Research Article
BibTex RIS Cite

Bleve Temelli Kaza Etkilerinin Değerlendirilmesi

Year 2021, Volume: 5 Issue: 2, 143 - 157, 31.12.2021
https://doi.org/10.32569/resilience.900754

Abstract

BLEVE; aşırı ısıtılmış bir sıvının atmosferinde basınç altında ani salınım olarak bilinir. Bu ani salınımların nedeni, tankın etrafındaki yangınlar, korozyon, tankın içinde aşırı ısınma nedeniyle oluşmaktadır. Yangın vs. olay bir kabı veya tankı etkiliyorsa, kabın sıvılaştırılmış gazında yüksek basınç olan bazı değişiklikler gözlenir. Bu araştırmada BLEVE olaylarına odaklanılmıştır. Bu tür olayların insanlar ve çevre üzerinde belirli bir olumsuz etkisi vardır. Bu sonuçlar, damarların parçalanması, alev oluşumu, aşırı basınç ve termal radyasyon etkileridir. Bu çalışmada, aşırı basınç, ateş topu gibi BLEVE sonucunda ortaya çıkabilecek etkileri analiz edilmiş ve insanlar ile çevre üzerindeki etkisi değerlendirilmiştir. Patlama / yangın kaynağından uzaklaştıkça yanıkların yoğunluğunun azaldığı tahmin edilmektedir.

