Review
BibTex RIS Cite

Yapay Kalp Cihazlarının Gelişimi

Year 2022, Volume: 3 Issue: 1, 17 - 24, 13.09.2022

Abstract

Her yıl artan sayıda insan kalp hastalığına yenik düşmekte buna karşın nakil için uygun kalp sayısı azalmaktadır. ESC(European Society of Cardiology)’nin 2021’de yayınladığı kılavuza göre; kalp yetmezliğinin insidansı tüm yaş gruplarında 3/1000, erişkinlerde 5/1000 olduğu belirtilmiştir. Araştırmacılar uzun süredir implante edilebilir yapay kalpler üzerine çalışmaktadır. Bu alandaki çalışmalar biyolojik kalbin pompalama işlevini taklit eden cihazların üretimiyle başlamıştır. Ancak büyük boyut, sınırlı dayanım ve kısa süreli çalışma ömürleri olması sebebiyle kullanıcıların yaşam kalitesini olumsuz yönde etkilemiştir. Sonraki yıllarda kalbin veya damarların içine yerleştirilen ve kan pompalama işlemini buradan yapan cihazlar olduğu gibi kalbin yerini alan cihazlar da üretilmiştir. Bu çalışmada yapay kalp cihazlarının geçmişinden bahsedilmiş, sınıflandırma ve incelemesi yapılmıştır.

