Research Article
BibTex RIS Cite

Meteorolojik Parametrelerin GNSS Yansıma Sinyallerine Etkisinin İncelenmesi

Year 2024, Volume: 5 Issue: 2, 186 - 198, 26.09.2024
https://doi.org/10.48123/rsgis.1487035

Abstract

Günümüzde yaklaşık altı yüz milyon insan kıyıya yakın alanlarda yaşam sürdürmektedir. Bu nedenle deniz seviyesi değişiminin izlenmesi ve meydana gelebilecek olayların değerlendirilmesi son derece önemli olmaktadır. Deniz seviyesi değişiminin izlenmesinde yersel ve uydu tabanlı olmak üzere farklı yöntemler kullanılmaktadır. Yansıyan GNSS sinyallerini kullanarak deniz seviyesi değişiminin izlenmesine olanak sağlayan Küresel Navigasyon Uydu Sistemleri İnterferometrik Reflektometri (GNSS-IR) tekniği de bu yöntemlerden biridir. Bu çalışma ile deniz yüzeyinden yansıyan GNSS sinyallerine meteorolojik parametrelerin etkisi araştırılmıştır. Çalışma kapsamında, Sinyal Gürültü Oranı (Signal-to-Noise Ratio-SNR) verisi ve hava basıncı, rüzgar ve sıcaklık meteorolojik parametreleri kullanılmıştır. SNR verisi, Türkiye Ulusal Deniz Seviyesi İzleme Servisi’ne (TUDES) bağlı mareograf istasyonu ile ortak yerleşkeli TRBZ sabit GNSS istasyonundan sağlanmıştır. Hava basıncı verisi TUDES üzerinden alınmış olup sıcaklık ve rüzgar hızı verileri ERA5 veri setinden alınmıştır. Meteorolojik parametrelerin yansıyan sinyaller üzerindeki etkisini incelemek için hava basıncı, rüzgar hızı ve sıcaklık parametreleri ile trendden arındırılmış SNR genlikleri Basit Doğrusal Regresyon ve Mann-Kendall testi kullanılarak karşılaştırılmıştır. Elde edilen sonuçlara bakıldığında; sıcaklık ve rüzgar hızı parametreleri ile trendden arındırılmış SNR genliklerinin aynı yönde eğilime sahip olduğu görülmüştür.

