The purpose of this paper, is studying the existence and
nonexistence of positive solutions to a class of a following tripled
system of fractional differential equations.
\begin{eqnarray*} \left\{ \begin{array}{ll}
D^{\alpha}u(\zeta)+a(\zeta)f(\zeta,v(\zeta),\omega(\zeta))=0, \quad
\quad u(0)=0,\quad u(1)=\int_0^1\phi(\zeta)u(\zeta)d\zeta, \\ \\
D^{\beta}v(\zeta)+b(\zeta)g(\zeta,u(\zeta),\omega(\zeta))=0, \quad
\quad v(0)=0,\quad v(1)=\int_0^1\psi(\zeta)v(\zeta)d\zeta,\\ \\
D^{\gamma}\omega(\zeta)+c(\zeta)h(\zeta,u(\zeta),v(\zeta))=0,\quad
\quad \omega(0)=0,\quad
\omega(1)=\int_0^1\eta(\zeta)\omega(\zeta)d\zeta,\\ \end{array}
\right.\end{eqnarray*} \\ where $0\leq \zeta \leq 1$, $1<\alpha,
\beta, \gamma \leq 2$, $a,b,c\in C((0,1),[0,\infty))$, $ \phi, \psi,
\eta \in L^1[0,1]$ are nonnegative and $f,g,h\in
C([0,1]\times[0,\infty)\times[0,\infty),[0,\infty))$ and $D$ is the
standard Riemann-Liouville fractional derivative.\\
Also, we provide some examples to demonstrate the validity of our
results.
Tripled System fractional differential equation integral boundary conditions existence and nonexistence of positive solutions
Primary Language | English |
---|---|
Subjects | Mathematical Sciences |
Journal Section | Articles |
Authors | |
Publication Date | September 30, 2021 |
Published in Issue | Year 2021 |