Research Article
BibTex RIS Cite
Year 2020, Volume: 3 Issue: 3, 100 - 116, 30.09.2020

Abstract

References

  • [1] A. Bnouhachem, M. A. Noor and T. M. Rassias, Three-steps iterative algorithms for mixed variational inequalities, Appl. Math. Comput., 183 (2006), 436-446.
  • [2] S.S.Chang, Some results for asymptotically pseudocontractive mappings and asymptotically nonexpansive mappings, Proc. Amer. Math. Soc., 129 (2001), 845-853.
  • [3] S. S. Chang, L. Wang, Y. K. Tang, and L. Yang, The split common fixed point problem for total asymptotically strictly pseudocontractive mappings, Journal of Applied Mathematics, 2012 (2012) , Article ID 385638, 13 pages .
  • [4] C. E. Chidume and C .O. Chidume, Convergence theorems for fixed points of uniformly continuous generalized Φ-hemi- contractive mappings, J. Math. Anal. Appl., 303 (2005), 545-554.
  • [5] C. E. Chidume and C. O. Chidume, Convergence theorem for zeros of generalized Lipschitz generalized phi-quasi-accretive operators, Proc. Amer. Math. Soc., 134 (2006), 243-251.
  • [6] R. C. Chen, Y. S. Song, H. Zhou, Convergence theorems for implicit iteration process for a finite family continuous pseudo- contractive mappings, J. Math. Anal. Appl., 314 (2006), 701-706.
  • [7] F. Cianciaruso, G. Marino and X. Wang, Weak and strong convergence of the Ishikawa iterative process for a finite family of asymptotically nonexpansive mappings, Applied Mathematics and Computation, 216 (2010), 3558-3567.
  • [8] Y. J. Cho, H. Y. Zhou and G. Guo, Weak and strong convergence theorems for three-step iterations with errors for asymptotically nonexpansive mappings, Comput. Math. Appl., 47 (2004), 707-717.
  • 9] R. Glowinski and P. Le-Tallec, Augmented Lagrangian and operator-splitting methods in nonlinear mechanics, SIAM, Philadelphia, 1989.
  • [10] S. Haubruge, V. H. Nguyen and J. J. Strodiot, Convergence analysis and applications of the Glowinski-Le-Tallec splitting method for finding a zero of the sum of two maximal monotone oper- ators, J. Optim. Theory Appl., 97 (1998), 645-673.
  • [11] F.Gu, Convergence theorems for ϕ-pseudocontractive type mappings in normed linear spaces, Northeast Math. J., 17(3) (2001), 340-346.
  • [12] F. Gu, The new composite implicit iterative process with errors for common fixed points of a finite family of strictly pseudocontractive mappings, Journal of Mathematical Analysis and Applications, 2(329) (2007), 766-776.
  • [13] F. Gu, Implicit and explicit iterative process with errors for a common fixed points of a finite family of strictly pseudocon- tractive mappings, An. St. Univ. Ovidius Constanta, 18(1) (2010), 139-154.
  • [14] T. L. Hicks and J. R. Kubicek, On the mann iteration process in hilbert spaces, Journal of Mathematical Analysis and Applications, 59 (1977), 498-504.
  • [15] D. I. Igbokwe, Approximation of fixed points of asymptotically demicontractive mappings in arbitrary Banach spaces, Journal of Inequality in Pure and Applied Mathematics, 3(1) (2002), 1-11.
  • [16] D. Igbokwe and O. Ini, A modified averaging composite Implicit Iteration process for common fixed points of a finite family of k− strictly asymptotically pseudocontractive mappings, Advances in Pure Mathematics, 1 (2011), 204-209.
  • [17] S. Ishikawa, Fixed points by a new iteration method, Proceeding of the America Mathematical society, 4(1974) 157-150.
  • [18] G. A. Okeke and J. O. Olareju, Modifed Noor iterations with errors for nonlinear equations in Banach spaces, J. Nonlinear Sci. Appl., 7 (2014), 180- 187.
  • [19] U. S. Jim, Z. Ongodiebi and F. A. Efiong, A new modified averaging implicit iteration process with errors for common fixed points of a finite family of asymptotically ϕ-demicontractive maps in arbitrary real Banach spaces, International Journal of Pure and Applied Mathematics, 78(3)(2012), 309-321.
  • [20] W. R. Mann, Mean value methods in iteration, Proceedings of American Mathematical Science, 4 (2003), 506-510.
  • [21] M. A. Noor, T. M. Kassias and Z. Huang, Three-step iterations for nonlinear accretive operator equations, J. Math. Anal. Appl., 274 (2001), 59-68.
