Review
BibTex RIS Cite

Farklı Beslenme Şekilleri ve İntestinal Mikrobiyota

Year 2022, , 164 - 170, 14.01.2022
https://doi.org/10.33631/sabd.1055528

Abstract

Mikroorganizmalar bütün yaşayan çok hücreli organizmalarda bulunmaktadır. İntestinal mikrobiyota çok sayıda bakteriden oluşmakta ve kompozisyonu bireyden bireye göre farklılık göstermektedir. Diyet bileşenleri özellikle de makro besin ögeleri, intestinal mikrobiyotanın şekillenmesinde anahtar faktörlerden biri olup, yararlı bakterilerin azalması veya artmasında oldukça önem taşımaktadır. Ayrıca kısa süreli ve uzun süreli diyetler intestinal mikrobiyota profilini değiştirmekte ve çeşitli yolaklarla immün sistem mekanizmasını etkileyebilmektedir. Karbonhidratlar, intestinal mikrobiyotanın temel enerji kaynağı olup, sindirilebilir ve sindirilemeyen karbonhidratlar olarak yüksek karbonhidratlı diyetler intestinal mikrobiyota üzerinde farklı etkilere sahiptir. Yüksek yağlı diyetlerden özellikle Batı tarzı beslenmede düşük posa, yüksek yağ ve protein, rafine karbonhidratlar ile karakterize olup yararlı bakteriler olarak tanımlanan Bifidobacterium ve Eubacterium yoğunluğunda azalmaya sebep olmaktadır. İntestinal mikrobiyota diyetin protein içeriğinden etkilenmekte olup, intestinal mikrobiyota aynı zamanda glutamat ailesi, serin ailesi, aspartat ailesi, pirüvat ailesi ve aromatik aile gruplarından çeşitli aminoasitlerin sentezini gerçekleştirmektirmekte ve bu nedenle diyetin protein içeriği oldukça önem taşımaktadır. Bu derlemede, farklı beslenme şekillerinin intestinal mikrobiyota üzerine etkilerinin incelenmesi amaçlanmıştır.

