Research Article
BibTex RIS Cite

Geographic Information Systems-Based Bicycle Parking Accessibility in Sustainable Campus Planning: Erciyes University Campus

Year 2025, Volume: 6 Issue: 2, 131 - 143, 27.09.2025
https://doi.org/10.48123/rsgis.1604590

Abstract

Campus areas follow the model of a city, with a unique population, transportation system, and urban and environmental services. They also serve important functions within cities, offering various beneficial services. Consequently, the sustainability of university campuses contributes to the overall urban sustainability. Furthermore, the consideration of campus sustainability involves multiple factors, and transportation is one of the most important. This study examined the areas served by the bicycle parking points located on the Erciyes University campus, particularly the areas within a walking distance of 500 m. The study used geographic information systems (GIS) and network analysis and found that some buildings within the campus were not located within 500 m of the bicycle parking points by walking. Notably, it is not sufficient to determine the service areas by simply considering a circle with a diameter of 500 m centered on the bicycle parking point. This study underscores the influence of bicycle parking locations on campus sustainability and the benefit of using GIS in the planning of transportation infrastructure.

References

  • Ahmed, S., Ibrahim, R. F., & Hefny, H. A. (2017, June 22–23). GIS-based network analysis for the roads network of the Greater Cairo area [Conference presentation]. International Conference on Applied Research in Computer Science and Engineering (ICAR’17), Baabda, Lebanon.
  • Alhajaj, N. (2023). Assessment of walkability of large parking lots on university campuses using walking infrastructure and user behavior as an assessment method for promoting sustainability. Sustainability, 15(9), Article 7203. https://doi.org/10.3390/su15097203
  • Arbis, D., Rashidi, T. H., Dixit, V. V., & Vandebona, U. (2016). Analysis and planning of bicycle parking for public transport stations. International Journal of Sustainable Transportation, 10(6), 495–504.
  • Bahadori, M. S., Gonçalves, A. B., & Moura, F. (2021). A systematic review of station location techniques for bicycle-sharing systems planning and operation. ISPRS International Journal of Geo-Information, 10(8), Article 554. https://doi.org/10.3390/ijgi10080554
  • Balasubramani, K., Gomathi, M., & Prasad, S. (2016). GIS-based service area analysis for optimal planning strategies: A case study of fire service stations in Madurai city. Geographic Analysis of Union Geographic Information Technologists, 5(2), 11–18.
  • Balsas, C. J. L. (2003). Sustainable transportation planning on college campuses. Transport Policy, 10(1), 35–49. https://doi.org/10.1016/S0967-070X(02)00028-8
  • Black, W. R. (1996). Sustainable transportation: A U.S. perspective. Journal of Transport Geography, 4(3), 151–159. https://doi.org/10.1016/0966-6923(96)00020-8
  • Black, W. R. (1997). North American transportation: Perspectives on research needs and sustainable transportation. Journal of Transport Geography, 5(1), 12–19. https://doi.org/10.1016/S0966-6923(96)00042-7
  • Büke, C. O., & Erturaç, M. K. (2016). Ağ analiz yöntemiyle Sakarya Üniversitesi Esentepe Kampüsünün incelenmesi ve web tabanlı sunumu. Nature Sciences, 11(4), 14–25.