References

  • [1] Trumble, D. R., McGregor, W. E., Kerckhoffs, R. C., & Waldman, L. K. (2011). Cardiac assist with a twist: apical torsion as a means to improve failing heart function.
  • [2] Stewart, G. C., & Givertz, M. M. (2012). Mechanical circulatory support for advanced heart failure: patients and technology in evolution. Circulation, 125(10), 1304-1315.
  • [3] Anstadt, G. L., Schiff, P., & Baue, A. E. (1966). Prolonged circulatory support by direct mechanical ventricular assistance. ASAIO Journal, 12(1), 72-79.
  • [4] Whitson, B. A. (2015). Surgical implant techniques of left ventricular assist devices: an overview of acute and durable devices. Journal of thoracic disease, 7(12), 2097.
  • [5] Prinzing, A., Herold, U., Berkefeld, A., Krane, M., Lange, R., & Voss, B. (2016). Left ventricular assist devices—current state and perspectives. Journal of thoracic disease, 8(8), E660.
  • [6] Cook, J. A., Shah, K. B., Quader, M. A., Cooke, R. H., Kasirajan, V., Rao, K. K., ... & Tang, D. G. (2015). The total artificial heart. Journal of thoracic disease, 7(12), 2172.
  • [7] Englert, J. A., Davis, J. A., & Krim, S. R. (2016). Mechanical circulatory support for the failing heart: Continuous-flow left ventricular assist devices. Ochsner Journal, 16(3), 263-269.
  • [8] Shah, S. P., & Mehra, M. R. (2016). Durable left ventricular assist device therapy in advanced heart failure: Patient selection and clinical outcomes. Indian Heart Journal, 68, S45-S51.
  • [9] Schmack, B., Weymann, A., Popov, A. F., Patil, N. P., Sabashnikov, A., Kremer, J., ... & Ruhparwar, A. (2016). Concurrent left ventricular assist device (LVAD) implantation and percutaneous temporary RVAD support via CardiacAssist Protek-Duo TandemHeart to preempt right heart failure. Medical science monitor basic research, 22, 53.
  • [10] Chair, S. Y., Doris, S. F., Ng, M. T., Wang, Q., Cheng, H. Y., Wong, E. M., & Sit, J. W. (2016). Evolvement of left ventricular assist device: the implications on heart failure management. Journal of Geriatric Cardiology: JGC, 13(5), 425.
  • [11] Kiernan, M. S., Grandin, E. W., Brinkley Jr, M., Kapur, N. K., Pham, D. T., Ruthazer, R., ... & DeNofrio, D. (2017). Early right ventricular assist device use in patients undergoing continuous-flow left ventricular assist device implantation: incidence and risk factors from the interagency registry for mechanically assisted circulatory support. Circulation: Heart Failure, 10(10), e003863.
  • [12] Haneya, A., Philipp, A., Puehler, T., Rupprecht, L., Kobuch, R., Hilker, M., ... & Hirt, S. W. (2012). Temporary percutaneous right ventricular support using a centrifugal pump in patients with postoperative acute refractory right ventricular failure after left ventricular assist device implantation. European journal of cardio-thoracic surgery, 41(1), 219-223.
  • [13] Saleh, W. K. A., Al Jabbari, O., Guha, A., Loebe, M., & Bruckner, B. A. (2015). Treatment strategies for patients with an INTERMACS I profile. Methodist DeBakey cardiovascular journal, 11(1), 4.
  • [14] Akhmerov, A., Kearns, M., Chou, L., Aguillon, M., Megna, D., Emerson, D., ... & Ramzy, D. (2021). Outcomes of Temporary Percutaneous Right Ventricular Assist Devices in Right Ventricular Failure. The Journal of Heart and Lung Transplantation, 40(4), S401.
  • [15] Gregory, S. D., Timms, D., Gaddum, N., Mason, D. G., & Fraser, J. F. (2011). Biventricular assist devices: a technical review. Annals of biomedical engineering, 39(9), 2313-2328.
  • [16] [Jett, G. K. (1993, October). ABIOMED BVS 5000 Assist Device: Experience at Baylor University Medical Center. In Baylor University Medical Center Proceedings (Vol. 6, No. 4, pp. 3-10). Taylor & Francis.