  • [22] M. O. Osilike, Implicit iteration process for common fixed point of a finite family of strictly pseudocontractive maps, J. Math. Anal. Appl., 294 (2004), 73-81.
  • [23] M. O. Osilike, Iterative Approximation of fixed points asymptotically demicontractive mappings, Indian J. of Pure Appl. Maths., 29(12)(1998), 1291-1300.
  • [24] M. O. Osilike and B. G. Akuchu, Common fixed points of finite family of asymptotically pseudocontractive mappings. Fixed Point Theory and Application, 2004 2004, 81-88.
  • [25] M. O. Osilike, S. C. Aniagbosor and B. G. Akuchu, Fixed points of asymptotically demicontractive mappings in arbitrary Banach spaces, Pan American Mathematical Journal, 12(2) (2002), 77-88.
  • [26] M. O. Osilike and F. U. Isiogugu, Fixed points of asymptotically ϕ-demicontractive mappings in arbitrary Banach spaces, Pan-American Mathematical Journal, 15 (3)(2005), 59-69.
  • [27] M.O. Osilike, A. Udomene, D.I. Igbokwe, B.G. Akuchu, Demiclosedness principle and convergence theorems for k-strictly asymptotically pseudocontractive maps, J. Math. Anal. Appl., 326 (2007), 1334-1345.
  • [28] L. Qihou, Convergence Theorems of the Sequence of Iterates for Asymptotically Demicontarcive and Hemicontractive Mappings, Nonlinear Analysis: Theory, Methods and Applications, 26 26, (1996), 1835-1842.
  • [29] G. S. Saluja, Convergence of the explicit iteration method for strictly asymptotically pseudocontractive mappings in the intermediate sense, Novi Sad J. Math., 44 (1)(2014), 75-90.
  • [30] J. Schu, Weak and strong convergence to fixed points of asymptotically nonexpansive mappings, Bull. Austr. Math. Soc. , 43(1991), 153-159.
  • [31] H. F. Senter and W. G. Dotson: Approximating ?xed points of nonexpansive mappings, Proc. Amer. Math. Soc., 44(1974), 375-380.
  • [32] J. Schu, Iterative construction of fixed point of asymptotically nonexpansive mappings, J. Math. Anal. Appl., 158(1991), 407-413.
  • [33] N. Shahzad and A. Udomene: Approximating common fixed points of two asymptotically quasinonexpansive mappings in Banach spaces, Fixed Point Theory Appl., (2006), article ID 18909, 10 pages.
  • [34] Y. Su and S. Li, Composite implicit process for common fixed points of a finite family of strictly pseudocontractive maps, J. Math. Anal. Appl., 320 (2006), 882-891.
  • [35] Z. H. Sun, Strong convergence of an implicit iteration process for a finite family of asymptotically quasi-nonexpansive mappings, J. Math. Anal. Appl., 286 (2003), 351-358.
  • [36] S. Suantai, Weak and strong convergence criteria of Noor iterations for asymptotically nonexpansive mappings, J. Math. Anal. Appl., 311 (2005), 506-517.
  • [37] B. S. Thakur, Weak and strong convergence of composite implicit iteration process, Appl. Math. Comput., 190 (2007), 965-973.
  • [38] Y. Wang and C. Wang, convergence of a new modified Ishikawa type iteration for common Fixed points of total asymp- totically strict pseudocontractive semigroups, Abstract and Applied Analysis, 2013, Article ID 319241, 7 pages.
  • [39] X. Weng, Fixed point iteration for local strictly pseudocontractive mapping, Proceedings of the American Mathematical Society, 133 (2)(1991), 727-731.
  • [40] H. K. Xu and R. G. Ori, An implicit iteration process for nonexpansive mapping, Num. Fun. Anal. Optim., 22(2001),767-773.
  • [41] Y. Yao, Convergence of three-step iterations for asymptotically nonexpansive mappings, Appl. Math. Comput., 187 (2007), 883-892.
  • [42] L. P. Yang, Convergence of the new composite implicit iteration process with random errors, Nonlinear Anal., 69(10) (2008), 3591-3600.
  • [43] L. Yang and F. H. Zhao, Large strong convergence theorems for total asymptotically strict pseudocontractive semigroup in banach spaces, Fixed Point Theory and Applications, 2012, 2012:24
  • [44] L. Yang1, S. Chang and F. H. Zhao, Strong convergence theorems for a finite family of total asymptotically strict pseudo- contractive semigroups in Banach spaces, Fixed Point Theory and Applications 2013, 2013:178