References

  • Bonder MJ, Tigchelaar EF, Cai X, Trynka G, Cenit MC, Hrdlickova B, et al. The influence of a short-term gluten-free diet on the human gut microbiome. Genome medicine. 2016; 8(1): 45.
  • Sanz Y. Effects of a gluten-free diet on gut microbiota and immune function in healthy adult humans. Gut Microbes. 2010; 1(3): 135-7.
  • Liszt K, Zwielehner J, Handschur M, Hippe B, Thaler R, Haslberger AG. Characterization of bacteria, clostridia and Bacteroides in faeces of vegetarians using qPCR and PCR-DGGE fingerprinting. Ann Nutr Metab. 2009; 54(4): 253-7.
  • Jung C-H, Choi KM. Impact of high-carbohydrate diet on metabolic parameters in patients with type 2 diabetes. Nutrients. 2017; 9(4): 322.
  • Eid N, Enani S, Walton G, Corona G, Costabile A, Gibson G, et al. The impact of date palm fruits and their component polyphenols, on gut microbial ecology, bacterial metabolites and colon cancer cell proliferation. J. Nutr. Sci. 2014; 3.
  • Parvin S, Easmin D, Sheikh A, Biswas M, Sharma SCD, Jahan MGS, et al. Nutritional analysis of date fruits (Phoenix dactylifera L.) in perspective of Bangladesh. American Journal of Life Sciences. 2015; 3(4): 274-8.
  • Pandey KR, Naik SR, Vakil BV. Probiotics, prebiotics and synbiotics-a review. J Food Sci Technol. 2015; 52(12): 7577-87.
  • Halmos EP, Christophersen CT, Bird AR, Shepherd SJ, Gibson PR, Muir JG. Diets that differ in their FODMAP content alter the colonic luminal microenvironment. Gut. 2015; 64(1): 93-100.
  • Carvalho-Wells AL, Helmolz K, Nodet C, Molzer C, Leonard C, McKevith B, et al. Determination of the in vivo prebiotic potential of a maize-based whole grain breakfast cereal: a human feeding study. Br J Nutr. 2010; 104(9): 1353-6.
  • Costabile A, Fava F, Röytiö H, Forssten SD, Olli K, Klievink J, et al. Impact of polydextrose on the faecal microbiota: a double-blind, crossover, placebo-controlled feeding study in healthy human subjects. Br J Nutr. 2012; 108(3): 471-81.
  • Martinez I, Lattimer JM, Hubach KL, Case JA, Yang J, Weber CG, et al. Gut microbiome composition is linked to whole grain-induced immunological improvements. ISME J. 2013; 7(2): 269.
  • Lappi J, Salojarvi J, Kolehmainen M, Mykkänen H, Poutanen K, de Vos WM, et al. Intake of whole-grain and fiber-rich rye bread versus refined wheat bread does not differentiate intestinal microbiota composition in Finnish adults with metabolic syndrome. J Nutr. 2013; 143(5): 648-55.
  • Walker AW, Ince J, Duncan SH, Webster LM, Holtrop G, Ze X, et al. Dominant and diet-responsive groups of bacteria within the human colonic microbiota. ISME J. 2011; 5(2): 220.
  • Waitzberg DL, Pereira C, Logullo L, Jacintho TM, Almeida D, SILVA M, et al. Microbiota benefits after inulin and partially hydrolized guar gum supplementation-a randomized clinical trial in constipated women. Nutr Hosp. 2012.
  • Lecerf J-M, Depeint F, Clerc E, Dugenet Y, Niamba CN, Rhazi L, et al. Xylo-oligosaccharide (XOS) in combination with inulin modulates both the intestinal environment and immune status in healthy subjects, while XOS alone only shows prebiotic properties. Br. J. Nutr. 2012; 108(10): 1847-58.
  • Benus RF, van der Werf TS, Welling GW, Judd PA, Taylor MA, Harmsen HJ, et al. Association between Faecalibacterium prausnitzii and dietary fibre in colonic fermentation in healthy human subjects. Br. J. Nutr. 2010; 104(5): 693-700.
  • Vulevic J, Juric A, Tzortzis G, Gibson GR. A mixture of trans-galactooligosaccharides reduces markers of metabolic syndrome and modulates the fecal microbiota and immune function of overweight adults. J Nutr. 2013; 143(3): 324-31.
  • Baer DJ, Stote KS, Henderson T, Paul DR, Okuma K, Tagami H, et al. The metabolizable energy of dietary resistant maltodextrin is variable and alters fecal microbiota composition in adult men. J Nutr. 2014; 144(7): 1023-9.
  • Cotillard A, Kennedy SP, Kong LC, Prifti E, Pons N, Le Chatelier E, et al. Dietary intervention impact on gut microbial gene richness. Nature. 2013; 500(7464): 585.