References

  • Altuntaş, C., & Tunalıoğlu, N. (2022). Deniz seviyesi değişimlerinin belirlenmesinde GNSS-IR yönteminin kullanımı ve doğruluk analizi üzerine bir araştırma. Geomatik, 7(3), 187-196.
  • Asgarimehr, M., Zavorotny, V., Wickert, J., & Reich, S. (2018). Can GNSS reflectometry detect precipitation over oceans?. Geophysical Research Letters, 45(22), 585-592.
  • Beşel, C., & Kayıkçı, E. T. (2022). Determination of sea level variations in Turkish Mediterranean coast using GNSS reflectometry. Survey Review, 54(385), 310–319. https://doi.org/10.1080/00396265.2021.1939589
  • Beşel, C., & Tanır Kayıkçı, E. (2019). Serisel korelasyonun toplam zenit gecikmesi zaman serilerinde parametrik olmayan trend belirleme üzerindeki etkisi. Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 9(1), 180-188.
  • Beşel, C. (2017). IGS istasyonları zenit troposferik gecikme parametresi zaman serilerinde trend ve mevsimsel etki analizleri [Yüksek lisans tezi, Karadeniz Teknik Üniversitesi]. YÖK Ulusal Tez Merkezi. https://tez.yok.gov.tr/UlusalTezMerkezi/
  • Bilich, A., Larson, K. M., & Axelrad, P. (2008). Modeling GPS phase multipath with SNR: case study from the Salar de Uyuni, Boliva. Journal of Geophysical Research: Solid Earth, 113(B4), Article B04401. https://doi.org/10.1029/2007JB005194
  • Braasch, M.S. (2017). Multipath. Springer Handbook of Global Navigation Satellite Systems.
  • Climate Data Store. (2022, July). Temperature and wind speed data. Climate Data Store (CDS). https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
  • Durand, M., Rivera, A., Nievinski, F., Lenzano, M. G., Monico, J. F. G., Paredes, P., & Lenzano, L. (2019). GPS reflectometry study detecting snow height changes in the Southern Patagonia Icefield. Cold Regions Science and Technology, 166, Article 102840. https://doi.org/10.1016/j.coldregions.2019.102840
  • Elosegui, P., Davis, J. L., Jaldehag, R. T. K., Johansson, J. M., Niell, A. E., & Shapiro, I. I. (1995). Geodesy using the Global Positioning System: the effects of signal scattering on estimates of site position. Journal of Geophysical Research, 100(6), 2156-2202.
  • Gamgam, H., & Altunkaynak, B. (2013). SPSS uygulamalı parametrik olmayan yöntemler. Seçkin Yayıncılık.
  • Georgiadou, P.Y., & Kleusberg, A. (1988). On carrier signal multipath effects in relative GPS positioning. Manuscripta Geodaetica, 13(3),172-179.
  • Geremia-Nievinski, F., Hobiger, T., Haas, R., Liu, W., Strandberg, J., Tabibi, S., Vey, S., Wickert, J., & Williams, S. (2020). SNR-based GNSS reflectometry for coastal sea-level altimetry: results from the first IAG inter-comparison campaign. Journal of Geodesy, 94(8), Article 70. https://doi.org/10.1007/s00190-020-01387-3
  • Ghiasi, Y., Duguay, C. R., Murfitt, J., van der Sanden, J. J., Thompson, A., Drouin, H., & Prévost, C. (2020). Application of GNSS interferometric reflectometry for the estimation of lake ice thickness. Remote Sensing, 12(17), Article 2721. https://doi.org/10.3390/RS12172721
  • Ghiasi, Y., Duguay, C., & Murfitt, J. (2021, March 29-31). Temperature effect on reflected GNSS signals from mid-latitude lake ice [Conference presentation]. The first workshop of the Inter-Commission Committee on Geodesy for Climate Research (ICCC), Potsdam, Germany.
  • Karegar, M. A., Larson, K. M., Kusche, J., & Dixon, T. H. (2020). Novel quantification of shallow sediment compaction by GPS Interferometric Reflectometry and implications for flood susceptibility. Geophysical Research Letters, 47(14), Article e2020GL087807. https://doi.org/10.1029/2020GL087807
  • Katzberg, S. J., & Garrison, J. L. (1996). Utilizing GPS to determine ionospheric delay over the ocean (Report Number NASA-TM-4750). NASA Langley Research Center. https://ntrs.nasa.gov/citations/19970005019