References

  • Sellami, I., Manescau, B., Chetehouna, K., de Izarra, C., Nait-Said, R., & Zidani, F. (2018). BLEVE fireball modeling using Fire Dynamics Simulator (FDS) in an Algerian gas industry. Journal of Loss Prevention in the Process Industries, 54, 69-84.
  • Ahlert, R. C. (2000). Guidelines for consequence analysis of chemical releases. Center for Chemical Process Safety, American Institute of Chemical Engineers (AIChE), New York, NY,(1999,) 320 Pages,[ISBN No.: 0‐8169‐0786‐2], US. List Price: $129.00. Environmental Progress, 19(3), F6-F6.
  • Lees, F. (2012). Lees' Loss prevention in the process industries: Hazard identification, assessment and control. Butterworth-Heinemann.
  • Khan, F. I., & Abbasi, S. A. (1998). Techniques and methodologies for risk analysis in chemical process industries. Journal of loss Prevention in the Process Industries, 11(4), 261-277.
  • Planas-Cuchi, E., Salla, J. M., & Casal, J. (2004). Calculating overpressure from BLEVE explosions. Journal of Loss Prevention in the Process Industries, 17(6), 431-436.
  • Birk, A. M., & Cunningham, M. H. (1994). The boiling liquid expanding vapour explosion. Journal of loss prevention in the process industries, 7(6), 474-480.
  • Zhang, Q. X., & Liang, D. (2013). Thermal radiation and impact assessment of the LNG BLEVE fireball. Procedia Engineering, 52, 602-606.
  • Bubbico, R., & Marchini, M. (2008). Assessment of an explosive LPG release accident: A case study. Journal of Hazardous Materials, 155(3), 558-565.
  • Hemmatian, B., Planas, E., & Casal, J. (2015). Fire as a primary event of accident domino sequences: the case of BLEVE. Reliability Engineering & System Safety, 139, 141-148.
  • Bonilla, J. M., Àgueda, A., Muñoz, M. A., Vílchez, J. A., & Planas, E. (2019). Thermal radiation model for dynamic fireballs with shadowing. Process Safety and Environmental Protection, 128, 372-384.
  • Abbasi, T., & Abbasi, S. A. (2007). The boiling liquid expanding vapour explosion (BLEVE): Mechanism, consequence assessment, management. Journal of Hazardous Materials, 141(3), 489-519.
  • Mahgerefteh, H., & Atti, O. (2006, April). An analysis of the gas pipeline explosion at Ghislenghien, Belgium. In 2006 Spring Meeting and 2nd Global Congress on Process Safety.
  • CSB. Mart 20, 2007, Investigation Report: Refinery Explosion and Fire, Report no: 2005-04-I-TX, https://www.csb.gov/bp-america-refinery-explosion/Yayın tarihi Mart 20, 2007. Erişim tarihi Mayıs 17, 2020.
  • Salamonowicz, Z., & Majder-Łopatka, M. (2013). Emergency scenarios during accidents involving LPG. BLEVE explosion mechanism. Bezpieczeństwo i Technika Pożarnicza.
  • Krausmann, E., & Cruz, A. M. (2013). Impact of the 11 March 2011, Great East Japan earthquake and tsunami on the chemical industry. Natural Hazards, 67(2), 811-828.
  • CSB. Temmuz 17, 2007. Barton Solvents Static Spark Ignites Explosion inside Flammable Liquid Storage Tank. Case study no 2007-06-I-KS https://www.csb.gov/barton-solvents-explosions-and-fire/Yayın tarihi Haziran 26, 2007. Erişim tarihi Mayıs 17, 2020.
  • Al-Shanini, A., Ahmad, A., & Khan, F. (2014). Accident modelling and analysis in process industries. Journal of Loss Prevention in the Process Industries, 32, 319-334.
  • Roberts, A. F. (1981). Thermal radiation hazards from releases of LPG from pressurised storage. Fire Safety Journal, 4(3), 197-212.
  • Crocker, W. P., & Napier, D. H. (1988). Assessment of mathematical models for fire and explosion hazards of liquefied petroleum gases. Journal of Hazardous Materials, 20, 109-135.
  • Prugh, R. W. (1991). Quantitative evaluation of" bleve" hazards. Journal of Fire Protection Engineering, 3(1), 9-24.
  • Roberts, T., Gosse, A., & Hawksworth, S. (2000). Thermal radiation from fireballs on failure of liquefied petroleum gas storage vessels. Process safety and environmental protection, 78(3), 184-192.
  • Bubbico, R., Ferrari, C., & Mazzarotta, B. (2000). Risk analysis of LPG transport by road and rail. Journal of Loss Prevention in the Process Industries, 13(1), 27-31.
  • Edgar, T. F., Smith, C. L., Shinskey, F. G., Gassman, G. W., Waite, A. W., McAvoy, T. J., & Seborg, D. E. (2008). Perry's Chemical Engineers' Handbook. Section 8. McGraw-Hill Publishing.