  • Cabezas, H., Pawlowski, C. W., Mayer, A. L., & Hoagland, N. T. (2004). Sustainability: Ecological, social, economic, technological, and systems perspectives. In S. K. Sikdar, P. Glavič, & R. Jain (Eds.), Technological choices for sustainability (pp. 37–64). https://doi.org/10.1007/978-3-662-10270-1_3
  • Capodici, A. E., D’Orso, G., & Migliore, M. (2021). A GIS-based methodology for evaluating the increase in multimodal transport between bicycle and rail transport systems: A case study in Palermo. ISPRS International Journal of Geo-Information, 10(5), Article 321. https://doi.org/10.3390/ijgi10050321
  • Cinkiş, D., & Erdin, H. E. (2022). Kent merkezlerinde otopark talebinin belirlenmesine ve yönetilmesine ilişkin bir değerlendirme yöntemi: İzmir Alsancak. Planlama, 32(3), 408–423. https://doi.org/10.14744/planlama.2022.67984
  • Cohen, D., Sehgal, A., Williamson, S., Golinelli, D., McKenzie, T. L., Capone-Newton, P., & Lurie, N. (2008). Impact of a new bicycle path on physical activity. Preventive Medicine, 46(1), 80–81.
  • Comber, A., Brunsdon, C., & Green, E. (2008). Using a GIS-based network analysis to determine urban greenspace accessibility for different ethnic and religious groups. Landscape and Urban Planning, 86(1), 103–114.
  • Curtin, K. M. (2007). Network analysis in geographic information science: Review, assessment, and projections. Cartography and Geographic Information Science, 34(2), 103–111. https://doi.org/10.1559/152304007781002163
  • Daniella, D., & Dharma Wangsa, A. A. (2019). Leveraging integrated bike-sharing with existing Bus Rapid Transit (BRT) to reduce motor vehicle in Central Jakarta municipal. Geoplanning: Journal of Geomatics and Planning, 6(1), 13–20.
  • Davidson, J. H. (2023). A socio-spatial approach to define priority areas for bicycle infrastructure using Covid-19 data. Sustainable Cities and Society, 99, Article 104883. https://doi.org/10.1016/j.scs.2023.104883
  • Dehghanmongabadi, A., & Hoşkara, Ş. (2018). Challenges of promoting sustainable mobility on university campuses: The case of Eastern Mediterranean University. Sustainability, 10(12), Article 4842. https://doi.org/10.3390/su10124842
  • Dell’Olio, L., Cordera, R., Ibeas, A., Barreda, R., Alonso, B., & Moura, J. L. (2019). A methodology based on parking policy to promote sustainable mobility in college campuses. Transport Policy, 80, 148–156.
  • Eskind, A. (2024). Finding suitable locations for bicycle and scooter parking facilities in San Francisco [Master’s thesis, The University of North Carolina at Chapel Hill]. https://doi.org/10.17615/yg03-6m32 Geofabrik. (2024). OpenStreetMap data: Turkey [Veri seti]. https://download.geofabrik.de/europe/turkey.html
  • Guler, D., & Yomralioglu, T. (2021). Bicycle station and lane location selection using open source GIS technology. In A. Mobasheri (Ed.), Open source geospatial science for urban studies (pp. 9–36). https://doi.org/10.1007/978-3-030-58232-6_2
  • Gutiérrez, J., & García-Palomares, J. C. (2008). Distance-measure impacts on the calculation of transport service areas using GIS. Environment and Planning B: Planning and Design, 35(3), 480–503. https://doi.org/10.1068/b33043
  • Güldü, E., Kuşçu-Şimşek, Ç., & Selim, S. (2024). A study on the improvement of bicycle transportation in Sivas city using hybrid multi-criteria model based network analysis. Environment, Development and Sustainability. Advance online publication. https://doi.org/10.1007/s10668-024-04891-0