  • Katzberg, S. J., Garrison, J., & Howell, C. (1999, September 14-17). Simple over-water altimeter using GPS reflections [Meeting presentation], 12th International Technical Meeting of the Satellite Division of The Institute of Navigation, Nashville, Tennessee.
  • Kendall, M.G., (1975). Rank correlation methods. Charles Griffin.
  • Kim, S. K., & Park, J. (2021). Monitoring a storm surge during Hurricane Harvey using multi-constellation GNSS-Reflectometry. GPS Solutions, 25(2), Article 63. https://doi.org/10.1007/s10291-021-01105-2
  • Larson, K. M., Lay, T., Yamazaki, Y., Cheung, K. F., Ye, L., Williams, S. D. P., & Davis, J. L. (2021). Dynamic sea level variation from GNSS: 2020 Shumagin earthquake tsunami resonance and hurricane laura. Geophysical Research Letters, 48(4), Article e2020GL091378. https://doi.org/10.1029/2020GL091378
  • Larson, K. M., Ray, R. D., & Williams, S. D. P. (2017). A 10-year comparison of water levels measured with a geodetic GPS receiver versus a conventional tide gauge. Journal of Atmospheric and Oceanic Technology, 34(2), 295–307.
  • Larson, K. M., Ray, R. D., Nievinski, F. G., & Freymueller, J. T. (2013). The accidental tide gauge: a GPS reflection case study from Kachemak bay, Alaska. IEEE Geoscience and Remote Sensing Letters, 10(5), 1200-1204.
  • Larson, K. M., Löfgren, J. S., & Haas, R. (2013). Coastal sea level measurements using a single geodetic GPS receiver. Advances in Space Research, 51(8), 1301–1310. https://doi.org/10.1016/j.asr.2012.04.017
  • Larson, K. M., & Nievinski, F. G. (2013). GPS snow sensing: Results from the EarthScope plate boundary observatory. GPS Solutions, 17(1), 41–52. https://doi.org/10.1007/s10291-012-0259-7
  • Larson, K. M., Small, E. E., Gutmann, E., Bilich, A., Axelrad, P., & Braun, J. (2008). Using GPS multipath to measure soil moisture fluctuations: Initial results. GPS Solutions, 12(3), 173–177. https://doi.org/10.1007/s10291-007-0076-6
  • Lu, R., Chen, W., Dong, D., Wang, Z., Zhang, C., Peng, Y., & Yu, C. (2021). Multipath mitigation in GNSS precise point positioning based on trend-surface analysis and multipath hemispherical map. GPS Solutions, 25(3), Article 119. https://doi.org/10.1007/s10291-021-01156-5
  • Mann, H. B. (1945). Non-parametric tests aganist trend. The Econometric Society, 3, 245-259.
  • Martin-Neira, M. (1993). A Passive Reflectometry and Interferometry System (PARIS): application to ocean altimetry. ESA Journal, 17(4), 331-355.
  • Moradi, R., Schuster, W., Feng, S., Jokinen, A., & Ochieng, W. (2015). The carrier-multipath observable: a new carrier-phase multipath mitigation technique. GPS Solutions, 19(1), 73-82.
  • Öztürk, E., & Şerbetçi, M. (1992). Dengeleme Hesabı III (Yayın No. 144). Karadeniz Teknik Üniversitesi.
  • Tabibi, S., Sauveur, R., Guerrier, K., Metayer, G., & Francis, O. (2021). SNR-based GNSS-R for coastal sea-level altimetry. Geosciences, 11(9), Article 391. https://doi.org/10.3390/geosciences11090391
  • Tüysüz, N., & Yaylalı Abanuz, G. (2012). Jeoistatistik: Kavramlar ve Bilgisayarlı Uygulamalar. Karadeniz Teknik Üniversitesi Matbaası.
  • TUDES. (2022, Haziran). Deniz seviyesi. Türkiye Ulusal Deniz Seviyesi İzleme Sistemi (TUDES). https://tudes.harita.gov.tr/Portal/VeriSorgula
  • Vey, S., Güntner, A., Wickert, J., Blume, T., & Ramatschi, M. (2016). Long-term soil moisture dynamics derived from GNSS interferometric reflectometry: a case study for Sutherland, South Africa. GPS Solutions, 20(4), 641–654.
  • Wang, X., Zhang, Q., & Zhang, S. (2018). Water levels measured with SNR using wavelet decomposition and Lomb–Scargle periodogram. GPS Solutions, 22(1), Article 22. https://doi.org/10.1007/s10291-017-0684-8
  • Zhang, S., Zhang, C., Zhao, Y., Li, H., Liu, Q., & Pang, X. (2021). Snow depth estimation based on GNSS-IR cluster analysis. Measurement Science and Technology, 32(9), Article 095801. https://doi.org/10.1088/1361-6501/abee54

