Research Article
BibTex RIS Cite

Evaluation of Sea Level Change in Antalya Station II

Year 2021, Volume: 5 Issue: 2, 281 - 294, 31.12.2021
https://doi.org/10.32569/resilience.1018340

Abstract

Antalya, Turkey, coasts are very sensitive to external dynamics so there is a need to explain the sea level change process on the shores of Antalya more closely. In line with this purpose, the sea level change on the Antalya coast has been examined and evaluated monthly and annually with a statistical and analytical approach in this study. Accordingly, the correlations of some indexes such as Southern Oscillation (SOI), Arctic Oscillation (AO), Antarctic Oscillation (AAO), North Atlantic Oscillation (NAO), El Nino Southern Oscillation (NINO 3.4), and the parameters of arctic ice melt, Antalya air temperature, global air temperature, global ocean temperature, Mediterranean Sea surface temperature (SST) with the sea level change at Antalya Station II were examined to clarify the problem. The correlation study with the indexes revealed that there is no significant relationship between the indexes and the sea level change at Antalya Station II. Among the studied variables, the arctic ice melt, and the Antalya air temperature have relatively high correlation coefficients of 0.6959 and 0.6412 respectively in the monthly analysis. The Mediterranean SST seems to have the highest correlation with the sea level change with a correlation value of 0.93 in the annual analysis. Accordingly, analytical research was carried out to examine the correlation of the change of the sea level with the parameters that are thought to be the cause. Three effective parameters are identified and examined as the cause of sea level change observed at Antalya Station II, which are Mediterranean Sea temperature, ice melt, and other factors such as erosion. The result of this analytical study shows that the contribution to sea level change at Antalya Station II is mostly related to the temperature increase with a contribution of 82%, to ice melt with a contribution of 14%, and the other factors such as erosion with a contribution of 4%.