  • Mishra, K. B. (2016). Multiple BLEVE's and fireballs of gas bottles: Case of a Russian road carrier accident. Journal of Loss Prevention in the Process Industries, 41, 60-67.
  • Shariff, A. M., Wahab, N. A., & Rusli, R. (2016). Assessing the hazards from a BLEVE and minimizing its impacts using the inherent safety concept. Journal of Loss Prevention in the Process Industries, 41, 303-314.
  • Book, T. Y. (2005). Methods for Calculation of Physical Effects due to Releases of Hazardous Materials. Gevaarlijke Stoffen, Netherland.
  • Malviya, R. K., & Rushaid, M. (2018). Consequence analysis of LPG storage tank. Materials Today: Proceedings, 5(2), 4359-4367.
  • Pula, R., Khan, F. I., Veitch, B., & Amyotte, P. R. (2006). A grid based approach for fire and explosion consequence analysis. Process Safety and Environmental Protection, 84(2), 79-91.
  • Rashid, Z. A., Yeong, A. M. S., Alias, A. B., Ahmad, M. A., & Ali, S. A. (2018, May). Study of vapour cloud explosion impact from pressure changes in the liquefied petroleum gas sphere tank storage leakage. In IOP Conference Series: Materials Science and Engineering (Vol. 358, No. 1, p. 012073). IOP Publishing.
  • Rashid, Z. A., Alias, A. B., Hamid, K. H. K., Bani, M. S., & El Harbawi, M. (2015). Analysis the Effect of Explosion Efficiency in the TNT Equivalent Blast Explosion Model. In ICGSCE 2014 (pp. 381-390). Springer, Singapore.
  • Pérez, J. F. S., Ferradás, E. G., Alonso, F. D., García, D. P., Cano, M. V. M., & Cotorruelo, J. Á. B. (2010). New Probit equations for the calculation of thermal effects on humans. Process Safety and Environmental Protection, 88(2), 109-113. Crowl, D. A., & Louvar, J. F. (2001). Chemical process safety: fundamentals with applications. Pearson Education.
  • Clancey, V. J. (1972). Diagnostic features of explosion damage. In Sixth International Meeting of Foresic Sciences, Edinburgh, 1972.
  • Wang, K., Qian, X., He, Y., Shi, T., & Zhang, X. (2020). Failure analysis integrated with prediction model for LNG transport trailer and thermal hazards induced by an accidental VCE: A case study. Engineering Failure Analysis, 108, 104350.
  • Wang, K., Liu, Z., Qian, X., & Huang, P. (2017). Long-term consequence and vulnerability assessment of thermal radiation hazard from LNG explosive fireball in open space based on full-scale experiment and PHAST. Journal of Loss Prevention in the Process Industries, 46, 13-22.
  • Zhang, J., Laboureur, D., Liu, Y., & Mannan, M. S. (2016). Lessons learned from a supercritical pressure BLEVE in Nihon Dempa Kogyo Crystal Inc. Journal of Loss Prevention in the Process Industries, 41, 315-322.
  • Dhurandher, B. K., Kumar, R., & Dhiman, A. (2015). Impact assessment of thermal radiation hazard from LPG fireball. Procedia Earth and Planetary Science, 11, 499-506.
  • Bariha, N., Mishra, I. M., & Srivastava, V. C. (2016). Fire and explosion hazard analysis during surface transport of liquefied petroleum gas (LPG): A case study of LPG truck tanker accident in Kannur, Kerala, India. Journal of loss prevention in the process industries, 40, 449-460.
  • Planas, E., Pastor, E., Casal, J., & Bonilla, J. M. (2015). Analysis of the boiling liquid expanding vapor explosion (BLEVE) of a liquefied natural gas road tanker: the Zarzalico accident. Journal of Loss Prevention in the Process Industries, 34, 127-138.
  • Bariha, N., Mishra, I. M., & Srivastava, V. C. (2014). Analysis of fire and explosion hazards during surface transport of liquefied petroleum gas: a case study. In Institution of Chemical Engineers Symposium Series (Vol. 159, pp. 7-9).
  • Lees, F. P. (1994). The assessment of major hazard: a model for fatal injury from burns. Process safety and environmental protection, 72(3), 127-134.
  • Book, T. G. (1992). Methods for the determination of possible damage to people and objects resulting from releases of hazardous materials. Report CPR E, 16.
  • Eisenberg, N. A., Lynch, C. J., & Breeding, R. J. (1975). Vulnerability model. A simulation system for assessing damage resulting from marine spills. Enviro control inc rockville md.
  • Rashid, Z, A., El-Harbawi, M., Shariff, A. R. (2010). Assessment on the consequences of Liquified Petroleum Gas Release Accident in the Road Transportation via GIS Approaches. Journal of Applied Sciences, 10(12):1157-116.