  • Volynets V, Louis S, Pretz D, Lang L, Ostaff MJ, Wehkamp J, et al. Intestinal barrier function and the gut microbiome are differentially affected in mice fed a western-style diet or drinking water supplemented with fructose. J Nutr. 2017; 147(5): 770-80.
  • Rosas-Villegas A, Sánchez-Tapia M, Avila-Nava A, Ramírez V, Tovar A, Torres N. Differential effect of sucrose and fructose in combination with a high fat diet on intestinal microbiota and kidney oxidative stress. Nutrients. 2017; 9(4): 393.
  • Zubiría M, Gambaro S, Rey M, Carasi P, Serradell M, Giovambattista A. Deleterious metabolic effects of high fructose intake: the preventive effect of Lactobacillus kefiri administration. Nutrients. 2017; 9(5): 470.
  • Johnstone AM. Safety and efficacy of high-protein diets for weight loss. Proc Nutr Soc. 2012; 71(2): 339-49.
  • Hentges DJ, Maier BR, Burton GC, Flynn MA, Tsutakawa RK. Effect of a high-beef diet on the fecal bacterial flora of humans. Cancer Res. 1977; 37(2): 568-71.
  • Dominika S, Arjan N, Karyn RP, Henryk K. The study on the impact of glycated pea proteins on human intestinal bacteria. Int. J. Food Microbiol. 2011; 145(1): 267-72.
  • De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S, et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci. 2010; 107(33): 14691-6.
  • De Filippis F, Pellegrini N, Vannini L, Jeffery IB, La Storia A, Laghi L, et al. High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome. Gut. 2016; 65(11): 1812-21.
  • Levine ME, Suarez JA, Brandhorst S, Balasubramanian P, Cheng C-W, Madia F, et al. Low protein intake is associated with a major reduction in IGF-1, cancer, and overall mortality in the 65 and younger but not older population. Cell Metab. 2014; 19(3): 407-17.
  • Mu C, Yang Y, Luo Z, Zhu W. Temporal microbiota changes of high-protein diet intake in a rat model. Anaerobe. 2017; 47: 218-25.
  • Singh RK, Chang H-W, Yan D, Lee KM, Ucmak D, Wong K, et al. Influence of diet on the gut microbiome and implications for human health. J. Transl. Med. 2017; 15(1): 73.
  • Lan A, Andriamihaja M, Blouin J-M, Liu X, Descatoire V, de Maredsous CD, et al. High-protein diet differently modifies intestinal goblet cell characteristics and mucosal cytokine expression in ileum and colon. J Nutr Biochem. 2015; 26(1): 91-8.
  • Wu GD, Chen J, Hoffmann C, Bittinger K, Chen Y-Y, Keilbaugh SA, et al. Linking long-term dietary patterns with gut microbial enterotypes. Science. 2011; 334(6052): 105-8.
  • Schnorr SL, Candela M, Rampelli S, Centanni M, Consolandi C, Basaglia G, et al. Gut microbiome of the Hadza hunter-gatherers. Nat Commun. 2014; 5: 3654.
  • Lecomte V, Kaakoush NO, Maloney CA, Raipuria M, Huinao KD, Mitchell HM, et al. Changes in gut microbiota in rats fed a high fat diet correlate with obesity-associated metabolic parameters. PloS one. 2015; 10(5): e0126931.
  • Caesar R, Tremaroli V, Kovatcheva-Datchary P, Cani PD, Backhed F. Crosstalk between gut microbiota and dietary lipids aggravates WAT inflammation through TLR signaling. Cell Metab. 2015; 22(4): 658-68.
  • Fava F, Gitau R, Griffin B, Gibson G, Tuohy K, Lovegrove J. The type and quantity of dietary fat and carbohydrate alter faecal microbiome and short-chain fatty acid excretion in a metabolic syndrome ‘at-risk’population. Int J Obes. 2013; 37(2): 216.
  • Urwin HJ, Miles EA, Noakes PS, Kremmyda L-S, Vlachava M, Diaper ND, et al. Effect of salmon consumption during pregnancy on maternal and infant faecal microbiota, secretory IgA and calprotectin. Br J Nutr. 2014; 111(5): 773-84.
  • Melina V, Craig W, Levin S. Position of the Academy of Nutrition and Dietetics: vegetarian diets. J Acad Nutr Diet. 2016; 116(12): 1970-80.
  • Matijasic BB, Obermajer T, Lipoglavsek L, Grabnar I, Avguštin G, Rogelj I. Association of dietary type with fecal microbiota in vegetarians and omnivores in Slovenia. Eur J Nutr. 2014; 53(4): 1051-64.
  • Wu GD, Compher C, Chen EZ, Smith SA, Shah RD, Bittinger K, et al. Comparative metabolomics in vegans and omnivores reveal constraints on diet-dependent gut microbiota metabolite production. Gut. 2016; 65(1): 63-72.