Strong Convergence of a Multi-Step Implicit Iterative Scheme With Errors for Common Fixed Points of Uniformly L-Lipschitzian Total Asymptotically Strict Pseudocontractive Mappings

Year 2020, Volume: 3 Issue: 3, 100 - 116, 30.09.2020

Abstract

In this paper, we introduce a three-step implicit iteration process with errors and prove a strong convergence theorem of the new iterative scheme for a finite family of uniformly L-Lipschitzian total asymptotically strict pseudo contractive mappings in Banach spaces. The results in the paper extend, generalize, and unify well-known results in the existing literature.  In this paper, we compare a three-step implicit iteration process with the existing results in the literature.

 

References

  • [1] A. Bnouhachem, M. A. Noor and T. M. Rassias, Three-steps iterative algorithms for mixed variational inequalities, Appl. Math. Comput., 183 (2006), 436-446.
  • [2] S.S.Chang, Some results for asymptotically pseudocontractive mappings and asymptotically nonexpansive mappings, Proc. Amer. Math. Soc., 129 (2001), 845-853.
  • [3] S. S. Chang, L. Wang, Y. K. Tang, and L. Yang, The split common fixed point problem for total asymptotically strictly pseudocontractive mappings, Journal of Applied Mathematics, 2012 (2012) , Article ID 385638, 13 pages .
  • [4] C. E. Chidume and C .O. Chidume, Convergence theorems for fixed points of uniformly continuous generalized Φ-hemi- contractive mappings, J. Math. Anal. Appl., 303 (2005), 545-554.
  • [5] C. E. Chidume and C. O. Chidume, Convergence theorem for zeros of generalized Lipschitz generalized phi-quasi-accretive operators, Proc. Amer. Math. Soc., 134 (2006), 243-251.
  • [6] R. C. Chen, Y. S. Song, H. Zhou, Convergence theorems for implicit iteration process for a finite family continuous pseudo- contractive mappings, J. Math. Anal. Appl., 314 (2006), 701-706.
  • [7] F. Cianciaruso, G. Marino and X. Wang, Weak and strong convergence of the Ishikawa iterative process for a finite family of asymptotically nonexpansive mappings, Applied Mathematics and Computation, 216 (2010), 3558-3567.
  • [8] Y. J. Cho, H. Y. Zhou and G. Guo, Weak and strong convergence theorems for three-step iterations with errors for asymptotically nonexpansive mappings, Comput. Math. Appl., 47 (2004), 707-717.
  • 9] R. Glowinski and P. Le-Tallec, Augmented Lagrangian and operator-splitting methods in nonlinear mechanics, SIAM, Philadelphia, 1989.
  • [10] S. Haubruge, V. H. Nguyen and J. J. Strodiot, Convergence analysis and applications of the Glowinski-Le-Tallec splitting method for finding a zero of the sum of two maximal monotone oper- ators, J. Optim. Theory Appl., 97 (1998), 645-673.
  • [11] F.Gu, Convergence theorems for ϕ-pseudocontractive type mappings in normed linear spaces, Northeast Math. J., 17(3) (2001), 340-346.
  • [12] F. Gu, The new composite implicit iterative process with errors for common fixed points of a finite family of strictly pseudocontractive mappings, Journal of Mathematical Analysis and Applications, 2(329) (2007), 766-776.
  • [13] F. Gu, Implicit and explicit iterative process with errors for a common fixed points of a finite family of strictly pseudocon- tractive mappings, An. St. Univ. Ovidius Constanta, 18(1) (2010), 139-154.
  • [14] T. L. Hicks and J. R. Kubicek, On the mann iteration process in hilbert spaces, Journal of Mathematical Analysis and Applications, 59 (1977), 498-504.
  • [15] D. I. Igbokwe, Approximation of fixed points of asymptotically demicontractive mappings in arbitrary Banach spaces, Journal of Inequality in Pure and Applied Mathematics, 3(1) (2002), 1-11.
  • [16] D. Igbokwe and O. Ini, A modified averaging composite Implicit Iteration process for common fixed points of a finite family of k− strictly asymptotically pseudocontractive mappings, Advances in Pure Mathematics, 1 (2011), 204-209.
  • [17] S. Ishikawa, Fixed points by a new iteration method, Proceeding of the America Mathematical society, 4(1974) 157-150.
  • [18] G. A. Okeke and J. O. Olareju, Modifed Noor iterations with errors for nonlinear equations in Banach spaces, J. Nonlinear Sci. Appl., 7 (2014), 180- 187.
  • [19] U. S. Jim, Z. Ongodiebi and F. A. Efiong, A new modified averaging implicit iteration process with errors for common fixed points of a finite family of asymptotically ϕ-demicontractive maps in arbitrary real Banach spaces, International Journal of Pure and Applied Mathematics, 78(3)(2012), 309-321.
