Research Article
BibTex RIS Cite

Evaluation of Tensile Strength of Sutures Used in Dentistry

Year 2023, Volume: 13 Issue: 2, 189 - 193, 10.05.2023
https://doi.org/10.33631/sabd.1146151

Abstract

Aim: The aim of this study was to compare the mechanical properties of sutures used in dentistry according to different materials in vitro.
Material and Methods: Eight 3-0 different absorbable and non-absorbable suture materials with 3-0 gauge (Polytetraflouroethylene, polypropylene, polyester, polyglactin 910, polyglycolic acid, poliglecaprone 25, polydioxanone, and silk) were compared in terms of mechanical strength. All sutures were tied with a simple suture technique. Each material contained 10 samples per group, with a total sample size of 80 specimens. Failure load was measured in N while elongation was measured in µm using a microtensile testing device. A one-way analysis of variance (ANOVA) was used to analyze the difference in failure loads and elongation values.
Results: Polydioxanone was significantly more resistant to tensile forces among all tested materials (p<0.001) which was followed by poliglecaprone 25, whereas polyglactin 910 presented the lowest failure load values. Although there was no direct relationship between tensile strength and elongation values of the materials, polydioxanone demonstrated increased elongation before failure. Additionally, polyglactin 910 indicated a significantly lower elongation capacity among all tested materials.
Conclusion: Failure load and elongation were dependent on the suture material type. Where high tensile strength is required, polydioxanone is an advantageous material due to its high resistance to loads and better elongation characteristics.