Supporting Institution

-

Project Number

-

Thanks

-

References

  • Adloff, F., Jorda, G., Somot, S., Sevault, F., Arsouze, T., Meyssignac, B., Li, L., & Planton, S. (2018). Improving sea level simulation in Mediterranean regional climate models. Climate Dynamics, 51, 1167–1178.
  • Alpar, B. (2009). Vulnerability of Turkish coasts to accelerated sea-level rise. Geomorphology, 107(1–2), 58–63. https://doi.org/10.1016/j.geomorph.2007.05.021
  • Anzidei, M., Antonioli, F., Benini, A., Lambeck, K., Sivan, D., Serpelloni, E., & Stocchi, P. (2011). Sea level change and vertical land movements since the last two millennia along the coasts of southwestern Turkey and Israel. Quaternary International, 232, 13–20.
  • Baart et al. (2012). Trends in Sea-Level Trend Analysis. Journal of Coastal Research, 28(2), 311–315.
  • Barragán, J. M., & de Andrés, M. (2015). Analysis and trends of the world’s coastal cities and agglomerations. Ocean and Coastal Management, 114, 11–20. https://doi.org/10.1016/j.ocecoaman.2015.06.004
  • Cazenave, A., & Nerem, R. S. (2004). Present-day sea level change: Observations and causes. Reviews of Geophysics, 42(3), 1–20. https://doi.org/10.1029/2003RG000139
  • Church, J. A., Gregory, J. M., Huybrechts, P., Kuhn, M., Lambeck, K., Nhuan, M. T., Qin, D., & Woodworth, P. L. (2001). Changes in Sea Level. In Climate Change 2001 (pp. 641–684). https://doi.org/10.1007/978-3-642-69317-5_7
  • Dangendorf, S., Marcos, M., Wöppelmann, G., Conrad, C. P., Frederikse, T., & Riva, R. (2017). Reassessment of 20th century global mean sea level rise. Proceedings of the National Academy of Sciences of the United States of America, 114(23), 5946–5951. https://doi.org/10.1073/pnas.1616007114
  • Demirkesen, A. C., Evrendilek, F., & Berberoglu, S. (2008). Quantifying coastal inundation vulnerability of Turkey to sea-level rise. Environmental Monitoring and Assessment, 138(1–3), 101–106. https://doi.org/10.1007/s10661-007-9746-7
  • Dipova, N. (2019). Boğaçay (Antalya) Rekreasyon Alanı Çalışmalarının Konyaaltı Sahiline Etkileri. Uluslararası Mühendislik Tasarım ve Teknoloji Dergisi, 1(2), 71–76.
  • Enríquez, A. R., Marcos, M., Álvarez-Ellacuría, A., Orfila, A., Gomis, D., Simav, M., Yildiz, H., Türkezer, A., Lenk, O., & Özsoy, E. (2017). Changes in beach shoreline due to sea level rise and waves underclimate change scenarios: application to the Balearic Islands (western Mediterranean). Natural Hazards and Earth System Sciences, 17, 1075–1089. https://doi.org/10.1007/s11200-010-0067-x
  • Forsberg, R., Sørensen, L., & Simonsen, S. (2017). Greenland and Antarctica Ice Sheet Mass Changes and Effects on Global Sea Level. Surveys in Geophysics, 38(1), 89–104. https://doi.org/10.1007/s10712-016-9398-7
  • Frederikse, T., Landerer, F., Caron, L., Adhikari, S., Parkes, D., Humprey, V. W., Dangendorf, S., Hogarth, P., Laure, Z., Cheng, L., & Wu, Y.-H. (2020). The causes of sea-level rise since 1900. Nature, 584, 393–397.
  • Gomis, D., Tsimplis, M., Marcos, M., Fenoglio-Marc, L., Perez, B., Raicich, F., Vilibic, I., Wöppelmann, G., & Monserrat, S. (2012). Mediterranean Sea Level Variability and trends. In The Climate of the Mediterranean Region (pp. 257–299).
  • Gong, D., & Wang, S. (1999). Definition of Antarctic oscillation index. Geophysical Research Letters, 26(4), 459–462. https://doi.org/10.1029/1999GL900003
  • Gregory, J. M., & Lowc, J. A. (2000). Predictions of global and regional sea-level rise using AOGCMs with and without flux adjustment. Geophysical Research Letters, 27(19), 3069–3072.
  • Hinkel, J., Nicholls, R. J., Tol, R. S. J., Wang, Z. B., Hamilton, J. M., Boot, G., Vafeidis, A. T., McFadden, L., Ganopolski, A., & Klein, R. J. T. (2013). A global analysis of erosion of sandy beaches and sea-level rise: An application of DIVA. Global and Planetary Change, 111, 150–158. https://doi.org/10.1016/j.gloplacha.2013.09.002
