Research Article
BibTex RIS Cite

Development and Validation of Gas Chromatography - Mass Spectrometry Method for Determination of Aldrin and Dieldrin in Serum

Year 2022, Volume: 12 Issue: 2, 194 - 198, 17.05.2022
https://doi.org/10.33631/sabd.1103985

Abstract

Aim: Exposure to many banned pesticides continues all over the world and in our country due to the long half-lives of pesticides. Therefore, the purpose of the study was to obtain a rapid, simple, and convenient method for the simultaneous determination of aldrin and dieldrin.
Material and Methods: Method improving and validation assessment are the most important elements for establishing reference techniques and reliable analysis results. In order to analyze analytes, validation of the analytical method is carried out by checking the parameters of specificity, recovery, precision, linearity, the limit of detection (LOD), and the limit of quantification (LOQ).
Results: In our study, an easily applicable, so rapid, effective, and safe GC-MS method was created for the determination of aldrin and dieldrin in serum. In the developed method, 4,4'-Dichlorobenzophenone (4,4-DBP) was used as the internal standard. Aldrin and dieldrin were analyzed in serum in a very short time of 4 minutes. Linear correlation coefficients (R2 ≥ 0.99) of the linear calibration curves between a range of 1-250 ng/mL of analytes in serum were established. The limit of detection for aldrin and dieldrin were 0.28 and 0.29 ng/mL, respectively. More than 80% recovery of aldrin and dieldrin were obtained at high concentrations, and consistent relative standard deviation (RSD ˂ 6.03%) values were found for both pesticides.
Conclusion: This new method can reliably and quickly be used in routine analysis. The study showed that exposure to aldrin and dieldrin can be detected and monitored in such a short time as four minutes.