Different Nutrition Types and Intestinal Microbiota

Year 2022, , 164 - 170, 14.01.2022
https://doi.org/10.33631/sabd.1055528

Abstract

Microorganisms are found in all living multicellular organisms as well as humans. İntestinal microbiota consists of a large number of bacteria and its composition varies for individual. Dietary components, especially macronutrients, are a key factor in formation of intestinal microbiota, and are important in reducing or increasing beneficial bacteria. In addition, short-term and long-term diets change the intestinal microbiota profile and may affect immune system mechanism by various pathways. Carbohydrates are main energy source of intestinal microbiota and high carbohydrate diets as digestible and non-digestible carbohydrates have different effects on intestinal microbiota. Especially in Western diet, in high-fat diets, which has low fiber, high fat and protein, characterized by refined carbohydrates, and causes a decrease in density which identified as beneficial bacteria, Bifidobacterium and Eubacterium. Intestinal microbiota is influenced by protein content of diet and intestinal microbiota is also involved in synthesis of various amino acids from glutamate family, serine family, aspartate family, pyruvate family and aromatic family groups, and therefore protein content of diet is very important. In this review, we aimed to investigate effects of different nutritional forms on intestinal microbiota.

References

  • Bonder MJ, Tigchelaar EF, Cai X, Trynka G, Cenit MC, Hrdlickova B, et al. The influence of a short-term gluten-free diet on the human gut microbiome. Genome medicine. 2016; 8(1): 45.
  • Sanz Y. Effects of a gluten-free diet on gut microbiota and immune function in healthy adult humans. Gut Microbes. 2010; 1(3): 135-7.
  • Liszt K, Zwielehner J, Handschur M, Hippe B, Thaler R, Haslberger AG. Characterization of bacteria, clostridia and Bacteroides in faeces of vegetarians using qPCR and PCR-DGGE fingerprinting. Ann Nutr Metab. 2009; 54(4): 253-7.
  • Jung C-H, Choi KM. Impact of high-carbohydrate diet on metabolic parameters in patients with type 2 diabetes. Nutrients. 2017; 9(4): 322.
  • Eid N, Enani S, Walton G, Corona G, Costabile A, Gibson G, et al. The impact of date palm fruits and their component polyphenols, on gut microbial ecology, bacterial metabolites and colon cancer cell proliferation. J. Nutr. Sci. 2014; 3.
  • Parvin S, Easmin D, Sheikh A, Biswas M, Sharma SCD, Jahan MGS, et al. Nutritional analysis of date fruits (Phoenix dactylifera L.) in perspective of Bangladesh. American Journal of Life Sciences. 2015; 3(4): 274-8.
  • Pandey KR, Naik SR, Vakil BV. Probiotics, prebiotics and synbiotics-a review. J Food Sci Technol. 2015; 52(12): 7577-87.
  • Halmos EP, Christophersen CT, Bird AR, Shepherd SJ, Gibson PR, Muir JG. Diets that differ in their FODMAP content alter the colonic luminal microenvironment. Gut. 2015; 64(1): 93-100.
  • Carvalho-Wells AL, Helmolz K, Nodet C, Molzer C, Leonard C, McKevith B, et al. Determination of the in vivo prebiotic potential of a maize-based whole grain breakfast cereal: a human feeding study. Br J Nutr. 2010; 104(9): 1353-6.
  • Costabile A, Fava F, Röytiö H, Forssten SD, Olli K, Klievink J, et al. Impact of polydextrose on the faecal microbiota: a double-blind, crossover, placebo-controlled feeding study in healthy human subjects. Br J Nutr. 2012; 108(3): 471-81.