Investigating the Effect of Meteorological Parameters on GNSS Reflection Signals

Year 2024, Volume: 5 Issue: 2, 186 - 198, 26.09.2024
https://doi.org/10.48123/rsgis.1487035

Abstract

Today, about six hundred million people live in coastal areas. Hence, it is extremely important to monitor sea level changes and assess possible events. Sea level changes are monitored using different methods both on the ground-based and satellite-based. One such method is the Global Navigation Satellite System Interferometric Reflectometry (GNSS-IR) technique, which uses reflected GNSS signals to monitor sea level changes. This study investigates the impact of meteorological parameters on GNSS signals reflected from the sea surface. Signal-to-noise ratio (SNR) data and meteorological parameters of air pressure, wind, and temperature are used in this study. SNR data are provided from the TRBZ co-located GNSS station operated by the Turkish National Sea Level Monitoring System (TUDES). The air pressure data are obtained from TUDES, while the temperature and wind speed data are from the ERA5 dataset. To examine the effect of meteorological parameters on the reflected signals, air pressure, wind speed, and temperature parameters and detrended SNR amplitudes are compared using Simple Linear Regression and the Mann-Kendall test. As a result of the study, it was observed that temperature and wind speed parameters and detrended SNR amplitudes had the same trend.

References

  • Altuntaş, C., & Tunalıoğlu, N. (2022). Deniz seviyesi değişimlerinin belirlenmesinde GNSS-IR yönteminin kullanımı ve doğruluk analizi üzerine bir araştırma. Geomatik, 7(3), 187-196.
  • Asgarimehr, M., Zavorotny, V., Wickert, J., & Reich, S. (2018). Can GNSS reflectometry detect precipitation over oceans?. Geophysical Research Letters, 45(22), 585-592.
  • Beşel, C., & Kayıkçı, E. T. (2022). Determination of sea level variations in Turkish Mediterranean coast using GNSS reflectometry. Survey Review, 54(385), 310–319. https://doi.org/10.1080/00396265.2021.1939589
  • Beşel, C., & Tanır Kayıkçı, E. (2019). Serisel korelasyonun toplam zenit gecikmesi zaman serilerinde parametrik olmayan trend belirleme üzerindeki etkisi. Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 9(1), 180-188.
  • Beşel, C. (2017). IGS istasyonları zenit troposferik gecikme parametresi zaman serilerinde trend ve mevsimsel etki analizleri [Yüksek lisans tezi, Karadeniz Teknik Üniversitesi]. YÖK Ulusal Tez Merkezi. https://tez.yok.gov.tr/UlusalTezMerkezi/
  • Bilich, A., Larson, K. M., & Axelrad, P. (2008). Modeling GPS phase multipath with SNR: case study from the Salar de Uyuni, Boliva. Journal of Geophysical Research: Solid Earth, 113(B4), Article B04401. https://doi.org/10.1029/2007JB005194
  • Braasch, M.S. (2017). Multipath. Springer Handbook of Global Navigation Satellite Systems.
  • Climate Data Store. (2022, July). Temperature and wind speed data. Climate Data Store (CDS). https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
  • Durand, M., Rivera, A., Nievinski, F., Lenzano, M. G., Monico, J. F. G., Paredes, P., & Lenzano, L. (2019). GPS reflectometry study detecting snow height changes in the Southern Patagonia Icefield. Cold Regions Science and Technology, 166, Article 102840. https://doi.org/10.1016/j.coldregions.2019.102840
  • Elosegui, P., Davis, J. L., Jaldehag, R. T. K., Johansson, J. M., Niell, A. E., & Shapiro, I. I. (1995). Geodesy using the Global Positioning System: the effects of signal scattering on estimates of site position. Journal of Geophysical Research, 100(6), 2156-2202.
  • Gamgam, H., & Altunkaynak, B. (2013). SPSS uygulamalı parametrik olmayan yöntemler. Seçkin Yayıncılık.
  • Georgiadou, P.Y., & Kleusberg, A. (1988). On carrier signal multipath effects in relative GPS positioning. Manuscripta Geodaetica, 13(3),172-179.
  • Geremia-Nievinski, F., Hobiger, T., Haas, R., Liu, W., Strandberg, J., Tabibi, S., Vey, S., Wickert, J., & Williams, S. (2020). SNR-based GNSS reflectometry for coastal sea-level altimetry: results from the first IAG inter-comparison campaign. Journal of Geodesy, 94(8), Article 70. https://doi.org/10.1007/s00190-020-01387-3
  • Ghiasi, Y., Duguay, C. R., Murfitt, J., van der Sanden, J. J., Thompson, A., Drouin, H., & Prévost, C. (2020). Application of GNSS interferometric reflectometry for the estimation of lake ice thickness. Remote Sensing, 12(17), Article 2721. https://doi.org/10.3390/RS12172721
  • Ghiasi, Y., Duguay, C., & Murfitt, J. (2021, March 29-31). Temperature effect on reflected GNSS signals from mid-latitude lake ice [Conference presentation]. The first workshop of the Inter-Commission Committee on Geodesy for Climate Research (ICCC), Potsdam, Germany.
  • Karegar, M. A., Larson, K. M., Kusche, J., & Dixon, T. H. (2020). Novel quantification of shallow sediment compaction by GPS Interferometric Reflectometry and implications for flood susceptibility. Geophysical Research Letters, 47(14), Article e2020GL087807. https://doi.org/10.1029/2020GL087807