The Assessment of Bleve Based Accident Impacts

Year 2021, Volume: 5 Issue: 2, 143 - 157, 31.12.2021
https://doi.org/10.32569/resilience.900754

Abstract

BLEVE; is known as a sudden release under pressure in the atmosphere of a superheated liquid. Because of the fires around the tank, corrosion, overheating inside the tank, the reason for these sudden swings. Fire, etc. If the event affects a vessel or tank, some changes are observed in the vessel's liquefied gas, which is high pressure. In this research was focussed on BLEVE incidents. Such incidents forms have a certain negative effect on people and the environment. Such results are formation of fragmentation of the vessels, formation of flame, overpressure and thermal radiation effects. In this study, analyze the effects that could occur as a result of BLEVE, such as overpressure, fireball, and assess the impact it had on people and environment. The intensity of the burns as we step away from the source of the explosion / fire has been estimated to decrease.

References

  • Sellami, I., Manescau, B., Chetehouna, K., de Izarra, C., Nait-Said, R., & Zidani, F. (2018). BLEVE fireball modeling using Fire Dynamics Simulator (FDS) in an Algerian gas industry. Journal of Loss Prevention in the Process Industries, 54, 69-84.
  • Ahlert, R. C. (2000). Guidelines for consequence analysis of chemical releases. Center for Chemical Process Safety, American Institute of Chemical Engineers (AIChE), New York, NY,(1999,) 320 Pages,[ISBN No.: 0‐8169‐0786‐2], US. List Price: $129.00. Environmental Progress, 19(3), F6-F6.
  • Lees, F. (2012). Lees' Loss prevention in the process industries: Hazard identification, assessment and control. Butterworth-Heinemann.
  • Khan, F. I., & Abbasi, S. A. (1998). Techniques and methodologies for risk analysis in chemical process industries. Journal of loss Prevention in the Process Industries, 11(4), 261-277.
  • Planas-Cuchi, E., Salla, J. M., & Casal, J. (2004). Calculating overpressure from BLEVE explosions. Journal of Loss Prevention in the Process Industries, 17(6), 431-436.
  • Birk, A. M., & Cunningham, M. H. (1994). The boiling liquid expanding vapour explosion. Journal of loss prevention in the process industries, 7(6), 474-480.
  • Zhang, Q. X., & Liang, D. (2013). Thermal radiation and impact assessment of the LNG BLEVE fireball. Procedia Engineering, 52, 602-606.
  • Bubbico, R., & Marchini, M. (2008). Assessment of an explosive LPG release accident: A case study. Journal of Hazardous Materials, 155(3), 558-565.
  • Hemmatian, B., Planas, E., & Casal, J. (2015). Fire as a primary event of accident domino sequences: the case of BLEVE. Reliability Engineering & System Safety, 139, 141-148.
  • Bonilla, J. M., Àgueda, A., Muñoz, M. A., Vílchez, J. A., & Planas, E. (2019). Thermal radiation model for dynamic fireballs with shadowing. Process Safety and Environmental Protection, 128, 372-384.
  • Abbasi, T., & Abbasi, S. A. (2007). The boiling liquid expanding vapour explosion (BLEVE): Mechanism, consequence assessment, management. Journal of Hazardous Materials, 141(3), 489-519.
  • Mahgerefteh, H., & Atti, O. (2006, April). An analysis of the gas pipeline explosion at Ghislenghien, Belgium. In 2006 Spring Meeting and 2nd Global Congress on Process Safety.
  • CSB. Mart 20, 2007, Investigation Report: Refinery Explosion and Fire, Report no: 2005-04-I-TX, https://www.csb.gov/bp-america-refinery-explosion/Yayın tarihi Mart 20, 2007. Erişim tarihi Mayıs 17, 2020.
  • Salamonowicz, Z., & Majder-Łopatka, M. (2013). Emergency scenarios during accidents involving LPG. BLEVE explosion mechanism. Bezpieczeństwo i Technika Pożarnicza.
  • Krausmann, E., & Cruz, A. M. (2013). Impact of the 11 March 2011, Great East Japan earthquake and tsunami on the chemical industry. Natural Hazards, 67(2), 811-828.
  • CSB. Temmuz 17, 2007. Barton Solvents Static Spark Ignites Explosion inside Flammable Liquid Storage Tank. Case study no 2007-06-I-KS https://www.csb.gov/barton-solvents-explosions-and-fire/Yayın tarihi Haziran 26, 2007. Erişim tarihi Mayıs 17, 2020.
  • Al-Shanini, A., Ahmad, A., & Khan, F. (2014). Accident modelling and analysis in process industries. Journal of Loss Prevention in the Process Industries, 32, 319-334.
  • Roberts, A. F. (1981). Thermal radiation hazards from releases of LPG from pressurised storage. Fire Safety Journal, 4(3), 197-212.
  • Crocker, W. P., & Napier, D. H. (1988). Assessment of mathematical models for fire and explosion hazards of liquefied petroleum gases. Journal of Hazardous Materials, 20, 109-135.
  • Prugh, R. W. (1991). Quantitative evaluation of" bleve" hazards. Journal of Fire Protection Engineering, 3(1), 9-24.
  • Roberts, T., Gosse, A., & Hawksworth, S. (2000). Thermal radiation from fireballs on failure of liquefied petroleum gas storage vessels. Process safety and environmental protection, 78(3), 184-192.
  • Bubbico, R., Ferrari, C., & Mazzarotta, B. (2000). Risk analysis of LPG transport by road and rail. Journal of Loss Prevention in the Process Industries, 13(1), 27-31.
