Review
BibTex RIS Cite

A Review Study on Offshore Wind Systems and the Danish Model

Year 2020, Volume: 1 Issue: 1, 54 - 67, 30.06.2020

Abstract

The increasing energy demand in the world and the related new studies make offshore wind turbine applications a preferred renewable energy source nowadays, especially in Europe. In this study, offshore wind turbines and related electrical and mechanical systems are examined in detail. A comprehensive literature review is carried out comparatively with the historical development and especially the studies in Europe. The installed wind energy capacities in Europe are given comparatively. The physical and geographical structure of Denmark is similar to Turkey for offshore wind turbine systems, which are well-established infrastructure. The history of offshore wind turbine applications and the potential and applicability of these systems are discussed comparatively in this study. Turkey's status as offshore wind potential is examined extensively, and how to make wind energy calculations are elaborated. Besides, the installation and connections of offshore wind turbines and other related issues are investigated. Examining relevant studies on this subject in Denmark, the study aims to set an example for future research on this issue in our country.

References

  • Abrahamsen, A.B., Mijatovic, N., Seiler, E., Zirngibl, T., Træholt, C., Norgård, P.B.,Ostergaard, J. (2010). Superconducting wind turbine generators, Superconductor Science and Technology, 23(3), 034019 (8 s).
  • Ackermann, T., (2005). Wind power in power systems, Vol. 140, Chichester: John Wiley.
  • Altınok, M.T., Emeksiz, C. (2017). Dünyada ve Türkiye'de deniz üstü rüzgâr santrallerinin durumu ve genel değerlendirmesi, 2. Uluslararası mühendislik tasarım ve mimarlık kongresi, Mayıs 2017, Kocaeli, Türkiye.
  • Barthelmie, R.J., Pryor, S.C., Frandsen, S.T., Hansen, K.S., Schepers, J.G., Rados, K., Schles, W., Neubert, A., Jensen, L.E., Neckelmann, S. (2010). Quantifying the impact of wind turbine wakes on power output at offshore wind farms, Journal of Atmospheric and Oceanic Technology, 27(8), 1302-1317.
  • Chen Z. (2019). Overview of wind power development, Course Presentations, Aalborg University, Denmark.
  • Chen Z. (2018). Wind power plant control, Wiley encyclopedia of electrical and electronics engineering, John & Wiley ISBN: 9780471346081, USA.
  • Daniel, J., Liu, S., Ibanez, E., Pennock, K., Reed, G., Hanes, S. (2014). National Offshore Wind Energy Grid Interconnection Study Executive Summary, US, (38s).
  • Danish Energy Agency, (2019). Security of electricity supply in Denmark, 1st edition 2015-translated 2016, Denmark.
  • Esteban, M., Leary, D. (2012). Current developments and future prospects of offshore wind and ocean energy, Applied Energy, 90(1), 128-136.
  • Europe Wind, Offshore Wind in Europe: Key trends and statistics 2017, URL-9: ( 2018): https://windeurope.org/wpcontent/uploads/files/aboutwind/statistics/Windeurope-Annual-Offshore-Statistics 2017.pdf (2018).
  • Gasch, R., Twele, J. (2012). Wind Power Plants: Fundamentals, Design, Construction and Operation, Springer, ISBN: 978-3-642-22938-1, Berlin, Germany.
  • Hou, P., Hu, W., Chen, Z. (2015). Offshore wind farm electrical system layout optimization using dynamic minimum spinning tree algorithm, In 50th IEEE International Universities Power Engineering Conference, September 2015, Stafford, UK.
  • Keysan, O., Mueller, M. (2015). A modular and cost-effective superconducting generator design for offshore wind turbines, Superconductor Science and Technology, 28(3), 034004.