  • [20] W. R. Mann, Mean value methods in iteration, Proceedings of American Mathematical Science, 4 (2003), 506-510.
  • [21] M. A. Noor, T. M. Kassias and Z. Huang, Three-step iterations for nonlinear accretive operator equations, J. Math. Anal. Appl., 274 (2001), 59-68.
  • [22] M. O. Osilike, Implicit iteration process for common fixed point of a finite family of strictly pseudocontractive maps, J. Math. Anal. Appl., 294 (2004), 73-81.
  • [23] M. O. Osilike, Iterative Approximation of fixed points asymptotically demicontractive mappings, Indian J. of Pure Appl. Maths., 29(12)(1998), 1291-1300.
  • [24] M. O. Osilike and B. G. Akuchu, Common fixed points of finite family of asymptotically pseudocontractive mappings. Fixed Point Theory and Application, 2004 2004, 81-88.
  • [25] M. O. Osilike, S. C. Aniagbosor and B. G. Akuchu, Fixed points of asymptotically demicontractive mappings in arbitrary Banach spaces, Pan American Mathematical Journal, 12(2) (2002), 77-88.
  • [26] M. O. Osilike and F. U. Isiogugu, Fixed points of asymptotically ϕ-demicontractive mappings in arbitrary Banach spaces, Pan-American Mathematical Journal, 15 (3)(2005), 59-69.
  • [27] M.O. Osilike, A. Udomene, D.I. Igbokwe, B.G. Akuchu, Demiclosedness principle and convergence theorems for k-strictly asymptotically pseudocontractive maps, J. Math. Anal. Appl., 326 (2007), 1334-1345.
  • [28] L. Qihou, Convergence Theorems of the Sequence of Iterates for Asymptotically Demicontarcive and Hemicontractive Mappings, Nonlinear Analysis: Theory, Methods and Applications, 26 26, (1996), 1835-1842.
  • [29] G. S. Saluja, Convergence of the explicit iteration method for strictly asymptotically pseudocontractive mappings in the intermediate sense, Novi Sad J. Math., 44 (1)(2014), 75-90.
  • [30] J. Schu, Weak and strong convergence to fixed points of asymptotically nonexpansive mappings, Bull. Austr. Math. Soc. , 43(1991), 153-159.
  • [31] H. F. Senter and W. G. Dotson: Approximating ?xed points of nonexpansive mappings, Proc. Amer. Math. Soc., 44(1974), 375-380.
  • [32] J. Schu, Iterative construction of fixed point of asymptotically nonexpansive mappings, J. Math. Anal. Appl., 158(1991), 407-413.
  • [33] N. Shahzad and A. Udomene: Approximating common fixed points of two asymptotically quasinonexpansive mappings in Banach spaces, Fixed Point Theory Appl., (2006), article ID 18909, 10 pages.
  • [34] Y. Su and S. Li, Composite implicit process for common fixed points of a finite family of strictly pseudocontractive maps, J. Math. Anal. Appl., 320 (2006), 882-891.
  • [35] Z. H. Sun, Strong convergence of an implicit iteration process for a finite family of asymptotically quasi-nonexpansive mappings, J. Math. Anal. Appl., 286 (2003), 351-358.
  • [36] S. Suantai, Weak and strong convergence criteria of Noor iterations for asymptotically nonexpansive mappings, J. Math. Anal. Appl., 311 (2005), 506-517.
  • [37] B. S. Thakur, Weak and strong convergence of composite implicit iteration process, Appl. Math. Comput., 190 (2007), 965-973.
  • [38] Y. Wang and C. Wang, convergence of a new modified Ishikawa type iteration for common Fixed points of total asymp- totically strict pseudocontractive semigroups, Abstract and Applied Analysis, 2013, Article ID 319241, 7 pages.
  • [39] X. Weng, Fixed point iteration for local strictly pseudocontractive mapping, Proceedings of the American Mathematical Society, 133 (2)(1991), 727-731.
  • [40] H. K. Xu and R. G. Ori, An implicit iteration process for nonexpansive mapping, Num. Fun. Anal. Optim., 22(2001),767-773.
  • [41] Y. Yao, Convergence of three-step iterations for asymptotically nonexpansive mappings, Appl. Math. Comput., 187 (2007), 883-892.
  • [42] L. P. Yang, Convergence of the new composite implicit iteration process with random errors, Nonlinear Anal., 69(10) (2008), 3591-3600.
  • [43] L. Yang and F. H. Zhao, Large strong convergence theorems for total asymptotically strict pseudocontractive semigroup in banach spaces, Fixed Point Theory and Applications, 2012, 2012:24
  • [44] L. Yang1, S. Chang and F. H. Zhao, Strong convergence theorems for a finite family of total asymptotically strict pseudo- contractive semigroups in Banach spaces, Fixed Point Theory and Applications 2013, 2013:178
There are 44 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Austine Ofem