  • Katzberg, S. J., & Garrison, J. L. (1996). Utilizing GPS to determine ionospheric delay over the ocean (Report Number NASA-TM-4750). NASA Langley Research Center. https://ntrs.nasa.gov/citations/19970005019
  • Katzberg, S. J., Garrison, J., & Howell, C. (1999, September 14-17). Simple over-water altimeter using GPS reflections [Meeting presentation], 12th International Technical Meeting of the Satellite Division of The Institute of Navigation, Nashville, Tennessee.
  • Kendall, M.G., (1975). Rank correlation methods. Charles Griffin.
  • Kim, S. K., & Park, J. (2021). Monitoring a storm surge during Hurricane Harvey using multi-constellation GNSS-Reflectometry. GPS Solutions, 25(2), Article 63. https://doi.org/10.1007/s10291-021-01105-2
  • Larson, K. M., Lay, T., Yamazaki, Y., Cheung, K. F., Ye, L., Williams, S. D. P., & Davis, J. L. (2021). Dynamic sea level variation from GNSS: 2020 Shumagin earthquake tsunami resonance and hurricane laura. Geophysical Research Letters, 48(4), Article e2020GL091378. https://doi.org/10.1029/2020GL091378
  • Larson, K. M., Ray, R. D., & Williams, S. D. P. (2017). A 10-year comparison of water levels measured with a geodetic GPS receiver versus a conventional tide gauge. Journal of Atmospheric and Oceanic Technology, 34(2), 295–307.
  • Larson, K. M., Ray, R. D., Nievinski, F. G., & Freymueller, J. T. (2013). The accidental tide gauge: a GPS reflection case study from Kachemak bay, Alaska. IEEE Geoscience and Remote Sensing Letters, 10(5), 1200-1204.
  • Larson, K. M., Löfgren, J. S., & Haas, R. (2013). Coastal sea level measurements using a single geodetic GPS receiver. Advances in Space Research, 51(8), 1301–1310. https://doi.org/10.1016/j.asr.2012.04.017
  • Larson, K. M., & Nievinski, F. G. (2013). GPS snow sensing: Results from the EarthScope plate boundary observatory. GPS Solutions, 17(1), 41–52. https://doi.org/10.1007/s10291-012-0259-7
  • Larson, K. M., Small, E. E., Gutmann, E., Bilich, A., Axelrad, P., & Braun, J. (2008). Using GPS multipath to measure soil moisture fluctuations: Initial results. GPS Solutions, 12(3), 173–177. https://doi.org/10.1007/s10291-007-0076-6
  • Lu, R., Chen, W., Dong, D., Wang, Z., Zhang, C., Peng, Y., & Yu, C. (2021). Multipath mitigation in GNSS precise point positioning based on trend-surface analysis and multipath hemispherical map. GPS Solutions, 25(3), Article 119. https://doi.org/10.1007/s10291-021-01156-5
  • Mann, H. B. (1945). Non-parametric tests aganist trend. The Econometric Society, 3, 245-259.
  • Martin-Neira, M. (1993). A Passive Reflectometry and Interferometry System (PARIS): application to ocean altimetry. ESA Journal, 17(4), 331-355.
  • Moradi, R., Schuster, W., Feng, S., Jokinen, A., & Ochieng, W. (2015). The carrier-multipath observable: a new carrier-phase multipath mitigation technique. GPS Solutions, 19(1), 73-82.
  • Öztürk, E., & Şerbetçi, M. (1992). Dengeleme Hesabı III (Yayın No. 144). Karadeniz Teknik Üniversitesi.
  • Tabibi, S., Sauveur, R., Guerrier, K., Metayer, G., & Francis, O. (2021). SNR-based GNSS-R for coastal sea-level altimetry. Geosciences, 11(9), Article 391. https://doi.org/10.3390/geosciences11090391
  • Tüysüz, N., & Yaylalı Abanuz, G. (2012). Jeoistatistik: Kavramlar ve Bilgisayarlı Uygulamalar. Karadeniz Teknik Üniversitesi Matbaası.
  • TUDES. (2022, Haziran). Deniz seviyesi. Türkiye Ulusal Deniz Seviyesi İzleme Sistemi (TUDES). https://tudes.harita.gov.tr/Portal/VeriSorgula
  • Vey, S., Güntner, A., Wickert, J., Blume, T., & Ramatschi, M. (2016). Long-term soil moisture dynamics derived from GNSS interferometric reflectometry: a case study for Sutherland, South Africa. GPS Solutions, 20(4), 641–654.
  • Wang, X., Zhang, Q., & Zhang, S. (2018). Water levels measured with SNR using wavelet decomposition and Lomb–Scargle periodogram. GPS Solutions, 22(1), Article 22. https://doi.org/10.1007/s10291-017-0684-8
  • Zhang, S., Zhang, C., Zhao, Y., Li, H., Liu, Q., & Pang, X. (2021). Snow depth estimation based on GNSS-IR cluster analysis. Measurement Science and Technology, 32(9), Article 095801. https://doi.org/10.1088/1361-6501/abee54
There are 37 citations in total.

Details

Primary Language Turkish
Subjects Photogrammetry and Remote Sensing
Journal Section Research Articles
Authors

Cansu Beşel Hatipoğlu 0000-0003-3434-6483

Emine Tanır Kayıkçı 0000-0001-8259-5543

Early Pub Date September 24, 2024
Publication Date September 26, 2024
Submission Date May 20, 2024
Acceptance Date September 2, 2024
Published in Issue Year 2024 Volume: 5 Issue: 2

Cite

APA Beşel Hatipoğlu, C., & Tanır Kayıkçı, E. (2024). Meteorolojik Parametrelerin GNSS Yansıma Sinyallerine Etkisinin İncelenmesi. Türk Uzaktan Algılama Ve CBS Dergisi, 5(2), 186-198. https://doi.org/10.48123/rsgis.1487035