  • Martinez I, Lattimer JM, Hubach KL, Case JA, Yang J, Weber CG, et al. Gut microbiome composition is linked to whole grain-induced immunological improvements. ISME J. 2013; 7(2): 269.
  • Lappi J, Salojarvi J, Kolehmainen M, Mykkänen H, Poutanen K, de Vos WM, et al. Intake of whole-grain and fiber-rich rye bread versus refined wheat bread does not differentiate intestinal microbiota composition in Finnish adults with metabolic syndrome. J Nutr. 2013; 143(5): 648-55.
  • Walker AW, Ince J, Duncan SH, Webster LM, Holtrop G, Ze X, et al. Dominant and diet-responsive groups of bacteria within the human colonic microbiota. ISME J. 2011; 5(2): 220.
  • Waitzberg DL, Pereira C, Logullo L, Jacintho TM, Almeida D, SILVA M, et al. Microbiota benefits after inulin and partially hydrolized guar gum supplementation-a randomized clinical trial in constipated women. Nutr Hosp. 2012.
  • Lecerf J-M, Depeint F, Clerc E, Dugenet Y, Niamba CN, Rhazi L, et al. Xylo-oligosaccharide (XOS) in combination with inulin modulates both the intestinal environment and immune status in healthy subjects, while XOS alone only shows prebiotic properties. Br. J. Nutr. 2012; 108(10): 1847-58.
  • Benus RF, van der Werf TS, Welling GW, Judd PA, Taylor MA, Harmsen HJ, et al. Association between Faecalibacterium prausnitzii and dietary fibre in colonic fermentation in healthy human subjects. Br. J. Nutr. 2010; 104(5): 693-700.
  • Vulevic J, Juric A, Tzortzis G, Gibson GR. A mixture of trans-galactooligosaccharides reduces markers of metabolic syndrome and modulates the fecal microbiota and immune function of overweight adults. J Nutr. 2013; 143(3): 324-31.
  • Baer DJ, Stote KS, Henderson T, Paul DR, Okuma K, Tagami H, et al. The metabolizable energy of dietary resistant maltodextrin is variable and alters fecal microbiota composition in adult men. J Nutr. 2014; 144(7): 1023-9.
  • Cotillard A, Kennedy SP, Kong LC, Prifti E, Pons N, Le Chatelier E, et al. Dietary intervention impact on gut microbial gene richness. Nature. 2013; 500(7464): 585.
  • Volynets V, Louis S, Pretz D, Lang L, Ostaff MJ, Wehkamp J, et al. Intestinal barrier function and the gut microbiome are differentially affected in mice fed a western-style diet or drinking water supplemented with fructose. J Nutr. 2017; 147(5): 770-80.
  • Rosas-Villegas A, Sánchez-Tapia M, Avila-Nava A, Ramírez V, Tovar A, Torres N. Differential effect of sucrose and fructose in combination with a high fat diet on intestinal microbiota and kidney oxidative stress. Nutrients. 2017; 9(4): 393.
  • Zubiría M, Gambaro S, Rey M, Carasi P, Serradell M, Giovambattista A. Deleterious metabolic effects of high fructose intake: the preventive effect of Lactobacillus kefiri administration. Nutrients. 2017; 9(5): 470.
  • Johnstone AM. Safety and efficacy of high-protein diets for weight loss. Proc Nutr Soc. 2012; 71(2): 339-49.
  • Hentges DJ, Maier BR, Burton GC, Flynn MA, Tsutakawa RK. Effect of a high-beef diet on the fecal bacterial flora of humans. Cancer Res. 1977; 37(2): 568-71.
  • Dominika S, Arjan N, Karyn RP, Henryk K. The study on the impact of glycated pea proteins on human intestinal bacteria. Int. J. Food Microbiol. 2011; 145(1): 267-72.