Publication Date September 30, 2020
Published in Issue Year 2020 Volume: 3 Issue: 3

Cite

APA Ofem, A. (2020). Strong Convergence of a Multi-Step Implicit Iterative Scheme With Errors for Common Fixed Points of Uniformly L-Lipschitzian Total Asymptotically Strict Pseudocontractive Mappings. Results in Nonlinear Analysis, 3(3), 100-116.
AMA Ofem A. Strong Convergence of a Multi-Step Implicit Iterative Scheme With Errors for Common Fixed Points of Uniformly L-Lipschitzian Total Asymptotically Strict Pseudocontractive Mappings. RNA. September 2020;3(3):100-116.
Chicago Ofem, Austine. “Strong Convergence of a Multi-Step Implicit Iterative Scheme With Errors for Common Fixed Points of Uniformly L-Lipschitzian Total Asymptotically Strict Pseudocontractive Mappings”. Results in Nonlinear Analysis 3, no. 3 (September 2020): 100-116.
EndNote Ofem A (September 1, 2020) Strong Convergence of a Multi-Step Implicit Iterative Scheme With Errors for Common Fixed Points of Uniformly L-Lipschitzian Total Asymptotically Strict Pseudocontractive Mappings. Results in Nonlinear Analysis 3 3 100–116.
IEEE A. Ofem, “Strong Convergence of a Multi-Step Implicit Iterative Scheme With Errors for Common Fixed Points of Uniformly L-Lipschitzian Total Asymptotically Strict Pseudocontractive Mappings”, RNA, vol. 3, no. 3, pp. 100–116, 2020.
ISNAD Ofem, Austine. “Strong Convergence of a Multi-Step Implicit Iterative Scheme With Errors for Common Fixed Points of Uniformly L-Lipschitzian Total Asymptotically Strict Pseudocontractive Mappings”. Results in Nonlinear Analysis 3/3 (September 2020), 100-116.
JAMA Ofem A. Strong Convergence of a Multi-Step Implicit Iterative Scheme With Errors for Common Fixed Points of Uniformly L-Lipschitzian Total Asymptotically Strict Pseudocontractive Mappings. RNA. 2020;3:100–116.
MLA Ofem, Austine. “Strong Convergence of a Multi-Step Implicit Iterative Scheme With Errors for Common Fixed Points of Uniformly L-Lipschitzian Total Asymptotically Strict Pseudocontractive Mappings”. Results in Nonlinear Analysis, vol. 3, no. 3, 2020, pp. 100-16.
Vancouver Ofem A. Strong Convergence of a Multi-Step Implicit Iterative Scheme With Errors for Common Fixed Points of Uniformly L-Lipschitzian Total Asymptotically Strict Pseudocontractive Mappings. RNA. 2020;3(3):100-16.