Research Article
BibTex RIS Cite

Fixed point theorems in rational form via Suzuki approaches

Year 2018, Volume: 1 Issue: 1, 19 - 29, 24.04.2018

Abstract

 In this paper we establish some fixed point theorems by using the new contractive
condition, introduced in [11] by T.Suzuki.

References

  • [1] J. Achari, On Ciri´ c’s non-unique fixed points, Mat. Vesnik, 13 (28)no. 3, 255-257 (1976)
  • [2] M. Arshad, E. Karapınar, A. Jamshaid, Some unique fixed point theorems for rational contractions in partiallyordered metric spaces. J. Inequal. Appl. 2013, Article ID 248 (2013)
  • [3] L.B. Ciric, On some maps with a nonunique fixed point. Publ. Inst. Math. 17, 52-58 (1974).
  • [4] B. K. Dass and S. Gupta, An extension of Banach contraction principle through rational expressions, Indian J.Pure Appl. Math., 6(1975), 1455-1458
  • [5] D. S. Jaggi, Some unique fixed point theorems, Indian J. Pure Appl. Math, vol. 8, pp. 223-230, 1977
  • [6] E. Karapınar, A New Non-Unique Fixed Point Theorem, J. Appl. Funct. Anal. , 7 (2012),no:1-2, 92-97.
  • [7] H.Piri, P.Kumam, Some fixed point theorems concerning F−contraction in complete metric spaces, Fixed PoinTheory Appl. 210(2014)
  • [8] H.Piri, P.Kumam, Wardowski type fixed point theorems in complete metric spaces, Fixed Point Theory andApplications 20162016:45
  • [9] Z. Mustafa, E. Karapınar and H. Aydi, A discussion on generalized almost contractions via rational expressionsin partially ordered metric spaces, Journal of Inequalities and Applications 2014, 2014:219
  • [10] A. H. Soliman, Fixed point theorems for a generalized contraction mapping of rational type in symmetricspaces, Journal of the Egyptian Mathematical Society 25(2017), 298-301
  • [11] T.Suzuki, Fixed point theorem for a kind of Ciric type contractions in complete metric spaces, Advances inthe Theory of Nonlinear Analysis and its Applications 2(2018) No 1, 33-41
  • [12] T. Suzuki, A generalisation of Hegedus-Szilagyi’s fixed point theorem in complete metric spaces, Fixed PointTheory Appl., 2018, 2018:1
  • [13] T. Suzuki, A new type of fixed point theorem on metric space, Nonlinear Anal., 71(2009), 5313-5317
  • [14] D. Wardowski, Fixed Points of a new type of contractive mappings in complete metric spaces, Fixed PointTheory Appl. 94 (2012).
  • [15] D. Wardowski, Van Dung,N.: Fixed points of F-weak contractions on complete metric spaces, DemonstratioMathematica, 2014.
Year 2018, Volume: 1 Issue: 1, 19 - 29, 24.04.2018

Abstract

References

  • [1] J. Achari, On Ciri´ c’s non-unique fixed points, Mat. Vesnik, 13 (28)no. 3, 255-257 (1976)
  • [2] M. Arshad, E. Karapınar, A. Jamshaid, Some unique fixed point theorems for rational contractions in partiallyordered metric spaces. J. Inequal. Appl. 2013, Article ID 248 (2013)
  • [3] L.B. Ciric, On some maps with a nonunique fixed point. Publ. Inst. Math. 17, 52-58 (1974).
  • [4] B. K. Dass and S. Gupta, An extension of Banach contraction principle through rational expressions, Indian J.Pure Appl. Math., 6(1975), 1455-1458
  • [5] D. S. Jaggi, Some unique fixed point theorems, Indian J. Pure Appl. Math, vol. 8, pp. 223-230, 1977
  • [6] E. Karapınar, A New Non-Unique Fixed Point Theorem, J. Appl. Funct. Anal. , 7 (2012),no:1-2, 92-97.
  • [7] H.Piri, P.Kumam, Some fixed point theorems concerning F−contraction in complete metric spaces, Fixed PoinTheory Appl. 210(2014)
  • [8] H.Piri, P.Kumam, Wardowski type fixed point theorems in complete metric spaces, Fixed Point Theory andApplications 20162016:45
  • [9] Z. Mustafa, E. Karapınar and H. Aydi, A discussion on generalized almost contractions via rational expressionsin partially ordered metric spaces, Journal of Inequalities and Applications 2014, 2014:219
  • [10] A. H. Soliman, Fixed point theorems for a generalized contraction mapping of rational type in symmetricspaces, Journal of the Egyptian Mathematical Society 25(2017), 298-301
  • [11] T.Suzuki, Fixed point theorem for a kind of Ciric type contractions in complete metric spaces, Advances inthe Theory of Nonlinear Analysis and its Applications 2(2018) No 1, 33-41
  • [12] T. Suzuki, A generalisation of Hegedus-Szilagyi’s fixed point theorem in complete metric spaces, Fixed PointTheory Appl., 2018, 2018:1
  • [13] T. Suzuki, A new type of fixed point theorem on metric space, Nonlinear Anal., 71(2009), 5313-5317
  • [14] D. Wardowski, Fixed Points of a new type of contractive mappings in complete metric spaces, Fixed PointTheory Appl. 94 (2012).
  • [15] D. Wardowski, Van Dung,N.: Fixed points of F-weak contractions on complete metric spaces, DemonstratioMathematica, 2014.
There are 15 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Andreea Fulga This is me 0000-0002-6689-0355

Publication Date April 24, 2018
Published in Issue Year 2018 Volume: 1 Issue: 1

Cite

APA Fulga, A. (2018). Fixed point theorems in rational form via Suzuki approaches. Results in Nonlinear Analysis, 1(1), 19-29.
AMA Fulga A. Fixed point theorems in rational form via Suzuki approaches. RNA. April 2018;1(1):19-29.
Chicago Fulga, Andreea. “Fixed Point Theorems in Rational Form via Suzuki Approaches”. Results in Nonlinear Analysis 1, no. 1 (April 2018): 19-29.
EndNote Fulga A (April 1, 2018) Fixed point theorems in rational form via Suzuki approaches. Results in Nonlinear Analysis 1 1 19–29.
IEEE A. Fulga, “Fixed point theorems in rational form via Suzuki approaches”, RNA, vol. 1, no. 1, pp. 19–29, 2018.
ISNAD Fulga, Andreea. “Fixed Point Theorems in Rational Form via Suzuki Approaches”. Results in Nonlinear Analysis 1/1 (April 2018), 19-29.
JAMA Fulga A. Fixed point theorems in rational form via Suzuki approaches. RNA. 2018;1:19–29.
MLA Fulga, Andreea. “Fixed Point Theorems in Rational Form via Suzuki Approaches”. Results in Nonlinear Analysis, vol. 1, no. 1, 2018, pp. 19-29.
Vancouver Fulga A. Fixed point theorems in rational form via Suzuki approaches. RNA. 2018;1(1):19-2.