  • Koşun, E., Varol, B., & Taşkıran, H. (2019). The Antalya Tufas: Landscapes, Morphologies, Age, Formation Processes and Early Human Activities. World Geomorphological Landscapes, 207–218. https://doi.org/10.1007/978-3-030-03515-0_7
  • Leventeli, Y. (2011). Potential Human Impact on Coastal Area, Antayla - Turkey. Journal of Coastal Research, 61, 403–407.
  • Lichter, M., Zviely, D., Klein, M., & Sivan, D. (2010). Sea-Level Changes in the Mediterranean: Past, Present and Future - A Review.
  • Mahdi, H., & Hebib, T. (2020). Mediterranean Sea level trends from long-period tide gauge time series. Acta Oceanologica Sinica, 39(1), 157–165. https://doi.org/10.1007/s13131-020-1532-1
  • Neumann, B., Vafeidis, A. T., Zimmermann, J., & Nicholls, R. J. (2015). Future coastal population growth and exposure to sea-level rise and coastal flooding - A global assessment. PLoS ONE, 10(3). https://doi.org/10.1371/journal.pone.0118571
  • Ozturk, U., Marwan, N., Specht, S., Korup, O., & Jensen, J. (2018). A New Centennial Sea-Level Record for Antalya, Eastern Mediterranean. Journal of Geophysical Research: Oceans.
  • Pethick, J. (2001). Coastal management and sea-level rise. Catena, 42(2–4), 307–322. https://doi.org/10.1016/S0341-8162(00)00143-0
  • Şen, Ö. L., Göktürk, O. M., & Bozkurt, D. (2015). Changing climate : a great challenge for Turkey. J. Black Sea/Mediterranean Environment, 103(special issue), 97–103.
  • Sezen, E., & Baybura, T. (2010). The investigation of long-term sea level variations at Antalya-I (1935-1977) and Antalya-II (1985-2005) Tide Gauge Stations (Turkey). Sci. Res. Essays, 5(10), 1100–1110.
  • Shukla, J. B., Verma, M., & Misra, A. K. (2017). Effect of global warming on sea level rise: A modeling study. Ecological Complexity, 32, 99–110.
  • Simav, M., Yildiz, H., Türkezer, A., Lenk, O., & Özsoy, E. (2012). Sea level variability at Antalya and Menteş tide gauges in Turkey: Atmospheric, steric and land motion contributions. Studia Geophysica et Geodaetica, 56(1), 215–230. https://doi.org/10.1007/s11200-010-0067-x
  • Thompson, D. W. J., & Wallace, J. M. (1998). The Arctic oscillation signature in the wintertime geopotential height and temperature fields. Geophysical Research Letters, 25(9), 1297–1300. https://doi.org/10.1029/98GL00950
  • Trenberth, K. E., & Stepaniak, D. P. (2001). Indices of El Nino Evolution. Journal of Climate, 14(8), 1697–1701.
  • Troup, A. J. (1965). The “southern oscillation.” Quarterly Journal of the Royal Meteorological Sociecty, 91(390), 490–506.
  • Vecchio, A., Anzidei, M., Serpelloni, E., & Florindo, F. (2019). Natural Variability and Vertical Land Motion Contributions in the Mediterranean Sea-Level Records over the Last Two Centuries and Projections for 2100. Water, 11(7).
  • Visser, H., Dangendorf, S., & Petersen, A. C. (2015). A review of trend models applied to sea level data with reference to the ‘‘acceleration-deceleration debate. Journal of Geophysical Research: Oceans, 120, 3873–3895.
  • Volkov, D. L., Baringer, M., Smeed, D., Johns, W., & Landerer, F. W. (2019). Teleconnection between the Atlantic Meridional Overturning Circulation and Sea. Journal of Climate, 32(3).
  • Wanner, H., Brönnimann, S., Casty, C., Gyalistras, D., Luterbacher, J., Schmutz, C., Stephenson, D. B., & Xoplaki, E. (2001). North Atlantic Oscillation- Concept and an Application. Surveys in Geophysics, 22(4), 321–381. https://journals.ametsoc.org/view/journals/bams/68/10/1520-0477_1987_068_1218_naocaa_2_0_co_2.xml
  • Yılmaz, N. (2019). Trend analysis of sea level changes using IBM SPSS software Nazan. Australian Journal of Maritime & Ocean Affairs, 11(4), 201–217.

