Research Article
BibTex RIS Cite

A fixed point theorem without a Picard operator

Year 2021, , 127 - 129, 30.09.2021
https://doi.org/10.53006/rna.904880

Abstract

In this short note, we propose a fixed point theorem in the setting of a Banach space without using a Picard operator.

References

  • [1] I. Gornicki and B.E.Rhoades, A general fixed point theorem for involutions, Indian J. Pure Appl. Math. 27(1) 1996, 13-23.
  • [2] V. Berinde, Contract ¸ii generalizate ¸ si aplicat ¸ii , Editura Club Press 22, Baia Mare, 1997.
  • [3] V. Berinde, Generalized contractions in quasimetric spaces, Seminar on Fixed Point Theory, Preprint no. 3(1993), 3-9.
  • [4] V. Berinde, Sequences of operators and fixed points in quasimetric spaces , Stud. Univ. ”Babe¸ s-Bolyai”, Math., 16(4)(1996), 23-27.
  • [5] I. A. Rus, The theory of a metrical fixed point theorem: theoretical and applicative relevances, Fixed Point Theory, 9(2008), No. 2, 541-559.
  • [6] I. A. Rus, Generalized contractions and applications, Cluj University Press, Cluj-Napoca, 2001.
Year 2021, , 127 - 129, 30.09.2021
https://doi.org/10.53006/rna.904880

Abstract

References

  • [1] I. Gornicki and B.E.Rhoades, A general fixed point theorem for involutions, Indian J. Pure Appl. Math. 27(1) 1996, 13-23.
  • [2] V. Berinde, Contract ¸ii generalizate ¸ si aplicat ¸ii , Editura Club Press 22, Baia Mare, 1997.
  • [3] V. Berinde, Generalized contractions in quasimetric spaces, Seminar on Fixed Point Theory, Preprint no. 3(1993), 3-9.
  • [4] V. Berinde, Sequences of operators and fixed points in quasimetric spaces , Stud. Univ. ”Babe¸ s-Bolyai”, Math., 16(4)(1996), 23-27.
  • [5] I. A. Rus, The theory of a metrical fixed point theorem: theoretical and applicative relevances, Fixed Point Theory, 9(2008), No. 2, 541-559.
  • [6] I. A. Rus, Generalized contractions and applications, Cluj University Press, Cluj-Napoca, 2001.
There are 6 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Erdal Karapınar

Publication Date September 30, 2021
Published in Issue Year 2021

Cite

APA Karapınar, E. (2021). A fixed point theorem without a Picard operator. Results in Nonlinear Analysis, 4(3), 127-129. https://doi.org/10.53006/rna.904880
AMA Karapınar E. A fixed point theorem without a Picard operator. RNA. September 2021;4(3):127-129. doi:10.53006/rna.904880
Chicago Karapınar, Erdal. “A Fixed Point Theorem Without a Picard Operator”. Results in Nonlinear Analysis 4, no. 3 (September 2021): 127-29. https://doi.org/10.53006/rna.904880.
EndNote Karapınar E (September 1, 2021) A fixed point theorem without a Picard operator. Results in Nonlinear Analysis 4 3 127–129.
IEEE E. Karapınar, “A fixed point theorem without a Picard operator”, RNA, vol. 4, no. 3, pp. 127–129, 2021, doi: 10.53006/rna.904880.
ISNAD Karapınar, Erdal. “A Fixed Point Theorem Without a Picard Operator”. Results in Nonlinear Analysis 4/3 (September 2021), 127-129. https://doi.org/10.53006/rna.904880.
JAMA Karapınar E. A fixed point theorem without a Picard operator. RNA. 2021;4:127–129.
MLA Karapınar, Erdal. “A Fixed Point Theorem Without a Picard Operator”. Results in Nonlinear Analysis, vol. 4, no. 3, 2021, pp. 127-9, doi:10.53006/rna.904880.
Vancouver Karapınar E. A fixed point theorem without a Picard operator. RNA. 2021;4(3):127-9.