is of great importance to determine these water bodies using remote sensing technologies and to take necessary measurements. This study is an example that such an event can be determined with high accuracy.

References

  • Artis, D. A., & Carnahan, W. H. (1982). Survey of emissivity variability in thermography of urban areas. Remote Sensing of Environment, 12(4), 313-329.
  • Avdan, U., & Jovanovska, G. (2016). Algorithm for Automated Mapping of Land Surface Temperature Using LANDSAT 8 Satellite Data. Journal of Sensors. doi:Artn 148030710.1155/2016/1480307
  • Bogning, S., Frappart, F., Blarel, F., Niño, F., Mahé, G., Bricquet, J.-P., . . . Paiz, M.-C. (2018). Monitoring Water Levels and Discharges Using Radar Altimetry in an Ungauged River Basin: The Case of the Ogooué. Remote Sensing, 10(2), 350.
  • Bonacci, O., Popovska, C., & Geshovska, V. (2015). Analysis of transboundary Dojran Lake mean annual water level changes. Environmental Earth Sciences, 73(7), 3177-3185. doi:10.1007/s12665-014-3618-6
  • Dojran-info. http://www.dojran-info.com/.
  • Elkollaly, M., Khadr, M., & Zeidan, B. (2017). Drought analysis in the Eastern Nile basin using the standardized precipitation index. Environmental Science and Pollution Research, 1-15.
  • Gao, Z., Gao, W., & Chang, N.-B. (2011). Integrating temperature vegetation dryness index (TVDI) and regional water stress index (RWSI) for drought assessment with the aid of LANDSAT TM/ETM+ images. International Journal of Applied Earth Observation and Geoinformation, 13(3), 495-503.
  • Gleason, C. J., & Smith, L. C. (2014). Toward global mapping of river discharge using satellite images and at-many-stations hydraulic geometry. Proceedings of the National Academy of Sciences, 111(13), 4788-4791.
  • Gleason, C. J., Smith, L. C., & Lee, J. (2014). Retrieval of river discharge solely from satellite imagery and at‐many‐stations hydraulic geometry: Sensitivity to river form and optimization parameters. Water Resources Research, 50(12), 9604-9619.
  • Isaya Ndossi, M., & Avdan, U. (2016). Application of open source coding technologies in the production of land surface temperature (LST) maps from Landsat: A PYQGIS plugin. Remote Sensing, 8(5), 413.
  • Keshavarz, M. R., Vazifedoust, M., & Alizadeh, A. (2014). Drought monitoring using a Soil Wetness Deficit Index (SWDI) derived from MODIS satellite data. Agricultural Water Management, 132, 37-45. doi:10.1016/j.agwat.2013.10.004
  • Khadr, M. (2017). Temporal and spatial analysis of meteorological drought characteristics in the upper Blue Nile river region. Hydrology Research, 48(1), 265-276. Li, P., Jiang, L. G., & Feng, Z. M. (2014). Cross-Comparison of Vegetation Indices Derived from Landsat-7 Enhanced Thematic Mapper Plus ( ETM plus ) and Landsat-8 Operational Land Imager ( OLI) Sensors. Remote Sensing, 6(1), 310-329. doi:10.3390/rs6010310
  • Matlievska, M. ОСВРТ НА ПРОЕКТОТ “СПАС НА ДОЈРАНСКОТО ЕЗЕРО”.
  • McFeeters, S. K. (1996). The use of the normalized difference water index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, 17(7), 1425-1432.
  • Munyaneza, O., Wali, U. G., Uhlenbrook, S., Maskey, S., & Mlotha, M. J. (2009). Water level monitoring using radar remote sensing data: Application to Lake Kivu, central Africa. Physics and Chemistry of the Earth, Parts A/B/C, 34(13-16), 722-728.
  • Nakmuenwai, P., Yamazaki, F., & Liu, W. (2017). Automated Extraction of Inundated Areas from Multi-Temporal Dual-Polarization RADARSAT-2 Images of the 2011 Central Thailand Flood. Remote Sensing, 9(1), 78.
  • Nemani, R. R., & Running, S. W. (1989). Estimation of Regional Surface-Resistance to Evapotranspiration from Ndvi and Thermal-Ir Avhrr Data. Journal of Applied Meteorology, 28(4), 276-284. doi:Doi 10.1175/1520-0450(1989)028<0276:Eorsrt>2.0.Co;2
  • Omute, P., Corner, R., & Awange, J. L. (2012). The use of NDVI and its derivatives for monitoring Lake Victoria’s water level and drought conditions. Water resources management, 26(6), 1591-1613.
  • Orhan, O., Ekercin, S., & Dadaser-Celik, F. (2014). Use of Landsat Land Surface Temperature and Vegetation Indices for Monitoring Drought in the Salt Lake Basin Area, Turkey. Scientific World Journal. doi:Artn 14293910.1155/2014/142939
  • Sabins, F. F. (1997). Remote Sensing: Principles and Interpretation. 92, 754-754.
  • Sichangi, A. W., Wang, L., Yang, K., Chen, D., Wang, Z., Li, X., . . . Kuria, D. (2016). Estimating continental river basin discharges using multiple remote sensing data sets. Remote Sensing of Environment, 179, 36-53.
  • Sigdel, M., & Ikeda, M. (2010). Spatial and temporal analysis of drought in Nepal using standardized precipitation index and its relationship with climate indices. Journal of Hydrology and Meteorology, 7(1), 59-74.
  • Sobrino, J. A., & Raissouni, N. (2000). Toward remote sensing methods for land cover dynamic monitoring: application to Morocco. International Journal of Remote Sensing, 21(2), 353-366. doi:Doi 10.1080/014311600210876
  • USGS. https://www.usgs.gov/.
  • Ustin, S. L. (2004). Remote sensing of environment: State of the science and new directions. Remote Sensing of Natural Resources Management and Environmental Monitoring.
  • Zhang, X. S., Reed, J., Wagner, B., Francke, A., & Levkov, Z. (2014). Lateglacial and Holocene climate and environmental change in the northeastern Mediterranean region: diatom evidence from Lake Dojran (Republic of Macedonia/Greece). Quaternary Science Reviews, 103, 51-66. doi:10.1016/j.quascirev.2014.09.004
There are 26 citations in total.

Details

Primary Language English
Subjects Environmental Engineering
Journal Section Articles
Authors

Gordana Kaplan 0000-0001-7522-9924

Zehra Avdan 0000-0001-7445-3393

Ugur Avdan 0000-0001-7873-9874

Tatjana Jovanovska This is me 0000-0002-3685-2251

Publication Date June 30, 2020
Acceptance Date May 29, 2020
Published in Issue Year 2020 Volume: 4 Issue: 1

Cite

APA Kaplan, G., Avdan, Z., Avdan, U., Jovanovska, T. (2020). Monitoring Shared International Waters with Remote Sensing Data. Resilience, 4(1), 77-88. https://doi.org/10.32569/resilience.618176