References

  • Burkhardt R, Lang NP. Influence of suturing on wound healing. Periodontology. 2000 2015; 68(1): 270-81. https://doi.org/10.1111/prd.12078.
  • Karaca E, Hockenberger AS, Yildiz H. Investigating changes in mechanical properties and tissue reaction of silk, polyester, polyamide, and polypropylene sutures in vivo. Textile Research Journal. 2005; 75(4): 297-303. https://doi.org/10.1177/0040517505054734.
  • Kim JC, Lee YK, Lim BS, Rhee SH, Yang HC. Comparison of tensile and knot security properties of surgical sutures. Journal of Materials Science Materials Medicine. 2007; 18: 2363-9. https://doi.org/10.1007/s10856-007-3114-6.
  • Bryne M, Aly A. The surgical suture. Aesthetic Surgery Journal. 2009; 39(Suppl_2):67–72. https://doi.org/10.1093/asj/sjz036.
  • Arce J, Palacios A, Alvitez-Temoche D, Mendoza-Azpur G, Romero-Tapia P, Mayta-Tovalino F. Tensile strength of novel nonabsorbable PTFE (Teflon®) versus other suture materials: an in vitro study. International Journal of Dentistry. 2019; ID7419709. https://doi.org/10.1155/2019/7419708.
  • Taysi AE, Ercal P, Sismanoglu S. Comparison between tensile characteristics of various suture materials with two suture techniques: an in vitro study. Clinical Oral Investigations 2021; 25(11): 6393-401. https://doi.org/10.1007/s00784-021-03943-3
  • Griffin TJ, Hur Y, Bu J. Basic suture techniques for oral mucosa. Clinical Advances in Periodontics. 2011; 1(3): 221-32. https://doi.org/10.1902/cap.2011.110053.
  • Muffly TM, Cook C, Distasio J, Bonham AJ, Blandon ER. Suture end length as a function of knot integrity. Journal of Surgical Education. 2009; 66(5): 276-80. https://doi.org/ 10.1016/j.jsurg.2009.10.003.
  • Abellán D, Nart J, Pascual A, Cohen RE, Sanz-Moliner JD. Physical and mechanical evaluation of five suture materials on three knot configurations: An in vitro study. Polymers (Basel). 2016; 8(4): 147. https://doi.org/10.3390/polym8040147.
  • Rawal A, Kumar R, Saraswat H. Tensile mechanics of braided sutures. Textile Research Journal. 2012; 82: 1703-10. https://doi.org/10.1177/0040517512445340.
  • Chellamani KP, Veerasubramanian D, Balaji RSV. Surgical sutures: An overview. Journal of Academia and Industrial Research. 2013; 1(12): 778-82.
  • Khiste SV, Ranganath V, Nichani AS. Evaluation of tensile strength of surgical synthetic absorbable suture materials: an in vitro study. Journal of Periodontal & Implant Science. 2013; 43(3): 130-5. https://doi.org/10.5051/jpis.2013.43.3.130.
  • Tobias KM, Kidd CE, Mulon PY, Zhu X. Tensile properties of synthetic, absorbable monofilament suture materials before and after incubation in phosphate-buffered saline. Veterinary Surgery. 2020; 49(3): 550-60. https://doi.org/10.1111/vsu.13326.
  • De la Puerta B, Parsons KJ, Draper ER, Moores AL, Moores AP. In vitro comparison of mechanical and degradation properties of equivalent absorbable suture materials from two different manufacturers. Veterinary Surgery. 2011; 40(2): 223-27. https://doi.org/10.1111/j.1532-950X.2010.00768.x.
  • Kreszinger M, Toholj B, Acanski A, Balos S. Tensile strength retention of resorptive suture materials applied in the stomach wall-an in vitro study. Veterinarski Arhiv. 2018; 88(2): 235-24. https://doi.org/10.24099/vet.arhiv.170130.
  • Holmlund DE. Knot properties of surgical suture materials. A model study. Acta Chirurgica Scandinavica . 1974; 140(5): 355-62.
  • Naleway WE, Lear W, Kruzic JJ, Maughan CB. Mechanical properties of suture materials in general and cutaneous surgery. Journal of Biomedical Materials Research B. 2015; 103(4): 735-42. https://doi.org/10.1002/jbm.b.33171.
  • Mäkelä P, Pohjonen T, Törmälä P, Waris T, Ashammakhi N. Strength retention properties of self-reinforced poly L-lactide (SR-PLLA) sutures compared with polyglyconate (Maxon) and polydioxanone (PDS) sutures. An in vitro study. Biomaterials. 2002; 23(12): 2587-92. https://doi.org/10.1016/s0142-9612(01)00396-9
  • Lober CW, Fenske NA. Suture materials for closing the skin and subcutaneous tissues. Aesthetic Plastic Surgery. 1986; 10(4): 245-7.
  • Moser JB, Lautenschlager EP, Horbal BJ. Mechanical properties of polyglycolic acid sutures in oral surgery. Journal of Dental Research. 1974; 53(4): 804-8.
  • Dart AJ, Dart CM. Suture Material: Conventional and Stimuli Responsive. In: Ducheyne P, editor. Comprehensive Biomaterials II. Elsevier; 2017. p. 746-771.
  • Bhargava D, Anantanarayanan P, Prakash G, Dare BJ, Deshpande A. Initial inflammatory response of skeletal muscle to commonly used suture materials: an animal model study to evaluate muscle healing after surgical repair - histopathological perspective. Medicina Oral Patologia Oral Cirugia Bucal. 2013; 18(3): e491-6. https://doi.org/10.4317/medoral.18608
  • FDA.org [Internet]. Food and Drug Administration, USA [Issued: 2003 June 3; Cited: 2022 Nov 22]. Available from http://www.fda.gov/.

Diş Hekimliğinde Kullanılan Dikiş Materyallerinin Çekme Direncinin Değerlendirilmesi

Year 2023, Volume: 13 Issue: 2, 189 - 193, 10.05.2023
https://doi.org/10.33631/sabd.1146151