  • [17] Rigatelli, G., Santini, F., & Faggian, G. (2012). Past and present of cardiocirculatory assist devices: a comprehensive critical review. Journal of Geriatric Cardiology: JGC, 9(4), 389.
  • [18] Cook, J. A., Shah, K. B., Quader, M. A., Cooke, R. H., Kasirajan, V., Rao, K. K., ... & Tang, D. G. (2015). The total artificial heart. Journal of thoracic disease, 7(12), 2172.
  • [19] Copeland JG, Smith RG, Arabia FA, et al. Cardiac replacement with a total artificial heart as a bridge totransplantation. N Engl J Med 2004; 351:859–867
  • [20] Khan S, Jehangir W. Evolution of artificial hearts: an overview and history. Cardiol Res 2014; 5:121–125
  • [21] SlepianMJ,Alemu Y,GirdharG,et al.TheSynCardia total artificial heart: in vivo, in vitro, and computational modeling studies. J Biomech 2013; 46:266–275.
  • [22] Gerosa, G., Scuri, S., Iop, L., & Torregrossa, G. (2014). Present and future perspectives on total artificial hearts. Annals of cardiothoracic surgery, 3(6), 595.
  • [23] Amirkhan, N. (2020). The maglev heart; BIVACOR.
  • [24] Mancini, D., & Colombo, P. C. (2015). Left ventricular assist devices: a rapidly evolving alternative to transplant. Journal of the American College of Cardiology, 65(23), 2542-2555.
  • [25] Slaughter MS, Rogers JG, Milano CA, et al. Advanced heart failure treated with continuous-flow Left Ventricular Assist Device. N Engl J Med. 2009;361(23):2241–51.
  • [26] Garbade, J., Bittner, H. B., Barten, M. J., & Mohr, F. W. (2011). Current trends in implantable left ventricular assist devices. Cardiology research and practice, 2011.
  • [27] Rodriguez, L. E., Suarez, E. E., Loebe, M., & Bruckner, B. A. (2013). Ventricular assist devices (VAD) therapy: new technology, new hope?. Methodist DeBakey cardiovascular journal, 9(1), 32.
  • [28] Health, C. for D. and R. Recently-Approved Devices - HeartWareTM HVADTM - P100047/S090.
  • [29] US Food and Drug Administration. (2018). HeartMate 3 left ventricular assist system (LVAS)-P160054/S008.
  • [30] Han, J. (2020). Muscle-powered Soft Robotic Ventricular Assist Devices (Doctoral dissertation, Carnegie Mellon University).
  • [31] Aaronson, K. D., Slaughter, M. S., Miller, L. W., McGee, E. C., Cotts, W. G., Acker, M. A., ... & Boyce, S. W. (2012). Use of an intrapericardial, continuous-flow, centrifugal pump in patients awaiting heart transplantation. Circulation, 125(25), 3191-3200.
  • [32] Greatrex, N., Kleinheyer, M., Nestler, F., & Timms, D. (2019). The MAGLEV heart. IEEE Spectrum, 56(09), 22-29.
  • [33] Emmanuel, S., Watson, A., Connellan, M., Granger, E., Jansz, P., Timms, D., & Hayward, C. (2020). First in man anatomical fitting study of the BiVACOR total artificial heart. The Journal of Heart and Lung Transplantation, 39(4), S189.
  • [34] Emmanuel, S., Jansz, P., McGiffin, D., Kure, C., Watson, A., Connellan, M., ... & Hayward, C. (2022). Anatomical human fitting of the BiVACOR total artificial heart. Artificial Organs, 46(1), 50-56.
  • [35] Henn, M. C., & Mokadam, N. A. (2022). Total artificial heart as a bridge to transplantation. Current Opinion in Organ Transplantation, 27(3), 222-228.
  • [36] Carpentier, A., Latrémouille, C., Cholley, B., Smadja, D. M., Roussel, J. C., Boissier, E., ... & Duveau, D. (2015). First clinical use of a bioprosthetic total artificial heart: report of two cases. The Lancet, 386(10003), 1556-1563.
  • [37] Henn, M. C., & Mokadam, N. A. (2022). Total artificial heart as a bridge to transplantation. Current Opinion in Organ Transplantation, 27(3), 222-228.
  • [38] Rammal, H., GhavamiNejad, A., Erdem, A., Mbeleck, R., Nematollahi, M., Diltemiz, S. E., ... & Ashammakhi, N. (2021). Advances in biomedical applications of self-healing hydrogels. Materials Chemistry Frontiers, 5(12), 4368-4400.
Year 2022, Volume: 3 Issue: 1, 17 - 24, 13.09.2022