  • De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S, et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci. 2010; 107(33): 14691-6.
  • De Filippis F, Pellegrini N, Vannini L, Jeffery IB, La Storia A, Laghi L, et al. High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome. Gut. 2016; 65(11): 1812-21.
  • Levine ME, Suarez JA, Brandhorst S, Balasubramanian P, Cheng C-W, Madia F, et al. Low protein intake is associated with a major reduction in IGF-1, cancer, and overall mortality in the 65 and younger but not older population. Cell Metab. 2014; 19(3): 407-17.
  • Mu C, Yang Y, Luo Z, Zhu W. Temporal microbiota changes of high-protein diet intake in a rat model. Anaerobe. 2017; 47: 218-25.
  • Singh RK, Chang H-W, Yan D, Lee KM, Ucmak D, Wong K, et al. Influence of diet on the gut microbiome and implications for human health. J. Transl. Med. 2017; 15(1): 73.
  • Lan A, Andriamihaja M, Blouin J-M, Liu X, Descatoire V, de Maredsous CD, et al. High-protein diet differently modifies intestinal goblet cell characteristics and mucosal cytokine expression in ileum and colon. J Nutr Biochem. 2015; 26(1): 91-8.
  • Wu GD, Chen J, Hoffmann C, Bittinger K, Chen Y-Y, Keilbaugh SA, et al. Linking long-term dietary patterns with gut microbial enterotypes. Science. 2011; 334(6052): 105-8.
  • Schnorr SL, Candela M, Rampelli S, Centanni M, Consolandi C, Basaglia G, et al. Gut microbiome of the Hadza hunter-gatherers. Nat Commun. 2014; 5: 3654.
  • Lecomte V, Kaakoush NO, Maloney CA, Raipuria M, Huinao KD, Mitchell HM, et al. Changes in gut microbiota in rats fed a high fat diet correlate with obesity-associated metabolic parameters. PloS one. 2015; 10(5): e0126931.
  • Caesar R, Tremaroli V, Kovatcheva-Datchary P, Cani PD, Backhed F. Crosstalk between gut microbiota and dietary lipids aggravates WAT inflammation through TLR signaling. Cell Metab. 2015; 22(4): 658-68.
  • Fava F, Gitau R, Griffin B, Gibson G, Tuohy K, Lovegrove J. The type and quantity of dietary fat and carbohydrate alter faecal microbiome and short-chain fatty acid excretion in a metabolic syndrome ‘at-risk’population. Int J Obes. 2013; 37(2): 216.
  • Urwin HJ, Miles EA, Noakes PS, Kremmyda L-S, Vlachava M, Diaper ND, et al. Effect of salmon consumption during pregnancy on maternal and infant faecal microbiota, secretory IgA and calprotectin. Br J Nutr. 2014; 111(5): 773-84.
  • Melina V, Craig W, Levin S. Position of the Academy of Nutrition and Dietetics: vegetarian diets. J Acad Nutr Diet. 2016; 116(12): 1970-80.
  • Matijasic BB, Obermajer T, Lipoglavsek L, Grabnar I, Avguštin G, Rogelj I. Association of dietary type with fecal microbiota in vegetarians and omnivores in Slovenia. Eur J Nutr. 2014; 53(4): 1051-64.
  • Wu GD, Compher C, Chen EZ, Smith SA, Shah RD, Bittinger K, et al. Comparative metabolomics in vegans and omnivores reveal constraints on diet-dependent gut microbiota metabolite production. Gut. 2016; 65(1): 63-72.
There are 40 citations in total.

Details

Primary Language Turkish
Subjects Nutrition and Dietetics
Journal Section Reviews
Authors

Gül Eda Kılınç This is me 0000-0002-9068-3081

Aslı Uçar This is me 0000-0001-9724-9571

Publication Date January 14, 2022
Submission Date January 8, 2021
Published in Issue Year 2022

Cite

Vancouver Kılınç GE, Uçar A. Farklı Beslenme Şekilleri ve İntestinal Mikrobiyota. SABD. 2022;12(1):164-70.