Abstract

Amaç: Bu çalışmanın amacı, diş hekimliğinde kullanılan dikiş materyallerinin mekanik özelliklerinin farklı materyallere göre in vitro olarak karşılaştırılmasıdır.
Gereç ve Yöntemler: Sekiz adet abzorbe olabilen ve abzorbe olamayan 3-0 gauge kalınlığında (Politetrafloroetilen, polipropilen, polyester, poliglaktin 910, poliglikolik asit, poliglekapron 25, polidioksanon ve ipek) dikiş materyali mekanik özellikleri açısından karşılaştırılmıştır. Bütün dikiş materyalleri basit sütür tekniği ile bağlanmıştır. Her materyal için grup başına 10 örnek olacak şekilde, toplamda 80 örnek olarak dikişler hazırlanmıştır. N cinsinden gerilme mukavemeti ve µm cinsinden uzama dahil olmak üzere mekanik özellikler, bir mikro gerilme test cihazı kullanılarak ölçülmüştür. Gruplar arasındaki uzama ve mukavemet direnci değerleri ANOVA kullanılarak istatistiksel olarak karşılaştırılmıştır.
Bulgular: Polidioksanon, test edilen tüm malzemeler arasında çekme kuvvetlerine karşı önemli ölçüde daha dirençli bulunmuştur (p<0,001), bunu poliglekapron 25 takip ederken, poliglaktin 910 en düşük kırılma yükü değerlerini göstermiştir. Malzemelerin çekme mukavemeti ile uzama değerleri arasında doğrudan bir ilişki olmamasına rağmen, polidioksanon kırılmadan önce artan uzama göstermiştir. Ek olarak, poliglaktin 910, test edilen tüm malzemeler arasında önemli ölçüde daha düşük bir uzama kapasitesi göstermiştir.
Sonuç: Başarısızlık yükü ve uzamanın, dikiş materyalinin cinsine bağlı olduğu saptanmıştır. Yüksek çekme mukavemetinin gerekli olduğu durumlarda, polidioksanon, yüklere karşı yüksek direnci ve daha iyi uzama özellikleri nedeniyle avantajlı bir malzeme olarak görülmüştür.