  • Handy, S. (2020). Is accessibility an idea whose time has finally come? Transportation Research Part D: Transport and Environment, 83, Article 102319. https://doi.org/10.1016/j.trd.2020.102319
  • Holling, C. S. (2001). Understanding the complexity of economic, ecological, and social systems. Ecosystems, 4(5), 390–405. https://doi.org/10.1007/s10021-001-0101-5
  • Hosford, K., & Winters, M. (2018). Who are public bicycle share programs serving? An evaluation of the equity of spatial access to bicycle share service areas in Canadian cities. Transportation Research Record, 2672(36), 42–50. https://doi.org/10.1177/0361198118783107
  • Hunt, J. D., & Abraham, J. E. (2007). Influences on bicycle use. Transportation, 34(4), 453–470.
  • Iacono, M., Krizek, K. J., & El-Geneidy, A. (2010). Measuring non-motorized accessibility: Issues, alternatives, and execution. Journal of Transport Geography, 18(1), 133–140. https://doi.org/10.1016/j.jtrangeo.2009.02.002
  • Kaplan, D. H. (2015). Transportation sustainability on a university campus. International Journal of Sustainability in Higher Education, 16(2), 173–186. https://doi.org/10.1108/IJSHE-03-2013-0023
  • Koohsari, M. J., Sugiyama, T., Lamb, K. E., Villanueva, K., & Owen, N. (2014). Street connectivity and walking for transport: Role of neighborhood destinations. Preventive Medicine, 66, 118–122.
  • Lee, S., Lee, C., Nam, J. W., Abbey-Lambertz, M., & Mendoza, J. A. (2020). School walkability index: Application of environmental audit tool and GIS. Journal of Transport & Health, 18, Article 100880. https://doi.org/10.1016/j.jth.2020.100880
  • Li, A., Huang, Y., & Axhausen, K. W. (2020). An approach to imputing destination activities for inclusion in measures of bicycle accessibility. Journal of Transport Geography, 82, Article 102566. https://doi.org/10.1016/j.jtrangeo.2019.102566
  • Liu, S. F., Jiang, M., Bai, S., & Liu, H. (2024). Research on automatic generation of park road network based on skeleton algorithm. Applied Sciences, 14(18), Article 8475. https://doi.org/10.3390/app14188475
  • Lowry, M., & Loh, T. H. (2017). Quantifying bicycle network connectivity. Preventive Medicine, 95, 134–140. https://doi.org/10.1016/j.ypmed.2016.12.007
  • McNally, D., Tillinghast, R., & Iseki, H. (2023). Bicycle accessibility GIS analysis for bike master planning with a consideration of level of traffic stress (LTS) and energy consumption. Sustainability, 15(1), Article 42. https://doi.org/10.3390/su15010042
  • McNeil, N. (2011). Bikeability and the 20-min neighborhood: How infrastructure and destinations influence bicycle accessibility. Transportation Research Record, 2247(1), 53–63. https://doi.org/10.3141/2247-07
  • Miller, E. J. (2018). Accessibility: Measurement and application in transportation planning. Transport Reviews, 38(5), 551–555. https://doi.org/10.1080/01441647.2018.1492778
  • Miller, H. J. (1999). Potential contributions of spatial analysis to geographic information systems for transportation (GIS-T). Geographical Analysis, 31(4), 373–399. https://doi.org/10.1111/j.1538-4632.1999.tb00991.x
  • Mora, R., Truffello, R., & Oyarzún, G. (2021). Equity and accessibility of cycling infrastructure: An analysis of Santiago de Chile. Journal of Transport Geography, 91, Article 102964. https://doi.org/10.1016/j.jtrangeo.2021.102964