Antalya İstasyonu II Deniz Seviyesi Değişiminin Değerlendirilmesi

Year 2021, Volume: 5 Issue: 2, 281 - 294, 31.12.2021
https://doi.org/10.32569/resilience.1018340

Abstract

Antalya, Türkiye kıyıları dış dinamiklere çok duyarlı olduğundan dolayı Antalya kıyılarındaki deniz seviyesi değişim sürecini daha yakından açıklamaya ihtiyaç vardır. Bu amaç doğrultusunda bu çalışmada Antalya kıyılarındaki deniz seviyesi değişimi istatistiksel ve analitik bir yaklaşımla aylık ve yıllık olarak incelenmiş ve değerlendirilmiştir. Buna göre Güney Salınımı (SOI), Arktik Salınımı (AO), Antarktika Salınımı (AAO), Kuzey Atlantik Salınımı (NAO), El Nino Güney Salınımı (NINO 3.4) gibi bazı endekslerin korelasyonları ve arktik buz erimesi, Antalya hava sıcaklığı, küresel hava sıcaklığı, küresel okyanus sıcaklığı, Akdeniz denizi yüzey sıcaklığı (SST) gibi parametreler Antalya İstasyonu II’nin deniz seviyesi değişimi sorununa açıklık getirmek amacıyla incelenmiştir. Endekslerle yapılan korelasyon çalışması, Antalya İstasyonu II’deki deniz seviyesi değişimi ile endeksler arasında anlamlı bir ilişki olmadığını ortaya koymuştur. Çalışılan değişkenlerden arktik buzullarının erimesi ve Antalya hava sıcaklığı aylık bazda yapılan çalışmada sırasıyla 0.6959 ve 0.6412 korelasyon değerleri gibi nispeten yüksek korelasyon değerlerine sahiptir. Akdeniz denizi yüzey sıcaklığı yıllık bazda yapılan çalışmada ise 0.93 korelasyon değeri ile deniz seviyesi değişimi ile en yüksek korelasyona sahip görünmektedir. Ek olarak ve korelasyon çalışmasının da katkısıyla, deniz seviyesindeki değişimin neden olduğu düşünülen parametrelerle ilişkisini incelemek için analitik bir çalışma yapılmıştır. Antalya İstasyonu II’de gözlenen deniz seviyesi değişiminin nedeni olarak Akdeniz denizi sıcaklığı, buzulların erimesi ve erozyon gibi diğer faktörler olmak üzere üç etkili parametre belirlenmiş ve incelenmiştir. Bu analitik çalışma, Antalya İstasyonu II’de deniz seviyesinin değişimine katkının en çok %82 ile deniz sıcaklığı artışı, %14 ile buzulların erimesi ve %4 ile erozyon gibi diğer faktörlerle ilişkili olduğunu göstermiştir.