  • Kjaer E., (2017). Danish Experiences from Offshore Wind Development, Danish Energy Agency, Denmark.
  • Küçükkaya, E. (2019). Türkiye Danimarka ile İşbirliği Yaparak Deniz Üstü RES Projelerine Başlıyor!, Enerji Portalı.
  • Liu D., (2019). Transmission System for Offshore Wind Farms, Course Presentation, Aalborg University.
  • Liu, H. (2014). Grid Integration of Offshore Wind Farms via VSC-HVDC – Dynamic Stability Study, Ph. D. Thesis, Department of Energy Technology, Aalborg University, Denmark.
  • Olimpo, A.L., David, C.G., Edgar, M.G., Grain, A. (2014). Offshore Wind Energy Generation: Control, Protection, and Integration to Electrical Systems, First Edition, John Wiley&Sons, ISBN: 978-1-118-53962-0, US.
  • Öksel, C., Koç, A., Koç, Y., Yağlı, H. (2016). Antakya körfezi deniz üstü rüzgâr enerjisi potansiyel araştırılması, Selçuk Üniversitesi Mühendislik, Bilim ve Teknoloji Dergisi, 4(1), 18-29.
  • Öztürk, İ., Çelik, A. (2006). Dünya’da ve Türkiye’de rüzgâr enerjisi kullanım durumu ve geleceğe yönelik beklentiler, Atatürk Üniversitesi Ziraat Fakültesi Dergisi, 37(2), 267-274.
  • Ruszel, M. (2016). The political importance of energy cooperation between Germany and Denmark on the European Union energy market, In E3S Web of Conferences (Vol. 10, p. 00135). EDP Sciences.
  • Sun, X., Huang, D., Wu, G. (2012). The current state of offshore wind energy technology development, Energy, 41(1), 298-312.
  • Şahin, M.E., Okumuş, H.İ. (2017). The Design Steps of a Hybrid Energy System, Acta Physica Polonica A., 132(3), 1160-1164.
  • Şenel, M.C., Koç, E. (2015). Dünyada ve Türkiye’de rüzgâr enerjisi durumu-genel değerlendirme, Engineer & The Machinery, Magazine, 663.
  • Taner, A.C., Odası, F.M. (2014). İngiltere Yenilenebilir Enerji Kaynakları (YEK) Kökenli Açık Deniz (Offshore) ve Kıyılara Yakın Kara Rüzgâr Elektrik Santrali (RES) Çiftlikleri (Onshore Wind Farms) Güç Üretimleri Profili, FMO Yayınları, Faydalı Bilgiler.
  • TMMOB Elektrik Mühendisleri Odası (2018). Yıllık Enerji Raporu, Ankara, Türkiye. MMO/691.
  • Torres-Olguin, R.E., Molinas, M., Undeland, T. (2012). Offshore wind farm grid integration by VSC technology with LCC-based HVDC transmission, IEEE Transactions on Sustainable Energy, 3(4), 899-907.
  • Van Wijk, A.J.M., Coelingh, J.P. (1993). OECD ülkelerinde rüzgâr enerjisi potansiyeli, 93091. Utrecht, Hollanda: Utrecht Üniversitesi, 35 s.
  • Wilkes, J., Moccia, J., Arapogianni, A., Ganachte, A-B., Guillet, J., Wilczek, P. (2012). Thumlu ona e European offshore wind industry key 2011 trends and statistics, European Wind Energy Association, January 2012.
  • Yumurtacı, Z., Özdilim, A.M. (2018). Türkiye’de kurulabilecek deniz üstü rüzgâr santralinin teknik ve ekonomik analizi, Mülk Pazarı Gayrimenkul Dergisi.
  • URL-1, (2019). https://windeurope.org/about-wind/ statistics/, 1 Eylül 2019.
  • Wind Europe, (2019), Offshore wind in europe key trends and statistics 2018, Brussels, Belgium, (37s.)
  • URL-2, (2018). https://www.sabah.com.tr/ekonomi/ 2018/02/26/deniz-ustu-ruzgr-enerjisi-icin-ege-onde, 1.09.2019
  • URL-3, (2019). https://www.yesilhaber.net/2019/04 /02/offshore-ruzgar-enerjisinde-danimarka-tecru besi/, 1.09.2019.
  • URL-4, (2019). https://en.wikipedia.org/wiki/Off shore_wind_power 06, 6.08.2019.
  • URL-5, (2018). http://www.hurriyet.com.tr/ekono mi/deniz-ustu-ruzgar-santrali-ihalesi-icin-son-basvuru-tarihi-belli-oldu-40873323, 6.08.2019.
  • URL-6, (2019), www.mgm.gov.tr, 1.10.2018.
  • URL-7, (2015). https://www.agora-energiewende.de /fileadmin2/Projekte/2015/integration-variabler-erneuerbarer-energien-daenemark/06a_Broen mo _Presentation_24092015.pdf, 1.09.2019.