References

  • Burkhardt R, Lang NP. Influence of suturing on wound healing. Periodontology. 2000 2015; 68(1): 270-81. https://doi.org/10.1111/prd.12078.
  • Karaca E, Hockenberger AS, Yildiz H. Investigating changes in mechanical properties and tissue reaction of silk, polyester, polyamide, and polypropylene sutures in vivo. Textile Research Journal. 2005; 75(4): 297-303. https://doi.org/10.1177/0040517505054734.
  • Kim JC, Lee YK, Lim BS, Rhee SH, Yang HC. Comparison of tensile and knot security properties of surgical sutures. Journal of Materials Science Materials Medicine. 2007; 18: 2363-9. https://doi.org/10.1007/s10856-007-3114-6.
  • Bryne M, Aly A. The surgical suture. Aesthetic Surgery Journal. 2009; 39(Suppl_2):67–72. https://doi.org/10.1093/asj/sjz036.
  • Arce J, Palacios A, Alvitez-Temoche D, Mendoza-Azpur G, Romero-Tapia P, Mayta-Tovalino F. Tensile strength of novel nonabsorbable PTFE (Teflon®) versus other suture materials: an in vitro study. International Journal of Dentistry. 2019; ID7419709. https://doi.org/10.1155/2019/7419708.
  • Taysi AE, Ercal P, Sismanoglu S. Comparison between tensile characteristics of various suture materials with two suture techniques: an in vitro study. Clinical Oral Investigations 2021; 25(11): 6393-401. https://doi.org/10.1007/s00784-021-03943-3
  • Griffin TJ, Hur Y, Bu J. Basic suture techniques for oral mucosa. Clinical Advances in Periodontics. 2011; 1(3): 221-32. https://doi.org/10.1902/cap.2011.110053.
  • Muffly TM, Cook C, Distasio J, Bonham AJ, Blandon ER. Suture end length as a function of knot integrity. Journal of Surgical Education. 2009; 66(5): 276-80. https://doi.org/ 10.1016/j.jsurg.2009.10.003.
  • Abellán D, Nart J, Pascual A, Cohen RE, Sanz-Moliner JD. Physical and mechanical evaluation of five suture materials on three knot configurations: An in vitro study. Polymers (Basel). 2016; 8(4): 147. https://doi.org/10.3390/polym8040147.
  • Rawal A, Kumar R, Saraswat H. Tensile mechanics of braided sutures. Textile Research Journal. 2012; 82: 1703-10. https://doi.org/10.1177/0040517512445340.
  • Chellamani KP, Veerasubramanian D, Balaji RSV. Surgical sutures: An overview. Journal of Academia and Industrial Research. 2013; 1(12): 778-82.
  • Khiste SV, Ranganath V, Nichani AS. Evaluation of tensile strength of surgical synthetic absorbable suture materials: an in vitro study. Journal of Periodontal & Implant Science. 2013; 43(3): 130-5. https://doi.org/10.5051/jpis.2013.43.3.130.
  • Tobias KM, Kidd CE, Mulon PY, Zhu X. Tensile properties of synthetic, absorbable monofilament suture materials before and after incubation in phosphate-buffered saline. Veterinary Surgery. 2020; 49(3): 550-60. https://doi.org/10.1111/vsu.13326.
  • De la Puerta B, Parsons KJ, Draper ER, Moores AL, Moores AP. In vitro comparison of mechanical and degradation properties of equivalent absorbable suture materials from two different manufacturers. Veterinary Surgery. 2011; 40(2): 223-27. https://doi.org/10.1111/j.1532-950X.2010.00768.x.
  • Kreszinger M, Toholj B, Acanski A, Balos S. Tensile strength retention of resorptive suture materials applied in the stomach wall-an in vitro study. Veterinarski Arhiv. 2018; 88(2): 235-24. https://doi.org/10.24099/vet.arhiv.170130.
  • Holmlund DE. Knot properties of surgical suture materials. A model study. Acta Chirurgica Scandinavica . 1974; 140(5): 355-62.
  • Naleway WE, Lear W, Kruzic JJ, Maughan CB. Mechanical properties of suture materials in general and cutaneous surgery. Journal of Biomedical Materials Research B. 2015; 103(4): 735-42. https://doi.org/10.1002/jbm.b.33171.
  • Mäkelä P, Pohjonen T, Törmälä P, Waris T, Ashammakhi N. Strength retention properties of self-reinforced poly L-lactide (SR-PLLA) sutures compared with polyglyconate (Maxon) and polydioxanone (PDS) sutures. An in vitro study. Biomaterials. 2002; 23(12): 2587-92. https://doi.org/10.1016/s0142-9612(01)00396-9
  • Lober CW, Fenske NA. Suture materials for closing the skin and subcutaneous tissues. Aesthetic Plastic Surgery. 1986; 10(4): 245-7.
  • Moser JB, Lautenschlager EP, Horbal BJ. Mechanical properties of polyglycolic acid sutures in oral surgery. Journal of Dental Research. 1974; 53(4): 804-8.
  • Dart AJ, Dart CM. Suture Material: Conventional and Stimuli Responsive. In: Ducheyne P, editor. Comprehensive Biomaterials II. Elsevier; 2017. p. 746-771.
  • Bhargava D, Anantanarayanan P, Prakash G, Dare BJ, Deshpande A. Initial inflammatory response of skeletal muscle to commonly used suture materials: an animal model study to evaluate muscle healing after surgical repair - histopathological perspective. Medicina Oral Patologia Oral Cirugia Bucal. 2013; 18(3): e491-6. https://doi.org/10.4317/medoral.18608
  • FDA.org [Internet]. Food and Drug Administration, USA [Issued: 2003 June 3; Cited: 2022 Nov 22]. Available from http://www.fda.gov/.
There are 23 citations in total.

Details

Primary Language English
Subjects Dentistry
Journal Section Research Articles
Authors

Pinar Ercal 0000-0002-0763-3930

Ayşegül Erten Tayşi 0000-0002-9156-9109

Nuri Mert Tayşi 0000-0002-5595-9302

Soner Şişmanoğlu 0000-0002-1272-5581

Publication Date May 10, 2023
Submission Date July 21, 2022
Published in Issue Year 2023 Volume: 13 Issue: 2

Cite

Vancouver Ercal P, Erten Tayşi A, Tayşi NM, Şişmanoğlu S. Evaluation of Tensile Strength of Sutures Used in Dentistry. VHS. 2023;13(2):189-93.