  • Moudon, A. V., Lee, C., Cheadle, A. D., Garvin, C., Johnson, D., Schmid, T. L., Weathers, R. D., & Lin, L. (2006). Operational definitions of walkable neighborhood: Theoretical and empirical insights. Journal of Physical Activity and Health, 3(S1), S99–S117. https://doi.org/10.1123/jpah.3.s1.s99
  • Murphy, B., & Owen, A. (2019). Implementing low-stress bicycle routing in national accessibility evaluation. Transportation Research Record, 2673(5), 240–249. https://doi.org/10.1177/0361198119837179
  • Nagowah, S. D., Ben-Sta, H., & Gobin-Rahimbux, B. A. (2019, October 14–17). An ontology for an IoT-enabled smart parking in a university campus [Conference presentation]. 2019 IEEE International Smart Cities Conference (ISC2), Casablanca, Morocco.
  • Noland, R. B., & Kunreuther, H. (1995). Short-run and long-run policies for increasing bicycle transportation for daily commuter trips. Transport Policy, 2(1), 67–79. https://doi.org/10.1016/0967-070X(95)93248-W
  • Nyerges, T. L. (1995). Cognitive issues in the evolution of GIS user knowledge. In T. L. Nyerges, D. M. Mark, R. Laurini, & M. J. Egenhofer (Eds.), Cognitive aspects of human-computer interaction for geographic information systems (pp. 61–74). Springer. https://doi.org/10.1007/978-94-011-0103-5_6
  • Öztaşkın, D., & Levend, S. (2023). The accessibility of public transportation stops: Istanbul case. Turkish Journal of Remote Sensing and GIS, 4(2), 301–318. https://doi.org/10.48123/rsgis.1299707
  • Pritchard, R., Frøyen, Y., & Snizek, B. (2019). Bicycle level of service for route choice—A GIS evaluation of four existing indicators with empirical data. ISPRS International Journal of Geo-Information, 8(5), Article 214. https://doi.org/10.3390/ijgi8050214
  • Purvis, B., Mao, Y., & Robinson, D. (2019). Three pillars of sustainability: In search of conceptual origins. Sustainability Science, 14(3), 681–695. https://doi.org/10.1007/s11625-018-0627-5
  • Putta, T., & Furth, P. G. (2019). Method to identify and visualize barriers in a low-stress bike network. Transportation Research Record, 2673(9), 452–460. https://doi.org/10.1177/0361198119847617
  • Rybarczyk, G., & Wu, C. (2010). Bicycle facility planning using GIS and multi-criteria decision analysis. Applied Geography, 30(2), 282–293. https://doi.org/10.1016/j.apgeog.2009.08.005
  • Saghapour, T., Moridpour, S., & Thompson, R. G. (2017). Measuring cycling accessibility in metropolitan areas. International Journal of Sustainable Transportation, 11(5), 381–394.
  • Veillette, M. P., Grisé, E., & El-Geneidy, A. (2018). Park ‘n’ roll: Identifying and prioritizing locations for new bicycle parking in Québec City, Canada. Transportation Research Record, 2672(36), 73–82.
  • Wang, K., Akar, G., & Chen, Y. J. (2018). Bike sharing differences among Millennials, Gen Xers, and Baby Boomers: Lessons learnt from New York City’s bike share. Transportation Research Part A: Policy and Practice, 116, 1–14.
  • Yedla, S. (2015). Urban transportation and the environment. Springer.
  • Zhang, Y., Lin, D., & Liu, X. C. (2019). Biking islands in cities: An analysis combining bike trajectory and percolation theory. Journal of Transport Geography, 80, Article 102497. https://doi.org/10.1016/j.jtrangeo.2019.102497
  • Zhuang, C., Li, S., & Liu, X. (2025). Unveiling disparities in bicycling mobility patterns across socioeconomic statuses: A framework for identifying user profiles in dockless bike-sharing systems. Annals of the American Association of Geographers, 115(4), 876–898. https://doi.org/10.1080/24694452.2025.2463508