Açık Deniz Rüzgâr Sistemleri Üzerine Bir İnceleme ve Danimarka Modeli

Year 2020, Volume: 1 Issue: 1, 54 - 67, 30.06.2020

Abstract

Günümüzde dünyada artan enerji ihtiyacı ve buna bağlı yeni arayışlar açık deniz (offshore) rüzgâr türbini uygulamalarını başta Avrupa olmak üzere dünya üzerinde giderek yaygınlaşan bir yenilenebilir enerji kaynağı haline getirmektedir. Bu çalışmada açık deniz rüzgâr türbinleri ve buna bağlı elektriksel ve mekanik sistemler detaylı olarak incelenmiştir. Kapsamlı bir literatür taraması yapılarak bu konuda ki, tarihsel gelişim ve özellikle Avrupa’da yapılan çalışmalar karşılaştırmalı olarak ele alınmıştır. Avrupa’da ki kurulu rüzgâr enerjisi kapasiteleri karşılaştırmalı olarak verilmiştir. Bu konuda köklü bir altyapısı ve geçmişi olan aynı zamanda fiziksel ve coğrafi yapısı da Türkiye’ye benzeyen Danimarka’da açık deniz rüzgâr türbini sistemleri incelenmiş ve bu sistemlerin potansiyeli ve uygulanabilirliği karşılaştırmalı olarak ele alınmıştır. Türkiye’nin potansiyeli ve durumu kapsamlı olarak incelenmiş ve rüzgâr enerjisi hesaplarının nasıl yapılacağı verilmiştir. Ayrıca, bu türbinlerin kurulum ve bağlantıları ve bu konudaki diğer sorunlar da incelenmiştir. Bu çalışmada Danimarka’da bu konuda yapılan çalışmalar incelenmiş ve ülkemizde bu konudaki yapılacak çalışmalara örnek olmasını amaçlamıştır.