  • Edgar, T. F., Smith, C. L., Shinskey, F. G., Gassman, G. W., Waite, A. W., McAvoy, T. J., & Seborg, D. E. (2008). Perry's Chemical Engineers' Handbook. Section 8. McGraw-Hill Publishing.
  • Mishra, K. B. (2016). Multiple BLEVE's and fireballs of gas bottles: Case of a Russian road carrier accident. Journal of Loss Prevention in the Process Industries, 41, 60-67.
  • Shariff, A. M., Wahab, N. A., & Rusli, R. (2016). Assessing the hazards from a BLEVE and minimizing its impacts using the inherent safety concept. Journal of Loss Prevention in the Process Industries, 41, 303-314.
  • Book, T. Y. (2005). Methods for Calculation of Physical Effects due to Releases of Hazardous Materials. Gevaarlijke Stoffen, Netherland.
  • Malviya, R. K., & Rushaid, M. (2018). Consequence analysis of LPG storage tank. Materials Today: Proceedings, 5(2), 4359-4367.
  • Pula, R., Khan, F. I., Veitch, B., & Amyotte, P. R. (2006). A grid based approach for fire and explosion consequence analysis. Process Safety and Environmental Protection, 84(2), 79-91.
  • Rashid, Z. A., Yeong, A. M. S., Alias, A. B., Ahmad, M. A., & Ali, S. A. (2018, May). Study of vapour cloud explosion impact from pressure changes in the liquefied petroleum gas sphere tank storage leakage. In IOP Conference Series: Materials Science and Engineering (Vol. 358, No. 1, p. 012073). IOP Publishing.
  • Rashid, Z. A., Alias, A. B., Hamid, K. H. K., Bani, M. S., & El Harbawi, M. (2015). Analysis the Effect of Explosion Efficiency in the TNT Equivalent Blast Explosion Model. In ICGSCE 2014 (pp. 381-390). Springer, Singapore.
  • Pérez, J. F. S., Ferradás, E. G., Alonso, F. D., García, D. P., Cano, M. V. M., & Cotorruelo, J. Á. B. (2010). New Probit equations for the calculation of thermal effects on humans. Process Safety and Environmental Protection, 88(2), 109-113. Crowl, D. A., & Louvar, J. F. (2001). Chemical process safety: fundamentals with applications. Pearson Education.
  • Clancey, V. J. (1972). Diagnostic features of explosion damage. In Sixth International Meeting of Foresic Sciences, Edinburgh, 1972.
  • Wang, K., Qian, X., He, Y., Shi, T., & Zhang, X. (2020). Failure analysis integrated with prediction model for LNG transport trailer and thermal hazards induced by an accidental VCE: A case study. Engineering Failure Analysis, 108, 104350.
  • Wang, K., Liu, Z., Qian, X., & Huang, P. (2017). Long-term consequence and vulnerability assessment of thermal radiation hazard from LNG explosive fireball in open space based on full-scale experiment and PHAST. Journal of Loss Prevention in the Process Industries, 46, 13-22.
  • Zhang, J., Laboureur, D., Liu, Y., & Mannan, M. S. (2016). Lessons learned from a supercritical pressure BLEVE in Nihon Dempa Kogyo Crystal Inc. Journal of Loss Prevention in the Process Industries, 41, 315-322.
  • Dhurandher, B. K., Kumar, R., & Dhiman, A. (2015). Impact assessment of thermal radiation hazard from LPG fireball. Procedia Earth and Planetary Science, 11, 499-506.
  • Bariha, N., Mishra, I. M., & Srivastava, V. C. (2016). Fire and explosion hazard analysis during surface transport of liquefied petroleum gas (LPG): A case study of LPG truck tanker accident in Kannur, Kerala, India. Journal of loss prevention in the process industries, 40, 449-460.
  • Planas, E., Pastor, E., Casal, J., & Bonilla, J. M. (2015). Analysis of the boiling liquid expanding vapor explosion (BLEVE) of a liquefied natural gas road tanker: the Zarzalico accident. Journal of Loss Prevention in the Process Industries, 34, 127-138.
  • Bariha, N., Mishra, I. M., & Srivastava, V. C. (2014). Analysis of fire and explosion hazards during surface transport of liquefied petroleum gas: a case study. In Institution of Chemical Engineers Symposium Series (Vol. 159, pp. 7-9).
  • Lees, F. P. (1994). The assessment of major hazard: a model for fatal injury from burns. Process safety and environmental protection, 72(3), 127-134.
  • Book, T. G. (1992). Methods for the determination of possible damage to people and objects resulting from releases of hazardous materials. Report CPR E, 16.
  • Eisenberg, N. A., Lynch, C. J., & Breeding, R. J. (1975). Vulnerability model. A simulation system for assessing damage resulting from marine spills. Enviro control inc rockville md.
  • Rashid, Z, A., El-Harbawi, M., Shariff, A. R. (2010). Assessment on the consequences of Liquified Petroleum Gas Release Accident in the Road Transportation via GIS Approaches. Journal of Applied Sciences, 10(12):1157-116.
There are 43 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Özgün Vatansever 0000-0002-9047-831X

Hacı Ahmet Kırtaş 0000-0002-5408-8728

Tolga Barışık 0000-0003-0946-8534

Publication Date December 31, 2021
Acceptance Date November 1, 2021
Published in Issue Year 2021 Volume: 5 Issue: 2

Cite

APA Vatansever, Ö., Kırtaş, H. A., & Barışık, T. (2021). Bleve Temelli Kaza Etkilerinin Değerlendirilmesi. Resilience, 5(2), 143-157. https://doi.org/10.32569/resilience.900754