Sürdürülebilir Kampüs Perspektifinde Bisiklet Parklarına Erişilebilirliğin Coğrafi Bilgi Sistemleri Tabanlı Analizi: Erciyes Üniversitesi Kampüsü

Year 2025, Volume: 6 Issue: 2, 131 - 143, 27.09.2025
https://doi.org/10.48123/rsgis.1604590

Abstract

Kampüs alanları nüfus, kentsel hizmetler, ulaşım, çevresel hizmetleri ile küçük kent modeli oluşturmaktadır. Kampüs alanları sunduğu hizmetler ile kentlerin önemli parçalarıdır. Üniversite kampüslerinde sürdürülebilirlik kentsel sürdürülebilirliğe de önemli katkılar sunmaktadır. Sürdürebilir kampüs çok yönlü bir yaklaşımı içermektedir. Ulaşım ise sürdürülebilir kampüsün en önemli başlıklarından birisidir. Bu çalışmada Erciyes Üniversitesi Kampüs Alanı içinde yer alan bisiklet park noktalarının 500 metre yürüme mesafesi içinde hizmet ettiği alanlar araştırılmıştır. Çalışmada coğrafi bilgi sistemleri (CBS) ve network analizi metodu kullanılmıştır. Çalışmada Erciyes Üniversitesi içinde yer alan bazı binaların bisiklet park noktalarından 500 metre yürüme mesafesi içinde yer almadığı tespit edilmiştir. Çalışmada 500 metre yarıçap ya da çap ile hizmet alanı belirlemenin doğru sonuç vermediği varılan diğer önemli bulgudur. Kampüs alanlarının sürdürülebilirliği açısından bisiklet ulaşımının önemli oluğu ve ulaşım altyapı alanlarının belirlenmesinde GIS önem arz ettiği çalışmanın sonuçları arasındadır.