References

  • Abrahamsen, A.B., Mijatovic, N., Seiler, E., Zirngibl, T., Træholt, C., Norgård, P.B.,Ostergaard, J. (2010). Superconducting wind turbine generators, Superconductor Science and Technology, 23(3), 034019 (8 s).
  • Ackermann, T., (2005). Wind power in power systems, Vol. 140, Chichester: John Wiley.
  • Altınok, M.T., Emeksiz, C. (2017). Dünyada ve Türkiye'de deniz üstü rüzgâr santrallerinin durumu ve genel değerlendirmesi, 2. Uluslararası mühendislik tasarım ve mimarlık kongresi, Mayıs 2017, Kocaeli, Türkiye.
  • Barthelmie, R.J., Pryor, S.C., Frandsen, S.T., Hansen, K.S., Schepers, J.G., Rados, K., Schles, W., Neubert, A., Jensen, L.E., Neckelmann, S. (2010). Quantifying the impact of wind turbine wakes on power output at offshore wind farms, Journal of Atmospheric and Oceanic Technology, 27(8), 1302-1317.
  • Chen Z. (2019). Overview of wind power development, Course Presentations, Aalborg University, Denmark.
  • Chen Z. (2018). Wind power plant control, Wiley encyclopedia of electrical and electronics engineering, John & Wiley ISBN: 9780471346081, USA.
  • Daniel, J., Liu, S., Ibanez, E., Pennock, K., Reed, G., Hanes, S. (2014). National Offshore Wind Energy Grid Interconnection Study Executive Summary, US, (38s).
  • Danish Energy Agency, (2019). Security of electricity supply in Denmark, 1st edition 2015-translated 2016, Denmark.
  • Esteban, M., Leary, D. (2012). Current developments and future prospects of offshore wind and ocean energy, Applied Energy, 90(1), 128-136.
  • Europe Wind, Offshore Wind in Europe: Key trends and statistics 2017, URL-9: ( 2018): https://windeurope.org/wpcontent/uploads/files/aboutwind/statistics/Windeurope-Annual-Offshore-Statistics 2017.pdf (2018).
  • Gasch, R., Twele, J. (2012). Wind Power Plants: Fundamentals, Design, Construction and Operation, Springer, ISBN: 978-3-642-22938-1, Berlin, Germany.
  • Hou, P., Hu, W., Chen, Z. (2015). Offshore wind farm electrical system layout optimization using dynamic minimum spinning tree algorithm, In 50th IEEE International Universities Power Engineering Conference, September 2015, Stafford, UK.
  • Keysan, O., Mueller, M. (2015). A modular and cost-effective superconducting generator design for offshore wind turbines, Superconductor Science and Technology, 28(3), 034004.
  • Kjaer E., (2017). Danish Experiences from Offshore Wind Development, Danish Energy Agency, Denmark.
  • Küçükkaya, E. (2019). Türkiye Danimarka ile İşbirliği Yaparak Deniz Üstü RES Projelerine Başlıyor!, Enerji Portalı.
  • Liu D., (2019). Transmission System for Offshore Wind Farms, Course Presentation, Aalborg University.
  • Liu, H. (2014). Grid Integration of Offshore Wind Farms via VSC-HVDC – Dynamic Stability Study, Ph. D. Thesis, Department of Energy Technology, Aalborg University, Denmark.
  • Olimpo, A.L., David, C.G., Edgar, M.G., Grain, A. (2014). Offshore Wind Energy Generation: Control, Protection, and Integration to Electrical Systems, First Edition, John Wiley&Sons, ISBN: 978-1-118-53962-0, US.
  • Öksel, C., Koç, A., Koç, Y., Yağlı, H. (2016). Antakya körfezi deniz üstü rüzgâr enerjisi potansiyel araştırılması, Selçuk Üniversitesi Mühendislik, Bilim ve Teknoloji Dergisi, 4(1), 18-29.
  • Öztürk, İ., Çelik, A. (2006). Dünya’da ve Türkiye’de rüzgâr enerjisi kullanım durumu ve geleceğe yönelik beklentiler, Atatürk Üniversitesi Ziraat Fakültesi Dergisi, 37(2), 267-274.
  • Ruszel, M. (2016). The political importance of energy cooperation between Germany and Denmark on the European Union energy market, In E3S Web of Conferences (Vol. 10, p. 00135). EDP Sciences.
  • Sun, X., Huang, D., Wu, G. (2012). The current state of offshore wind energy technology development, Energy, 41(1), 298-312.
  • Şahin, M.E., Okumuş, H.İ. (2017). The Design Steps of a Hybrid Energy System, Acta Physica Polonica A., 132(3), 1160-1164.
  • Şenel, M.C., Koç, E. (2015). Dünyada ve Türkiye’de rüzgâr enerjisi durumu-genel değerlendirme, Engineer & The Machinery, Magazine, 663.
  • Taner, A.C., Odası, F.M. (2014). İngiltere Yenilenebilir Enerji Kaynakları (YEK) Kökenli Açık Deniz (Offshore) ve Kıyılara Yakın Kara Rüzgâr Elektrik Santrali (RES) Çiftlikleri (Onshore Wind Farms) Güç Üretimleri Profili, FMO Yayınları, Faydalı Bilgiler.
  • TMMOB Elektrik Mühendisleri Odası (2018). Yıllık Enerji Raporu, Ankara, Türkiye. MMO/691.
  • Torres-Olguin, R.E., Molinas, M., Undeland, T. (2012). Offshore wind farm grid integration by VSC technology with LCC-based HVDC transmission, IEEE Transactions on Sustainable Energy, 3(4), 899-907.
  • Van Wijk, A.J.M., Coelingh, J.P. (1993). OECD ülkelerinde rüzgâr enerjisi potansiyeli, 93091. Utrecht, Hollanda: Utrecht Üniversitesi, 35 s.
  • Wilkes, J., Moccia, J., Arapogianni, A., Ganachte, A-B., Guillet, J., Wilczek, P. (2012). Thumlu ona e European offshore wind industry key 2011 trends and statistics, European Wind Energy Association, January 2012.
  • Yumurtacı, Z., Özdilim, A.M. (2018). Türkiye’de kurulabilecek deniz üstü rüzgâr santralinin teknik ve ekonomik analizi, Mülk Pazarı Gayrimenkul Dergisi.
  • URL-1, (2019). https://windeurope.org/about-wind/ statistics/, 1 Eylül 2019.
  • Wind Europe, (2019), Offshore wind in europe key trends and statistics 2018, Brussels, Belgium, (37s.)
  • URL-2, (2018). https://www.sabah.com.tr/ekonomi/ 2018/02/26/deniz-ustu-ruzgr-enerjisi-icin-ege-onde, 1.09.2019
  • URL-3, (2019). https://www.yesilhaber.net/2019/04 /02/offshore-ruzgar-enerjisinde-danimarka-tecru besi/, 1.09.2019.
  • URL-4, (2019). https://en.wikipedia.org/wiki/Off shore_wind_power 06, 6.08.2019.
  • URL-5, (2018). http://www.hurriyet.com.tr/ekono mi/deniz-ustu-ruzgar-santrali-ihalesi-icin-son-basvuru-tarihi-belli-oldu-40873323, 6.08.2019.
  • URL-6, (2019), www.mgm.gov.tr, 1.10.2018.
  • URL-7, (2015). https://www.agora-energiewende.de /fileadmin2/Projekte/2015/integration-variabler-erneuerbarer-energien-daenemark/06a_Broen mo _Presentation_24092015.pdf, 1.09.2019.
There are 38 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Review
Authors

Mustafa Ergin Şahin

Publication Date June 30, 2020
Published in Issue Year 2020 Volume: 1 Issue: 1

Cite

APA Şahin, M. E. (2020). Açık Deniz Rüzgâr Sistemleri Üzerine Bir İnceleme ve Danimarka Modeli. Recep Tayyip Erdogan University Journal of Science and Engineering, 1(1), 54-67.

Indexing

22936   22937   22938  22939     22941  23010   23011  23019  23025