Project Number

-

References

  • Adloff, F., Jorda, G., Somot, S., Sevault, F., Arsouze, T., Meyssignac, B., Li, L., & Planton, S. (2018). Improving sea level simulation in Mediterranean regional climate models. Climate Dynamics, 51, 1167–1178.
  • Alpar, B. (2009). Vulnerability of Turkish coasts to accelerated sea-level rise. Geomorphology, 107(1–2), 58–63. https://doi.org/10.1016/j.geomorph.2007.05.021
  • Anzidei, M., Antonioli, F., Benini, A., Lambeck, K., Sivan, D., Serpelloni, E., & Stocchi, P. (2011). Sea level change and vertical land movements since the last two millennia along the coasts of southwestern Turkey and Israel. Quaternary International, 232, 13–20.
  • Baart et al. (2012). Trends in Sea-Level Trend Analysis. Journal of Coastal Research, 28(2), 311–315.
  • Barragán, J. M., & de Andrés, M. (2015). Analysis and trends of the world’s coastal cities and agglomerations. Ocean and Coastal Management, 114, 11–20. https://doi.org/10.1016/j.ocecoaman.2015.06.004
  • Cazenave, A., & Nerem, R. S. (2004). Present-day sea level change: Observations and causes. Reviews of Geophysics, 42(3), 1–20. https://doi.org/10.1029/2003RG000139
  • Church, J. A., Gregory, J. M., Huybrechts, P., Kuhn, M., Lambeck, K., Nhuan, M. T., Qin, D., & Woodworth, P. L. (2001). Changes in Sea Level. In Climate Change 2001 (pp. 641–684). https://doi.org/10.1007/978-3-642-69317-5_7
  • Dangendorf, S., Marcos, M., Wöppelmann, G., Conrad, C. P., Frederikse, T., & Riva, R. (2017). Reassessment of 20th century global mean sea level rise. Proceedings of the National Academy of Sciences of the United States of America, 114(23), 5946–5951. https://doi.org/10.1073/pnas.1616007114
  • Demirkesen, A. C., Evrendilek, F., & Berberoglu, S. (2008). Quantifying coastal inundation vulnerability of Turkey to sea-level rise. Environmental Monitoring and Assessment, 138(1–3), 101–106. https://doi.org/10.1007/s10661-007-9746-7
  • Dipova, N. (2019). Boğaçay (Antalya) Rekreasyon Alanı Çalışmalarının Konyaaltı Sahiline Etkileri. Uluslararası Mühendislik Tasarım ve Teknoloji Dergisi, 1(2), 71–76.
  • Enríquez, A. R., Marcos, M., Álvarez-Ellacuría, A., Orfila, A., Gomis, D., Simav, M., Yildiz, H., Türkezer, A., Lenk, O., & Özsoy, E. (2017). Changes in beach shoreline due to sea level rise and waves underclimate change scenarios: application to the Balearic Islands (western Mediterranean). Natural Hazards and Earth System Sciences, 17, 1075–1089. https://doi.org/10.1007/s11200-010-0067-x
  • Forsberg, R., Sørensen, L., & Simonsen, S. (2017). Greenland and Antarctica Ice Sheet Mass Changes and Effects on Global Sea Level. Surveys in Geophysics, 38(1), 89–104. https://doi.org/10.1007/s10712-016-9398-7
  • Frederikse, T., Landerer, F., Caron, L., Adhikari, S., Parkes, D., Humprey, V. W., Dangendorf, S., Hogarth, P., Laure, Z., Cheng, L., & Wu, Y.-H. (2020). The causes of sea-level rise since 1900. Nature, 584, 393–397.
  • Gomis, D., Tsimplis, M., Marcos, M., Fenoglio-Marc, L., Perez, B., Raicich, F., Vilibic, I., Wöppelmann, G., & Monserrat, S. (2012). Mediterranean Sea Level Variability and trends. In The Climate of the Mediterranean Region (pp. 257–299).
  • Gong, D., & Wang, S. (1999). Definition of Antarctic oscillation index. Geophysical Research Letters, 26(4), 459–462. https://doi.org/10.1029/1999GL900003
  • Gregory, J. M., & Lowc, J. A. (2000). Predictions of global and regional sea-level rise using AOGCMs with and without flux adjustment. Geophysical Research Letters, 27(19), 3069–3072.
  • Hinkel, J., Nicholls, R. J., Tol, R. S. J., Wang, Z. B., Hamilton, J. M., Boot, G., Vafeidis, A. T., McFadden, L., Ganopolski, A., & Klein, R. J. T. (2013). A global analysis of erosion of sandy beaches and sea-level rise: An application of DIVA. Global and Planetary Change, 111, 150–158. https://doi.org/10.1016/j.gloplacha.2013.09.002
  • Koşun, E., Varol, B., & Taşkıran, H. (2019). The Antalya Tufas: Landscapes, Morphologies, Age, Formation Processes and Early Human Activities. World Geomorphological Landscapes, 207–218. https://doi.org/10.1007/978-3-030-03515-0_7