References

  • Ahmed, S., Ibrahim, R. F., & Hefny, H. A. (2017, June 22–23). GIS-based network analysis for the roads network of the Greater Cairo area [Conference presentation]. International Conference on Applied Research in Computer Science and Engineering (ICAR’17), Baabda, Lebanon.
  • Alhajaj, N. (2023). Assessment of walkability of large parking lots on university campuses using walking infrastructure and user behavior as an assessment method for promoting sustainability. Sustainability, 15(9), Article 7203. https://doi.org/10.3390/su15097203
  • Arbis, D., Rashidi, T. H., Dixit, V. V., & Vandebona, U. (2016). Analysis and planning of bicycle parking for public transport stations. International Journal of Sustainable Transportation, 10(6), 495–504.
  • Bahadori, M. S., Gonçalves, A. B., & Moura, F. (2021). A systematic review of station location techniques for bicycle-sharing systems planning and operation. ISPRS International Journal of Geo-Information, 10(8), Article 554. https://doi.org/10.3390/ijgi10080554
  • Balasubramani, K., Gomathi, M., & Prasad, S. (2016). GIS-based service area analysis for optimal planning strategies: A case study of fire service stations in Madurai city. Geographic Analysis of Union Geographic Information Technologists, 5(2), 11–18.
  • Balsas, C. J. L. (2003). Sustainable transportation planning on college campuses. Transport Policy, 10(1), 35–49. https://doi.org/10.1016/S0967-070X(02)00028-8
  • Black, W. R. (1996). Sustainable transportation: A U.S. perspective. Journal of Transport Geography, 4(3), 151–159. https://doi.org/10.1016/0966-6923(96)00020-8
  • Black, W. R. (1997). North American transportation: Perspectives on research needs and sustainable transportation. Journal of Transport Geography, 5(1), 12–19. https://doi.org/10.1016/S0966-6923(96)00042-7
  • Büke, C. O., & Erturaç, M. K. (2016). Ağ analiz yöntemiyle Sakarya Üniversitesi Esentepe Kampüsünün incelenmesi ve web tabanlı sunumu. Nature Sciences, 11(4), 14–25.
  • Cabezas, H., Pawlowski, C. W., Mayer, A. L., & Hoagland, N. T. (2004). Sustainability: Ecological, social, economic, technological, and systems perspectives. In S. K. Sikdar, P. Glavič, & R. Jain (Eds.), Technological choices for sustainability (pp. 37–64). https://doi.org/10.1007/978-3-662-10270-1_3
  • Capodici, A. E., D’Orso, G., & Migliore, M. (2021). A GIS-based methodology for evaluating the increase in multimodal transport between bicycle and rail transport systems: A case study in Palermo. ISPRS International Journal of Geo-Information, 10(5), Article 321. https://doi.org/10.3390/ijgi10050321
  • Cinkiş, D., & Erdin, H. E. (2022). Kent merkezlerinde otopark talebinin belirlenmesine ve yönetilmesine ilişkin bir değerlendirme yöntemi: İzmir Alsancak. Planlama, 32(3), 408–423. https://doi.org/10.14744/planlama.2022.67984
  • Cohen, D., Sehgal, A., Williamson, S., Golinelli, D., McKenzie, T. L., Capone-Newton, P., & Lurie, N. (2008). Impact of a new bicycle path on physical activity. Preventive Medicine, 46(1), 80–81.
  • Comber, A., Brunsdon, C., & Green, E. (2008). Using a GIS-based network analysis to determine urban greenspace accessibility for different ethnic and religious groups. Landscape and Urban Planning, 86(1), 103–114.
  • Curtin, K. M. (2007). Network analysis in geographic information science: Review, assessment, and projections. Cartography and Geographic Information Science, 34(2), 103–111. https://doi.org/10.1559/152304007781002163
  • Daniella, D., & Dharma Wangsa, A. A. (2019). Leveraging integrated bike-sharing with existing Bus Rapid Transit (BRT) to reduce motor vehicle in Central Jakarta municipal. Geoplanning: Journal of Geomatics and Planning, 6(1), 13–20.
  • Davidson, J. H. (2023). A socio-spatial approach to define priority areas for bicycle infrastructure using Covid-19 data. Sustainable Cities and Society, 99, Article 104883. https://doi.org/10.1016/j.scs.2023.104883
  • Dehghanmongabadi, A., & Hoşkara, Ş. (2018). Challenges of promoting sustainable mobility on university campuses: The case of Eastern Mediterranean University. Sustainability, 10(12), Article 4842. https://doi.org/10.3390/su10124842
  • Dell’Olio, L., Cordera, R., Ibeas, A., Barreda, R., Alonso, B., & Moura, J. L. (2019). A methodology based on parking policy to promote sustainable mobility in college campuses. Transport Policy, 80, 148–156.