References

  • National Research Council (US) Committee on Toxicology. An Assessment of the Health Risks of Seven Pesticides Used for Termite Control. Washington: National Academies Press; 1982.
  • Agency for Toxic Substances and Disease Registry (ATSDR). [Internet] Atlanta: Toxicological Profile for Aldrin/Dieldrin. [Updated: 2021 Apr 1; Cited: 2021 Apr 13]. Available from: https://www.atsdr.cdc.gov/toxprofiles/tp1.pdf.
  • Soto AR, Deichmann WB. Major metabolism and acute toxicity of aldrin, dieldrin, and endrin. Environ Res.1967; 1(4): 307-22.
  • Garrettson LK, Curley A. Dieldrin: studies in a poisoned child. Arch of Environ Health. 1969; 19(6): 814-22.
  • Carvalho WA, Matos GB, Cruz SL, Rodrigues DS. Human aldrin poisoning. Braz J Med Biol Res. 1991; 24(9): 883-7.
  • Feldmann RJ, Maibach HI. Percutaneous penetration of some pesticides and herbicides in man. Toxicol Appl Pharmacol. 1974; 28(1): 126-32.
  • Raun Andersen H, Vinggaard AM, Rasmussen Høj T, Gjermandsen IM, Cecilie BE. Effects of currently used pesticides in assays for estrogenicity, androgenicity, and aromatase activity in vitro. Toxicol Appl Pharmacol. 2002; 179 (1): 1-12.
  • Castro TF, Yoshida T. Degradation of organochlorine insecticides in flooded soils in the Philippines. J Agric Food Chem. 1971; 19(6): 1168-70.
  • Purnomo AS. Microbe-Assisted degradation of aldrin and dieldrin. Microbe-Induced Degradation of Pesticides. 2017; 1-22.
  • U.S. Environmental Protection Agency. (EPA). [Internet] Washington: Health effects support document for aldrin/dieldrin. [Updated: 2003 Feb 1; Cited: 2021 Apr 1]. Available from: https://nepis.epa.gov/Exe/ZyPDF.cgi?Dockey=20003JSU.PDF.
  • Nelson PA, Stewart RR, Morelli MA, Nakatsugawa T. Aldrin epoxidation in the earthworm, Lumbricus terrestris L. Pestic Biochem Physiol. 1976; 6(3): 243-53.
  • Wolff T, Deml E, Wanders H. Aldrin epoxidation, a highly sensitive indicator specific for cytochrome P-450-dependent mono-oxygenase activities. Drug Metab Dispos. 1979; 7(5): 301-5.
  • Covaci A, Voorspoels S. Optimization of the determination of polybrominated diphenyl ethers in human serum using solid-phase extraction and gas chromatography-electron capture negative ionization mass spectrometry. J Chromatogr B. 2005; 827: 216-33.
  • El-Shahawi MS, Hamza A, Bashammakh AS, Al-Saggaf WT. An overview on the accumulation, distribution, transformations, toxicity and analytical methods for the monitoring of persistent organic pollutants. Talanta. 2010; 80: 1587-97.
  • Jacob J. A Review of the accumulation and distribution of persistent organic pollutants in the environment. Int J Biosci Biochem Bioinforma. 2013; 3(6): 657-61.
  • Darnerud PO, Lignell S, Aune M, Isaksson M, Cantillana T, Redeby J, et al. Time trends of polybrominated diphenylether (PBDE) congeners in serum of Swedish mothers and comparisions to breast milk data. Environ Res. 2015; 138: 352-60.
  • Keller JM, Swarthout RF, Carlson BKR, Yordy J, Guichard A, Schantz MM, et al. Comparison of five extraction methods for measuring PCBs, PBDEs, organochlorine pesticides, and lipid content in serum. Anal Bioanal Chem. 2009; 393, 747-60.
  • Kalachova K, Pulkrabova J, Drabova L, Cajka T, Kocourek V, Hajslova J. Simplified and rapid determination of polychlorinated biphenyls, polybrominated diphenyl ethers, and polycyclic aromatic hydrocarbons in fish and shrimps integrated into a single method. Anal Chim Acta. 2011; 707: 84-91.
  • Thompson M, Ellison SLR, Wood R. Harmonised guidelines for single laboratory validation of method of analysis. Pure Appl Chem. 2008; 74(5): 835-55.
  • U.S. Food and Drug Administration (FDA) [Internet]. Geneva: Validation of analytical procedure: Methodology Q2B. In: ICH Harmonized Tripartite Guidelines. [Updated: 1996 Nov 1; Cited: 2021 Apr 1]. Available from: https://www.fda.gov/media/71725/download
  • Carreño J, Rivas A, Granada A, Jose Lopez-Espinosa M, Mariscal M, Olea N, et al. Exposure of young men to organochlorine pesticides in Southern Spain. Environ Res. 2007; 103(1): 55-61.
  • Rivas A, Cerrillo I, Granada A, Mariscal-Arcas M, Olea-Serrano F. Pesticide exposure of two age groups of women and its relationship with their diet. Sci Total Environ. 2007; 382(1): 14-21.
  • Mariscal-Arcas M, Lopez-Martinez C, Granada A, Olea N, Lorenzo-Tovar ML, Olea-Serrano F. Organochlorine pesticides in umbilical cord blood serum of women from Southern Spain and adherence to the Mediterranean diet. Food Chem Toxicol. 2010; 48(5): 1311-5.
  • Saito-Shidaa S, Nagata M, Nemoto S, Akiyamaa H. Quantitative analysis of pesticide residues in tea by gas chromatography–tandem mass spectrometry with atmospheric pressure chemical ionization. J Chromatogr B. 2020; 1143: 122057.
  • Lobato A, Fernandes VC, Pacheco JG, Delerue-Matos C, Gonçalves LM. Organochlorine pesticide analysis in milk by gas-diffusion microextraction with gas chromatography-electron capture detection and confirmation by mass spectrometry. J Chromatogr A. 2021; 1636: 461797.
  • Sharma N, Thakur P, Chaskar MG. Determination of eight endocrine disruptor pesticides in bovine milk at trace levels by dispersive liquid-liquid microextraction followed by GC-MS determination. J Sep Sci. 2021; 44(15): 2982-95.
  • Carvalho WA, Matos GB, Cruz SL, Rodrigues DS. Acute poisoning by aldrin: relationship between serum levels and toxic effects in humans. Rev Saude Publica. 1990; 24(1): 39-46.
  • Delgado, IF, Barretto, HHC, Kussumi, TA, Alleluia IB, Baggio CA, Paumgartten FJR. Serum levels of organochlorine pesticides and polychlorinated biphenyls among inhabitants of Greater Metropolitan Rio de Janeiro, Brazil. Cad Saude Publica. 2002; 18(2): 519-24.
  • Gonzalez AG, Herrador, MA. A practical guide to analytical method validation, including measurement uncertainty and accuracy profiles. TrAC Trends Analyt Chem. 2007; 26(3): 227-38.
  • The Food and Drug Administration (FDA) [Internet]. Rockville: Guidance for Industry: Bioanalytical methods validation. [Updated: 2018 May 1; Cited: 2021 Apr 1]. Available from: http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM070107.pdf.