  • Leventeli, Y. (2011). Potential Human Impact on Coastal Area, Antayla - Turkey. Journal of Coastal Research, 61, 403–407.
  • Lichter, M., Zviely, D., Klein, M., & Sivan, D. (2010). Sea-Level Changes in the Mediterranean: Past, Present and Future - A Review.
  • Mahdi, H., & Hebib, T. (2020). Mediterranean Sea level trends from long-period tide gauge time series. Acta Oceanologica Sinica, 39(1), 157–165. https://doi.org/10.1007/s13131-020-1532-1
  • Neumann, B., Vafeidis, A. T., Zimmermann, J., & Nicholls, R. J. (2015). Future coastal population growth and exposure to sea-level rise and coastal flooding - A global assessment. PLoS ONE, 10(3). https://doi.org/10.1371/journal.pone.0118571
  • Ozturk, U., Marwan, N., Specht, S., Korup, O., & Jensen, J. (2018). A New Centennial Sea-Level Record for Antalya, Eastern Mediterranean. Journal of Geophysical Research: Oceans.
  • Pethick, J. (2001). Coastal management and sea-level rise. Catena, 42(2–4), 307–322. https://doi.org/10.1016/S0341-8162(00)00143-0
  • Şen, Ö. L., Göktürk, O. M., & Bozkurt, D. (2015). Changing climate : a great challenge for Turkey. J. Black Sea/Mediterranean Environment, 103(special issue), 97–103.
  • Sezen, E., & Baybura, T. (2010). The investigation of long-term sea level variations at Antalya-I (1935-1977) and Antalya-II (1985-2005) Tide Gauge Stations (Turkey). Sci. Res. Essays, 5(10), 1100–1110.
  • Shukla, J. B., Verma, M., & Misra, A. K. (2017). Effect of global warming on sea level rise: A modeling study. Ecological Complexity, 32, 99–110.
  • Simav, M., Yildiz, H., Türkezer, A., Lenk, O., & Özsoy, E. (2012). Sea level variability at Antalya and Menteş tide gauges in Turkey: Atmospheric, steric and land motion contributions. Studia Geophysica et Geodaetica, 56(1), 215–230. https://doi.org/10.1007/s11200-010-0067-x
  • Thompson, D. W. J., & Wallace, J. M. (1998). The Arctic oscillation signature in the wintertime geopotential height and temperature fields. Geophysical Research Letters, 25(9), 1297–1300. https://doi.org/10.1029/98GL00950
  • Trenberth, K. E., & Stepaniak, D. P. (2001). Indices of El Nino Evolution. Journal of Climate, 14(8), 1697–1701.
  • Troup, A. J. (1965). The “southern oscillation.” Quarterly Journal of the Royal Meteorological Sociecty, 91(390), 490–506.
  • Vecchio, A., Anzidei, M., Serpelloni, E., & Florindo, F. (2019). Natural Variability and Vertical Land Motion Contributions in the Mediterranean Sea-Level Records over the Last Two Centuries and Projections for 2100. Water, 11(7).
  • Visser, H., Dangendorf, S., & Petersen, A. C. (2015). A review of trend models applied to sea level data with reference to the ‘‘acceleration-deceleration debate. Journal of Geophysical Research: Oceans, 120, 3873–3895.
  • Volkov, D. L., Baringer, M., Smeed, D., Johns, W., & Landerer, F. W. (2019). Teleconnection between the Atlantic Meridional Overturning Circulation and Sea. Journal of Climate, 32(3).
  • Wanner, H., Brönnimann, S., Casty, C., Gyalistras, D., Luterbacher, J., Schmutz, C., Stephenson, D. B., & Xoplaki, E. (2001). North Atlantic Oscillation- Concept and an Application. Surveys in Geophysics, 22(4), 321–381. https://journals.ametsoc.org/view/journals/bams/68/10/1520-0477_1987_068_1218_naocaa_2_0_co_2.xml
  • Yılmaz, N. (2019). Trend analysis of sea level changes using IBM SPSS software Nazan. Australian Journal of Maritime & Ocean Affairs, 11(4), 201–217.
There are 36 citations in total.

Details

Primary Language English
Subjects Civil Engineering
Journal Section Articles
Authors

Halid Akdemir 0000-0002-8504-1850

Project Number -
Publication Date December 31, 2021
Acceptance Date December 28, 2021
Published in Issue Year 2021 Volume: 5 Issue: 2

Cite

APA Akdemir, H. (2021). Evaluation of Sea Level Change in Antalya Station II. Resilience, 5(2), 281-294. https://doi.org/10.32569/resilience.1018340