Research Article
BibTex RIS Cite

Year 2022, Volume: 5 Issue: 3, 279 - 298, 30.09.2022
https://doi.org/10.53006/rna.1089900
https://izlik.org/JA57AR46KN

Abstract

References

  • 1] H.M. Abu-Donia, Common fixed point theorems for fuzzy mappings in metric space under φ-contraction condition, Chaos Solitons Fractals. 34(2) (2007) 538-543.
  • [2] J. Ahmad, A. Al-Rawashdeh, A. Azam, New fixed point theorems for generalized F-contraction in complete metric spaces, Fixed Point Theory Appl. 80 (2015) 1-18.
  • [3] T. Allahviranloo, P. Salehi, M. Nejatiyan, Existence and uniqueness of the solution of nonlinear fuzzy Volterra integral equations, Iranian Journal of Fuzzy Systems. 12(2) (2015) 75-86.
  • [4] B. Alqahtani, A. Fulga, F. Jarad and E. Karapınar, Nonlinear F-contractions on b-metric spaces and differential equations in the frame of fractional derivatives with Mittag-Leffler Kernel, Chaos, Solitons and Fractals. 128(C) (2019) 349-354.
  • [5] A. Azam, M. Arshad, P. Vetro, On a pair of fuzzy contractive mappings, Math. Comput. Model. 52 (2010) 207-214.
  • [6] H. Aydi, M.F. Bota, E. Karapınar, S. Moradi, A common fixed point for weak-ϕ-contractions on b-metric spaces, Fixed Point Theory. 13(2) (2012) 337-346.
  • [7] I.A. Bakhtin, The contraction mapping principle in almost metric spaces, Funct. Anal. 30, (1989) 26-37.
  • [8] T.G. Bhaskar, V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal. 65(7) (2006) 1379-1393.
  • [9] A. Boutiara, K. Guerbati, M. Benbachir, Caputo-Hadamard fractional differential equation with three-point boundary conditions in Ba- nach spaces, AIMS Mathematics. 5(1) (2019) 259-272.
  • [10] L.B. Ciric, V. Lakshmikantham, Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces, Nonlinear Analysis TMA, 70(12) (2009) 4341-4349.
  • [11] S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostrav. 1(1) (1993) 5-11.
  • [12] M.A. Darwish, On the existence of a fuzzy integral equation of Urysohn-Volterra Type, Discussiones Mathematicae, Differential Inclu- sions, Control and Optimization. 28(1) (2008), 75-82.
  • [13] S. Heilpern, Fuzzy mappings and fixed point theorem, Journal of Mathematical Analysis and Applications, 83 (1981) 566-569.
  • [14] F. Jarad, D. Baleanu and A. Abdeljawad, Caputo-type modification of the Hadamard fractional derivatives, Adv. Differ. Equ. 142 (2012) 1-8.
  • [15] O. Kaleva, Fuzzy differential equations, Fuzzy Sets Syst. 24(3) (1987) 301-317.
  • [16] A.A. Kilbas, H.M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, Elsevier. 204 (2006).
  • [17] M.A. Kutbi, E. Karapınar, J. Ahmad and A. Azam, Some fixed point results for multivalued mappings in b-metric spaces. 126 (2014) 1-11.
  • [18] B.S. Lee, S.J. Cho, A fixed point theorem for contractive type fuzzy mappings, Fuzzy sets Syst. 61(3) (1994), 309-312.
  • [19] L.V. Nguyena, N.H. Hoc, On nonlinear F-contractive fuzzy mappings, Journal of Intelligent and Fuzzy Systems. 36(6) (2019) 6481-6491.
  • [20] H. Piri, P. Kumam, Wardowski Type Fixed Point Theorems in Complete Metric Spaces, Fixed Point Theory Appl. 45 (2016) 1-12.
  • [21] H. Qawaqneh, M.S. Noorani, W. Shatanawi, H. Aydi, H. Alsamir, Fixed Point Results for Multi-Valued Contractions in b-Metric Spaces and an Application, Mathematics, 7(132) (2019) 1-13.
  • [22] W. Sintunavarat, P. Kumam, Y. J. Cho, Coupled fixed point theorems for nonlinear contractions without mixed monotone property, Fixed Point Theory and Applications. 170 (2012) 1-16.
  • [23] D. Wardowski, Fixed points of a new type of contractive mappings in complete metric spaces, Fixed Point Theory Appl. 94 (2012) 1-6.
  • [24] D. Wardowski, N. Dung, Fixed points of F-weak contraction on complete metric spaces, Demonstr. Math. XLVII. (2014) 146-155.
  • [25] D. Wardowski, Solving existence problems via F-contractions, Proc. Am. Math. Soc 146(4), (2018) 1585-1598.
  • [26] A. Yacine, B. Nouredine, Boundary value problem for Caputo-Hadamard fractional differential equations, Surveys in Mathematics and its Applications, 12 (2017) 103-115.
  • [27] L.A. Zadeh, Fuzzy sets, Inf. Control. 8 (1965) 338-353.
  • [28] L. Zhu, C.X. Zhu and X.J. Huang, Coupled coincidence and common fixed point theorems for single-valued and fuzzy mappings, Iranian Journal of Fuzzy Systems. 12(1) (2015) 75-87.