Abstract

References

  • [1] Trumble, D. R., McGregor, W. E., Kerckhoffs, R. C., & Waldman, L. K. (2011). Cardiac assist with a twist: apical torsion as a means to improve failing heart function.
  • [2] Stewart, G. C., & Givertz, M. M. (2012). Mechanical circulatory support for advanced heart failure: patients and technology in evolution. Circulation, 125(10), 1304-1315.
  • [3] Anstadt, G. L., Schiff, P., & Baue, A. E. (1966). Prolonged circulatory support by direct mechanical ventricular assistance. ASAIO Journal, 12(1), 72-79.
  • [4] Whitson, B. A. (2015). Surgical implant techniques of left ventricular assist devices: an overview of acute and durable devices. Journal of thoracic disease, 7(12), 2097.
  • [5] Prinzing, A., Herold, U., Berkefeld, A., Krane, M., Lange, R., & Voss, B. (2016). Left ventricular assist devices—current state and perspectives. Journal of thoracic disease, 8(8), E660.
  • [6] Cook, J. A., Shah, K. B., Quader, M. A., Cooke, R. H., Kasirajan, V., Rao, K. K., ... & Tang, D. G. (2015). The total artificial heart. Journal of thoracic disease, 7(12), 2172.
  • [7] Englert, J. A., Davis, J. A., & Krim, S. R. (2016). Mechanical circulatory support for the failing heart: Continuous-flow left ventricular assist devices. Ochsner Journal, 16(3), 263-269.
  • [8] Shah, S. P., & Mehra, M. R. (2016). Durable left ventricular assist device therapy in advanced heart failure: Patient selection and clinical outcomes. Indian Heart Journal, 68, S45-S51.
  • [9] Schmack, B., Weymann, A., Popov, A. F., Patil, N. P., Sabashnikov, A., Kremer, J., ... & Ruhparwar, A. (2016). Concurrent left ventricular assist device (LVAD) implantation and percutaneous temporary RVAD support via CardiacAssist Protek-Duo TandemHeart to preempt right heart failure. Medical science monitor basic research, 22, 53.
  • [10] Chair, S. Y., Doris, S. F., Ng, M. T., Wang, Q., Cheng, H. Y., Wong, E. M., & Sit, J. W. (2016). Evolvement of left ventricular assist device: the implications on heart failure management. Journal of Geriatric Cardiology: JGC, 13(5), 425.
  • [11] Kiernan, M. S., Grandin, E. W., Brinkley Jr, M., Kapur, N. K., Pham, D. T., Ruthazer, R., ... & DeNofrio, D. (2017). Early right ventricular assist device use in patients undergoing continuous-flow left ventricular assist device implantation: incidence and risk factors from the interagency registry for mechanically assisted circulatory support. Circulation: Heart Failure, 10(10), e003863.
  • [12] Haneya, A., Philipp, A., Puehler, T., Rupprecht, L., Kobuch, R., Hilker, M., ... & Hirt, S. W. (2012). Temporary percutaneous right ventricular support using a centrifugal pump in patients with postoperative acute refractory right ventricular failure after left ventricular assist device implantation. European journal of cardio-thoracic surgery, 41(1), 219-223.
  • [13] Saleh, W. K. A., Al Jabbari, O., Guha, A., Loebe, M., & Bruckner, B. A. (2015). Treatment strategies for patients with an INTERMACS I profile. Methodist DeBakey cardiovascular journal, 11(1), 4.
  • [14] Akhmerov, A., Kearns, M., Chou, L., Aguillon, M., Megna, D., Emerson, D., ... & Ramzy, D. (2021). Outcomes of Temporary Percutaneous Right Ventricular Assist Devices in Right Ventricular Failure. The Journal of Heart and Lung Transplantation, 40(4), S401.
  • [15] Gregory, S. D., Timms, D., Gaddum, N., Mason, D. G., & Fraser, J. F. (2011). Biventricular assist devices: a technical review. Annals of biomedical engineering, 39(9), 2313-2328.
  • [16] [Jett, G. K. (1993, October). ABIOMED BVS 5000 Assist Device: Experience at Baylor University Medical Center. In Baylor University Medical Center Proceedings (Vol. 6, No. 4, pp. 3-10). Taylor & Francis.
  • [17] Rigatelli, G., Santini, F., & Faggian, G. (2012). Past and present of cardiocirculatory assist devices: a comprehensive critical review. Journal of Geriatric Cardiology: JGC, 9(4), 389.
  • [18] Cook, J. A., Shah, K. B., Quader, M. A., Cooke, R. H., Kasirajan, V., Rao, K. K., ... & Tang, D. G. (2015). The total artificial heart. Journal of thoracic disease, 7(12), 2172.
  • [19] Copeland JG, Smith RG, Arabia FA, et al. Cardiac replacement with a total artificial heart as a bridge totransplantation. N Engl J Med 2004; 351:859–867
  • [20] Khan S, Jehangir W. Evolution of artificial hearts: an overview and history. Cardiol Res 2014; 5:121–125
  • [21] SlepianMJ,Alemu Y,GirdharG,et al.TheSynCardia total artificial heart: in vivo, in vitro, and computational modeling studies. J Biomech 2013; 46:266–275.
  • [22] Gerosa, G., Scuri, S., Iop, L., & Torregrossa, G. (2014). Present and future perspectives on total artificial hearts. Annals of cardiothoracic surgery, 3(6), 595.
  • [23] Amirkhan, N. (2020). The maglev heart; BIVACOR.
  • [24] Mancini, D., & Colombo, P. C. (2015). Left ventricular assist devices: a rapidly evolving alternative to transplant. Journal of the American College of Cardiology, 65(23), 2542-2555.
  • [25] Slaughter MS, Rogers JG, Milano CA, et al. Advanced heart failure treated with continuous-flow Left Ventricular Assist Device. N Engl J Med. 2009;361(23):2241–51.
  • [26] Garbade, J., Bittner, H. B., Barten, M. J., & Mohr, F. W. (2011). Current trends in implantable left ventricular assist devices. Cardiology research and practice, 2011.
  • [27] Rodriguez, L. E., Suarez, E. E., Loebe, M., & Bruckner, B. A. (2013). Ventricular assist devices (VAD) therapy: new technology, new hope?. Methodist DeBakey cardiovascular journal, 9(1), 32.
  • [28] Health, C. for D. and R. Recently-Approved Devices - HeartWareTM HVADTM - P100047/S090.
  • [29] US Food and Drug Administration. (2018). HeartMate 3 left ventricular assist system (LVAS)-P160054/S008.
  • [30] Han, J. (2020). Muscle-powered Soft Robotic Ventricular Assist Devices (Doctoral dissertation, Carnegie Mellon University).
  • [31] Aaronson, K. D., Slaughter, M. S., Miller, L. W., McGee, E. C., Cotts, W. G., Acker, M. A., ... & Boyce, S. W. (2012). Use of an intrapericardial, continuous-flow, centrifugal pump in patients awaiting heart transplantation. Circulation, 125(25), 3191-3200.
  • [32] Greatrex, N., Kleinheyer, M., Nestler, F., & Timms, D. (2019). The MAGLEV heart. IEEE Spectrum, 56(09), 22-29.
  • [33] Emmanuel, S., Watson, A., Connellan, M., Granger, E., Jansz, P., Timms, D., & Hayward, C. (2020). First in man anatomical fitting study of the BiVACOR total artificial heart. The Journal of Heart and Lung Transplantation, 39(4), S189.
  • [34] Emmanuel, S., Jansz, P., McGiffin, D., Kure, C., Watson, A., Connellan, M., ... & Hayward, C. (2022). Anatomical human fitting of the BiVACOR total artificial heart. Artificial Organs, 46(1), 50-56.
  • [35] Henn, M. C., & Mokadam, N. A. (2022). Total artificial heart as a bridge to transplantation. Current Opinion in Organ Transplantation, 27(3), 222-228.
  • [36] Carpentier, A., Latrémouille, C., Cholley, B., Smadja, D. M., Roussel, J. C., Boissier, E., ... & Duveau, D. (2015). First clinical use of a bioprosthetic total artificial heart: report of two cases. The Lancet, 386(10003), 1556-1563.
  • [37] Henn, M. C., & Mokadam, N. A. (2022). Total artificial heart as a bridge to transplantation. Current Opinion in Organ Transplantation, 27(3), 222-228.
  • [38] Rammal, H., GhavamiNejad, A., Erdem, A., Mbeleck, R., Nematollahi, M., Diltemiz, S. E., ... & Ashammakhi, N. (2021). Advances in biomedical applications of self-healing hydrogels. Materials Chemistry Frontiers, 5(12), 4368-4400.
There are 38 citations in total.