  • Eskind, A. (2024). Finding suitable locations for bicycle and scooter parking facilities in San Francisco [Master’s thesis, The University of North Carolina at Chapel Hill]. https://doi.org/10.17615/yg03-6m32 Geofabrik. (2024). OpenStreetMap data: Turkey [Veri seti]. https://download.geofabrik.de/europe/turkey.html
  • Guler, D., & Yomralioglu, T. (2021). Bicycle station and lane location selection using open source GIS technology. In A. Mobasheri (Ed.), Open source geospatial science for urban studies (pp. 9–36). https://doi.org/10.1007/978-3-030-58232-6_2
  • Gutiérrez, J., & García-Palomares, J. C. (2008). Distance-measure impacts on the calculation of transport service areas using GIS. Environment and Planning B: Planning and Design, 35(3), 480–503. https://doi.org/10.1068/b33043
  • Güldü, E., Kuşçu-Şimşek, Ç., & Selim, S. (2024). A study on the improvement of bicycle transportation in Sivas city using hybrid multi-criteria model based network analysis. Environment, Development and Sustainability. Advance online publication. https://doi.org/10.1007/s10668-024-04891-0
  • Handy, S. (2020). Is accessibility an idea whose time has finally come? Transportation Research Part D: Transport and Environment, 83, Article 102319. https://doi.org/10.1016/j.trd.2020.102319
  • Holling, C. S. (2001). Understanding the complexity of economic, ecological, and social systems. Ecosystems, 4(5), 390–405. https://doi.org/10.1007/s10021-001-0101-5
  • Hosford, K., & Winters, M. (2018). Who are public bicycle share programs serving? An evaluation of the equity of spatial access to bicycle share service areas in Canadian cities. Transportation Research Record, 2672(36), 42–50. https://doi.org/10.1177/0361198118783107
  • Hunt, J. D., & Abraham, J. E. (2007). Influences on bicycle use. Transportation, 34(4), 453–470.
  • Iacono, M., Krizek, K. J., & El-Geneidy, A. (2010). Measuring non-motorized accessibility: Issues, alternatives, and execution. Journal of Transport Geography, 18(1), 133–140. https://doi.org/10.1016/j.jtrangeo.2009.02.002
  • Kaplan, D. H. (2015). Transportation sustainability on a university campus. International Journal of Sustainability in Higher Education, 16(2), 173–186. https://doi.org/10.1108/IJSHE-03-2013-0023
  • Koohsari, M. J., Sugiyama, T., Lamb, K. E., Villanueva, K., & Owen, N. (2014). Street connectivity and walking for transport: Role of neighborhood destinations. Preventive Medicine, 66, 118–122.
  • Lee, S., Lee, C., Nam, J. W., Abbey-Lambertz, M., & Mendoza, J. A. (2020). School walkability index: Application of environmental audit tool and GIS. Journal of Transport & Health, 18, Article 100880. https://doi.org/10.1016/j.jth.2020.100880
  • Li, A., Huang, Y., & Axhausen, K. W. (2020). An approach to imputing destination activities for inclusion in measures of bicycle accessibility. Journal of Transport Geography, 82, Article 102566. https://doi.org/10.1016/j.jtrangeo.2019.102566
  • Liu, S. F., Jiang, M., Bai, S., & Liu, H. (2024). Research on automatic generation of park road network based on skeleton algorithm. Applied Sciences, 14(18), Article 8475. https://doi.org/10.3390/app14188475
  • Lowry, M., & Loh, T. H. (2017). Quantifying bicycle network connectivity. Preventive Medicine, 95, 134–140. https://doi.org/10.1016/j.ypmed.2016.12.007
  • McNally, D., Tillinghast, R., & Iseki, H. (2023). Bicycle accessibility GIS analysis for bike master planning with a consideration of level of traffic stress (LTS) and energy consumption. Sustainability, 15(1), Article 42. https://doi.org/10.3390/su15010042
  • McNeil, N. (2011). Bikeability and the 20-min neighborhood: How infrastructure and destinations influence bicycle accessibility. Transportation Research Record, 2247(1), 53–63. https://doi.org/10.3141/2247-07
  • Miller, E. J. (2018). Accessibility: Measurement and application in transportation planning. Transport Reviews, 38(5), 551–555. https://doi.org/10.1080/01441647.2018.1492778
  • Miller, H. J. (1999). Potential contributions of spatial analysis to geographic information systems for transportation (GIS-T). Geographical Analysis, 31(4), 373–399. https://doi.org/10.1111/j.1538-4632.1999.tb00991.x
  • Mora, R., Truffello, R., & Oyarzún, G. (2021). Equity and accessibility of cycling infrastructure: An analysis of Santiago de Chile. Journal of Transport Geography, 91, Article 102964. https://doi.org/10.1016/j.jtrangeo.2021.102964