Solution of Fuzzy Volterra Integral and Fractional Differential Equations via Fixed Point Theorems

Year 2022, Volume: 5 Issue: 3, 279 - 298, 30.09.2022
https://doi.org/10.53006/rna.1089900
https://izlik.org/JA57AR46KN

Abstract

In this paper we present fuzzy coupled fixed point results in the turf of complete b-metric spaces via nonlinear F-contraction; in follow we derive some interesting results as byproducts. Eventually, we apply our results in solving fuzzy Volterra integral equations and Caputo-Hadamard type of fractional differential equations.

References

  • 1] H.M. Abu-Donia, Common fixed point theorems for fuzzy mappings in metric space under φ-contraction condition, Chaos Solitons Fractals. 34(2) (2007) 538-543.
  • [2] J. Ahmad, A. Al-Rawashdeh, A. Azam, New fixed point theorems for generalized F-contraction in complete metric spaces, Fixed Point Theory Appl. 80 (2015) 1-18.
  • [3] T. Allahviranloo, P. Salehi, M. Nejatiyan, Existence and uniqueness of the solution of nonlinear fuzzy Volterra integral equations, Iranian Journal of Fuzzy Systems. 12(2) (2015) 75-86.
  • [4] B. Alqahtani, A. Fulga, F. Jarad and E. Karapınar, Nonlinear F-contractions on b-metric spaces and differential equations in the frame of fractional derivatives with Mittag-Leffler Kernel, Chaos, Solitons and Fractals. 128(C) (2019) 349-354.
  • [5] A. Azam, M. Arshad, P. Vetro, On a pair of fuzzy contractive mappings, Math. Comput. Model. 52 (2010) 207-214.
  • [6] H. Aydi, M.F. Bota, E. Karapınar, S. Moradi, A common fixed point for weak-ϕ-contractions on b-metric spaces, Fixed Point Theory. 13(2) (2012) 337-346.
  • [7] I.A. Bakhtin, The contraction mapping principle in almost metric spaces, Funct. Anal. 30, (1989) 26-37.
  • [8] T.G. Bhaskar, V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal. 65(7) (2006) 1379-1393.
  • [9] A. Boutiara, K. Guerbati, M. Benbachir, Caputo-Hadamard fractional differential equation with three-point boundary conditions in Ba- nach spaces, AIMS Mathematics. 5(1) (2019) 259-272.
  • [10] L.B. Ciric, V. Lakshmikantham, Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces, Nonlinear Analysis TMA, 70(12) (2009) 4341-4349.
  • [11] S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostrav. 1(1) (1993) 5-11.
  • [12] M.A. Darwish, On the existence of a fuzzy integral equation of Urysohn-Volterra Type, Discussiones Mathematicae, Differential Inclu- sions, Control and Optimization. 28(1) (2008), 75-82.
  • [13] S. Heilpern, Fuzzy mappings and fixed point theorem, Journal of Mathematical Analysis and Applications, 83 (1981) 566-569.
  • [14] F. Jarad, D. Baleanu and A. Abdeljawad, Caputo-type modification of the Hadamard fractional derivatives, Adv. Differ. Equ. 142 (2012) 1-8.
  • [15] O. Kaleva, Fuzzy differential equations, Fuzzy Sets Syst. 24(3) (1987) 301-317.
  • [16] A.A. Kilbas, H.M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, Elsevier. 204 (2006).
  • [17] M.A. Kutbi, E. Karapınar, J. Ahmad and A. Azam, Some fixed point results for multivalued mappings in b-metric spaces. 126 (2014) 1-11.
  • [18] B.S. Lee, S.J. Cho, A fixed point theorem for contractive type fuzzy mappings, Fuzzy sets Syst. 61(3) (1994), 309-312.
  • [19] L.V. Nguyena, N.H. Hoc, On nonlinear F-contractive fuzzy mappings, Journal of Intelligent and Fuzzy Systems. 36(6) (2019) 6481-6491.
  • [20] H. Piri, P. Kumam, Wardowski Type Fixed Point Theorems in Complete Metric Spaces, Fixed Point Theory Appl. 45 (2016) 1-12.
  • [21] H. Qawaqneh, M.S. Noorani, W. Shatanawi, H. Aydi, H. Alsamir, Fixed Point Results for Multi-Valued Contractions in b-Metric Spaces and an Application, Mathematics, 7(132) (2019) 1-13.
  • [22] W. Sintunavarat, P. Kumam, Y. J. Cho, Coupled fixed point theorems for nonlinear contractions without mixed monotone property, Fixed Point Theory and Applications. 170 (2012) 1-16.
  • [23] D. Wardowski, Fixed points of a new type of contractive mappings in complete metric spaces, Fixed Point Theory Appl. 94 (2012) 1-6.
  • [24] D. Wardowski, N. Dung, Fixed points of F-weak contraction on complete metric spaces, Demonstr. Math. XLVII. (2014) 146-155.
  • [25] D. Wardowski, Solving existence problems via F-contractions, Proc. Am. Math. Soc 146(4), (2018) 1585-1598.
  • [26] A. Yacine, B. Nouredine, Boundary value problem for Caputo-Hadamard fractional differential equations, Surveys in Mathematics and its Applications, 12 (2017) 103-115.
  • [27] L.A. Zadeh, Fuzzy sets, Inf. Control. 8 (1965) 338-353.
  • [28] L. Zhu, C.X. Zhu and X.J. Huang, Coupled coincidence and common fixed point theorems for single-valued and fuzzy mappings, Iranian Journal of Fuzzy Systems. 12(1) (2015) 75-87.
There are 28 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Article
Authors