Details

Primary Language Turkish
Journal Section Review
Authors

Seyit Hamza Çavga 0000-0001-6784-5698

Publication Date September 13, 2022
Published in Issue Year 2022 Volume: 3 Issue: 1

Cite

APA Çavga, S. H. (2022). Yapay Kalp Cihazlarının Gelişimi. Research Journal of Biomedical and Biotechnology, 3(1), 17-24.
AMA Çavga SH. Yapay Kalp Cihazlarının Gelişimi. RJBB. September 2022;3(1):17-24.
Chicago Çavga, Seyit Hamza. “Yapay Kalp Cihazlarının Gelişimi”. Research Journal of Biomedical and Biotechnology 3, no. 1 (September 2022): 17-24.
EndNote Çavga SH (September 1, 2022) Yapay Kalp Cihazlarının Gelişimi. Research Journal of Biomedical and Biotechnology 3 1 17–24.
IEEE S. H. Çavga, “Yapay Kalp Cihazlarının Gelişimi”, RJBB, vol. 3, no. 1, pp. 17–24, 2022.
ISNAD Çavga, Seyit Hamza. “Yapay Kalp Cihazlarının Gelişimi”. Research Journal of Biomedical and Biotechnology 3/1 (September 2022), 17-24.
JAMA Çavga SH. Yapay Kalp Cihazlarının Gelişimi. RJBB. 2022;3:17–24.
MLA Çavga, Seyit Hamza. “Yapay Kalp Cihazlarının Gelişimi”. Research Journal of Biomedical and Biotechnology, vol. 3, no. 1, 2022, pp. 17-24.
Vancouver Çavga SH. Yapay Kalp Cihazlarının Gelişimi. RJBB. 2022;3(1):17-24.