  • Moudon, A. V., Lee, C., Cheadle, A. D., Garvin, C., Johnson, D., Schmid, T. L., Weathers, R. D., & Lin, L. (2006). Operational definitions of walkable neighborhood: Theoretical and empirical insights. Journal of Physical Activity and Health, 3(S1), S99–S117. https://doi.org/10.1123/jpah.3.s1.s99
  • Murphy, B., & Owen, A. (2019). Implementing low-stress bicycle routing in national accessibility evaluation. Transportation Research Record, 2673(5), 240–249. https://doi.org/10.1177/0361198119837179
  • Nagowah, S. D., Ben-Sta, H., & Gobin-Rahimbux, B. A. (2019, October 14–17). An ontology for an IoT-enabled smart parking in a university campus [Conference presentation]. 2019 IEEE International Smart Cities Conference (ISC2), Casablanca, Morocco.
  • Noland, R. B., & Kunreuther, H. (1995). Short-run and long-run policies for increasing bicycle transportation for daily commuter trips. Transport Policy, 2(1), 67–79. https://doi.org/10.1016/0967-070X(95)93248-W
  • Nyerges, T. L. (1995). Cognitive issues in the evolution of GIS user knowledge. In T. L. Nyerges, D. M. Mark, R. Laurini, & M. J. Egenhofer (Eds.), Cognitive aspects of human-computer interaction for geographic information systems (pp. 61–74). Springer. https://doi.org/10.1007/978-94-011-0103-5_6
  • Öztaşkın, D., & Levend, S. (2023). The accessibility of public transportation stops: Istanbul case. Turkish Journal of Remote Sensing and GIS, 4(2), 301–318. https://doi.org/10.48123/rsgis.1299707
  • Pritchard, R., Frøyen, Y., & Snizek, B. (2019). Bicycle level of service for route choice—A GIS evaluation of four existing indicators with empirical data. ISPRS International Journal of Geo-Information, 8(5), Article 214. https://doi.org/10.3390/ijgi8050214
  • Purvis, B., Mao, Y., & Robinson, D. (2019). Three pillars of sustainability: In search of conceptual origins. Sustainability Science, 14(3), 681–695. https://doi.org/10.1007/s11625-018-0627-5
  • Putta, T., & Furth, P. G. (2019). Method to identify and visualize barriers in a low-stress bike network. Transportation Research Record, 2673(9), 452–460. https://doi.org/10.1177/0361198119847617
  • Rybarczyk, G., & Wu, C. (2010). Bicycle facility planning using GIS and multi-criteria decision analysis. Applied Geography, 30(2), 282–293. https://doi.org/10.1016/j.apgeog.2009.08.005
  • Saghapour, T., Moridpour, S., & Thompson, R. G. (2017). Measuring cycling accessibility in metropolitan areas. International Journal of Sustainable Transportation, 11(5), 381–394.
  • Veillette, M. P., Grisé, E., & El-Geneidy, A. (2018). Park ‘n’ roll: Identifying and prioritizing locations for new bicycle parking in Québec City, Canada. Transportation Research Record, 2672(36), 73–82.
  • Wang, K., Akar, G., & Chen, Y. J. (2018). Bike sharing differences among Millennials, Gen Xers, and Baby Boomers: Lessons learnt from New York City’s bike share. Transportation Research Part A: Policy and Practice, 116, 1–14.
  • Yedla, S. (2015). Urban transportation and the environment. Springer.
  • Zhang, Y., Lin, D., & Liu, X. C. (2019). Biking islands in cities: An analysis combining bike trajectory and percolation theory. Journal of Transport Geography, 80, Article 102497. https://doi.org/10.1016/j.jtrangeo.2019.102497
  • Zhuang, C., Li, S., & Liu, X. (2025). Unveiling disparities in bicycling mobility patterns across socioeconomic statuses: A framework for identifying user profiles in dockless bike-sharing systems. Annals of the American Association of Geographers, 115(4), 876–898. https://doi.org/10.1080/24694452.2025.2463508
There are 55 citations in total.

Details

Primary Language English
Subjects Geospatial Information Systems and Geospatial Data Modelling
Journal Section Research Articles
Authors

Ömer Buğra Karakoç 0009-0005-0472-9768

Barış Ergen 0000-0001-8602-2005

Publication Date September 27, 2025
Submission Date December 20, 2024
Acceptance Date May 19, 2025
Published in Issue Year 2025 Volume: 6 Issue: 2

Cite

APA Karakoç, Ö. B., & Ergen, B. (2025). Geographic Information Systems-Based Bicycle Parking Accessibility in Sustainable Campus Planning: Erciyes University Campus. Türk Uzaktan Algılama Ve CBS Dergisi, 6(2), 131-143. https://doi.org/10.48123/rsgis.1604590