Sushma Basil 0000-0003-3438-8464

Santhi Antony 0000-0001-7715-8533

Publication Date September 30, 2022
DOI https://doi.org/10.53006/rna.1089900
IZ https://izlik.org/JA57AR46KN
Published in Issue Year 2022 Volume: 5 Issue: 3

Cite

APA Basil, S., & Antony, S. (2022). Solution of Fuzzy Volterra Integral and Fractional Differential Equations via Fixed Point Theorems. Results in Nonlinear Analysis, 5(3), 279-298. https://doi.org/10.53006/rna.1089900
AMA 1.Basil S, Antony S. Solution of Fuzzy Volterra Integral and Fractional Differential Equations via Fixed Point Theorems. RNA. 2022;5(3):279-298. doi:10.53006/rna.1089900
Chicago Basil, Sushma, and Santhi Antony. 2022. “Solution of Fuzzy Volterra Integral and Fractional Differential Equations via Fixed Point Theorems”. Results in Nonlinear Analysis 5 (3): 279-98. https://doi.org/10.53006/rna.1089900.
EndNote Basil S, Antony S (September 1, 2022) Solution of Fuzzy Volterra Integral and Fractional Differential Equations via Fixed Point Theorems. Results in Nonlinear Analysis 5 3 279–298.
IEEE [1]S. Basil and S. Antony, “Solution of Fuzzy Volterra Integral and Fractional Differential Equations via Fixed Point Theorems”, RNA, vol. 5, no. 3, pp. 279–298, Sept. 2022, doi: 10.53006/rna.1089900.
ISNAD Basil, Sushma - Antony, Santhi. “Solution of Fuzzy Volterra Integral and Fractional Differential Equations via Fixed Point Theorems”. Results in Nonlinear Analysis 5/3 (September 1, 2022): 279-298. https://doi.org/10.53006/rna.1089900.
JAMA 1.Basil S, Antony S. Solution of Fuzzy Volterra Integral and Fractional Differential Equations via Fixed Point Theorems. RNA. 2022;5:279–298.
MLA Basil, Sushma, and Santhi Antony. “Solution of Fuzzy Volterra Integral and Fractional Differential Equations via Fixed Point Theorems”. Results in Nonlinear Analysis, vol. 5, no. 3, Sept. 2022, pp. 279-98, doi:10.53006/rna.1089900.
Vancouver 1.Basil S, Antony S. Solution of Fuzzy Volterra Integral and Fractional Differential Equations via Fixed Point Theorems. RNA [Internet]. 2022 Sept. 1;5(3):279-98. Available from: https://izlik.org/JA57AR46KN