Serumda Aldrin ve Dieldrin Tayini için Gaz Kromatografisi - Kütle Spektrometresi Yönteminin Geliştirilmesi ve Doğrulanması

Year 2022, Volume: 12 Issue: 2, 194 - 198, 17.05.2022
https://doi.org/10.33631/sabd.1103985

Abstract

Amaç: Tüm dünyada ve ülkemizde yasaklanmış pestisitlere maruziyet, pestisitlerin uzun yarılanma ömürleri nedeniyle devam etmektedir. Bu nedenle bu çalışmanın amacı, serumda aldrin ve dieldrin maruziyetinin eş zamanlı tayini için hızlı, basit ve kullanışlı bir yöntem elde etmektir.
Gereç ve Yöntemler: Metot geliştirme ve doğrulama değerlendirmeleri; referans teknikleri oluşturmak ve güvenilir analiz sonuçları elde etmek için en önemli unsurlardır. Analitleri analiz etmek için, analitik yöntemin doğrulanması; özgüllük, geri kazanım, kesinlik, doğrusallık, saptama sınırı ve ölçüm sınırı parametrelerin kontrol edilmesiyle gerçekleştirilir.
Bulgular: Çalışmamızda; serumda aldrin ve dieldrin tayini için kolaylıkla uygulanabilir, çok hızlı, etkili ve güvenli bir GC-MS yöntemi oluşturuldu. Geliştirilen yöntemde internal standart olarak 4,4'-Diklorobenzofenon (4,4-DBP) kullanıldı. Aldrin ve dieldrin, serumda 4 dakika gibi çok kısa bir sürede analiz edildi. Serumda 1-250 ng / mL analit aralığında doğrusal kalibrasyon eğrilerinin doğrusal korelasyon katsayıları (R2 ≥ 0,99) saptandı. Aldrin ve dieldrin için tespit limiti sırasıyla 0,28 ve 0,29 ng / mL idi. Yüksek konsantrasyonlarda aldrin ve dieldrinin % 80'den fazla geri kazanımı elde edildi ve her iki pestisit için tutarlı bağıl standart sapma (RSD ˂ % 6,03) değerleri bulundu.
Sonuç: Bu yeni yöntem; rutin analizlerde güvenilir ve hızlı bir şekilde kullanılabilir. Çalışma, aldrin ve dieldrin maruziyetinin dört dakika gibi kısa bir sürede tespit edilebildiğini ve izlenebildiğini gösterdi.

References

  • National Research Council (US) Committee on Toxicology. An Assessment of the Health Risks of Seven Pesticides Used for Termite Control. Washington: National Academies Press; 1982.
  • Agency for Toxic Substances and Disease Registry (ATSDR). [Internet] Atlanta: Toxicological Profile for Aldrin/Dieldrin. [Updated: 2021 Apr 1; Cited: 2021 Apr 13]. Available from: https://www.atsdr.cdc.gov/toxprofiles/tp1.pdf.
  • Soto AR, Deichmann WB. Major metabolism and acute toxicity of aldrin, dieldrin, and endrin. Environ Res.1967; 1(4): 307-22.
  • Garrettson LK, Curley A. Dieldrin: studies in a poisoned child. Arch of Environ Health. 1969; 19(6): 814-22.
  • Carvalho WA, Matos GB, Cruz SL, Rodrigues DS. Human aldrin poisoning. Braz J Med Biol Res. 1991; 24(9): 883-7.
  • Feldmann RJ, Maibach HI. Percutaneous penetration of some pesticides and herbicides in man. Toxicol Appl Pharmacol. 1974; 28(1): 126-32.
  • Raun Andersen H, Vinggaard AM, Rasmussen Høj T, Gjermandsen IM, Cecilie BE. Effects of currently used pesticides in assays for estrogenicity, androgenicity, and aromatase activity in vitro. Toxicol Appl Pharmacol. 2002; 179 (1): 1-12.
  • Castro TF, Yoshida T. Degradation of organochlorine insecticides in flooded soils in the Philippines. J Agric Food Chem. 1971; 19(6): 1168-70.
  • Purnomo AS. Microbe-Assisted degradation of aldrin and dieldrin. Microbe-Induced Degradation of Pesticides. 2017; 1-22.
  • U.S. Environmental Protection Agency. (EPA). [Internet] Washington: Health effects support document for aldrin/dieldrin. [Updated: 2003 Feb 1; Cited: 2021 Apr 1]. Available from: https://nepis.epa.gov/Exe/ZyPDF.cgi?Dockey=20003JSU.PDF.
  • Nelson PA, Stewart RR, Morelli MA, Nakatsugawa T. Aldrin epoxidation in the earthworm, Lumbricus terrestris L. Pestic Biochem Physiol. 1976; 6(3): 243-53.
  • Wolff T, Deml E, Wanders H. Aldrin epoxidation, a highly sensitive indicator specific for cytochrome P-450-dependent mono-oxygenase activities. Drug Metab Dispos. 1979; 7(5): 301-5.
  • Covaci A, Voorspoels S. Optimization of the determination of polybrominated diphenyl ethers in human serum using solid-phase extraction and gas chromatography-electron capture negative ionization mass spectrometry. J Chromatogr B. 2005; 827: 216-33.
  • El-Shahawi MS, Hamza A, Bashammakh AS, Al-Saggaf WT. An overview on the accumulation, distribution, transformations, toxicity and analytical methods for the monitoring of persistent organic pollutants. Talanta. 2010; 80: 1587-97.
  • Jacob J. A Review of the accumulation and distribution of persistent organic pollutants in the environment. Int J Biosci Biochem Bioinforma. 2013; 3(6): 657-61.
  • Darnerud PO, Lignell S, Aune M, Isaksson M, Cantillana T, Redeby J, et al. Time trends of polybrominated diphenylether (PBDE) congeners in serum of Swedish mothers and comparisions to breast milk data. Environ Res. 2015; 138: 352-60.
  • Keller JM, Swarthout RF, Carlson BKR, Yordy J, Guichard A, Schantz MM, et al. Comparison of five extraction methods for measuring PCBs, PBDEs, organochlorine pesticides, and lipid content in serum. Anal Bioanal Chem. 2009; 393, 747-60.
  • Kalachova K, Pulkrabova J, Drabova L, Cajka T, Kocourek V, Hajslova J. Simplified and rapid determination of polychlorinated biphenyls, polybrominated diphenyl ethers, and polycyclic aromatic hydrocarbons in fish and shrimps integrated into a single method. Anal Chim Acta. 2011; 707: 84-91.
  • Thompson M, Ellison SLR, Wood R. Harmonised guidelines for single laboratory validation of method of analysis. Pure Appl Chem. 2008; 74(5): 835-55.
  • U.S. Food and Drug Administration (FDA) [Internet]. Geneva: Validation of analytical procedure: Methodology Q2B. In: ICH Harmonized Tripartite Guidelines. [Updated: 1996 Nov 1; Cited: 2021 Apr 1]. Available from: https://www.fda.gov/media/71725/download
  • Carreño J, Rivas A, Granada A, Jose Lopez-Espinosa M, Mariscal M, Olea N, et al. Exposure of young men to organochlorine pesticides in Southern Spain. Environ Res. 2007; 103(1): 55-61.
  • Rivas A, Cerrillo I, Granada A, Mariscal-Arcas M, Olea-Serrano F. Pesticide exposure of two age groups of women and its relationship with their diet. Sci Total Environ. 2007; 382(1): 14-21.
  • Mariscal-Arcas M, Lopez-Martinez C, Granada A, Olea N, Lorenzo-Tovar ML, Olea-Serrano F. Organochlorine pesticides in umbilical cord blood serum of women from Southern Spain and adherence to the Mediterranean diet. Food Chem Toxicol. 2010; 48(5): 1311-5.
  • Saito-Shidaa S, Nagata M, Nemoto S, Akiyamaa H. Quantitative analysis of pesticide residues in tea by gas chromatography–tandem mass spectrometry with atmospheric pressure chemical ionization. J Chromatogr B. 2020; 1143: 122057.
  • Lobato A, Fernandes VC, Pacheco JG, Delerue-Matos C, Gonçalves LM. Organochlorine pesticide analysis in milk by gas-diffusion microextraction with gas chromatography-electron capture detection and confirmation by mass spectrometry. J Chromatogr A. 2021; 1636: 461797.
  • Sharma N, Thakur P, Chaskar MG. Determination of eight endocrine disruptor pesticides in bovine milk at trace levels by dispersive liquid-liquid microextraction followed by GC-MS determination. J Sep Sci. 2021; 44(15): 2982-95.
  • Carvalho WA, Matos GB, Cruz SL, Rodrigues DS. Acute poisoning by aldrin: relationship between serum levels and toxic effects in humans. Rev Saude Publica. 1990; 24(1): 39-46.
  • Delgado, IF, Barretto, HHC, Kussumi, TA, Alleluia IB, Baggio CA, Paumgartten FJR. Serum levels of organochlorine pesticides and polychlorinated biphenyls among inhabitants of Greater Metropolitan Rio de Janeiro, Brazil. Cad Saude Publica. 2002; 18(2): 519-24.
  • Gonzalez AG, Herrador, MA. A practical guide to analytical method validation, including measurement uncertainty and accuracy profiles. TrAC Trends Analyt Chem. 2007; 26(3): 227-38.
  • The Food and Drug Administration (FDA) [Internet]. Rockville: Guidance for Industry: Bioanalytical methods validation. [Updated: 2018 May 1; Cited: 2021 Apr 1]. Available from: http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM070107.pdf.
There are 30 citations in total.

Details

Primary Language English
Subjects Health Care Administration
Journal Section Research Articles
Authors

Betül İşiner Kaya This is me 0000-0002-5338-8817

Mukaddes Gürler 0000-0001-9431-9810

Publication Date May 17, 2022
Submission Date May 10, 2021
Published in Issue Year 2022 Volume: 12 Issue: 2

Cite

Vancouver İşiner Kaya B, Gürler M. Development and Validation of Gas Chromatography - Mass Spectrometry Method for Determination of Aldrin and Dieldrin in Serum. VHS. 2022;12(2):194-8.