Research Article
BibTex RIS Cite

İn Vitro Parkinson Modelinde Melatonin Metabolitlerinden 6- Hidroksi Melatoninin Koruyucu ve Tedavi Edici Etkisinin Araştırılması

Year 2025, Volume: 15 Issue: 3, 328 - 332, 24.09.2025
https://doi.org/10.33631/sabd.1590415

Abstract

Amaç: Parkinson hastalığı (PH) beyindeki substantia nigra bölgesinde dopaminerjik nöronların kaybıyla birlikte bradikinezi, kas sertliği, bozulmuş duruş-yürüyüş, hipokinetik hareket bozukluğu ve istirahat tremoru ile karakterize nörodejeneratif bir hastalıktır. PH tedavisi, motor semptomları hafifletmeyi amaçlayan ancak zamanla önemli yan etkilere yol açan semptomatik tedavilerle sınırlıdır. Bu nedenle, semptomatik tedavilere alternatif olarak yeni tedavi yaklaşımlarına ihtiyaç duyulmaktadır. Melatonin, geniş kapsamlı düzenleyici özelliklerinin yanı sıra nöroprotektif rolü sayesinde, geleneksel tedavi yöntemlerine ek olarak PH tedavisinde umut verici bir alternatif oluşturmaktadır. Bu çalışmada, bir melatonin metaboliti olan 6-hidroksi melatonin’in (6-OHM) in vitro Parkinson modelinde koruyucu ve tedavi edici etkilerinin araştırılması amaçlanmıştır.
Gereç ve Yöntemler: Glioblastoma (U-118MG) hücre hattında 6-hidroksi dopamin (6-OHDA) ile in vitro PH modeli oluşturulmuştur. 6-OHM’nin koruyucu etkilerini araştırmak için 50 μM konsantrasyonda 6-OHDA uygulanmasından 4 saat önce ve 6-OHM’nin tedavi edici etkilerini araştırmak için ise 6-OHDA uygulanmasından 4 saat sonra 3 farklı konsantrasyonlarda (7nM, 8nM, 9nM) 6-OHM uygulanmıştır. Hücre canlılığı XTT (2,3‐bis [2-metoksi-4-nitro–5‐sulfofenil] 2H-tetrazolyum-5-karboksianilid tuzu) testi kullanılarak ölçülmüştür.
Bulgular: 6-OHM, tek başına uygulandığında hücre hattında toksik bir etki göstermemiştir. 6-OHM, U-118 MG hücre hattında 6-OHDA ile oluşturulan in vitro PH modelinde hem koruyucu hem de tedavi edici etki göstermiştir. Bulgularımıza göre 7 nM, 8 nM ve 9 nM konsantrasyonları sırasıyla hücre canlılığını sırasıyla %18,2, %17,8, %17,3 arttırarak koruyucu etki, sırasıyla %6,7, %6,2 ve %5 arttırarak tedavi edici etki göstermiştir.
Sonuç: Bu deneysel çalışma 6-OHM’nin tek başına veya güncel olarak kullanılan Parkinson ilaçlarıyla birlikte, deney hayvanları ve klinik çalışmalar sonrasında PH’ye karşı koruyucu ve terapötik bir ajan olarak geliştirilebileceğini göstermektedir.

Project Number

1919B012309524

References

  • Özsoy Ö. Deneysel Parkinson modeline glutatyon izopropil esterin etkisi ve mekanizması [tez]. Antalya: Akdeniz Üniversitesi, Sağlık Bilimleri Enstitüsü; 2012.
  • Marras C, Beck JC, Bower JH, Roberts E, Ritz B, Ross GW, et al. Prevalence of Parkinson's disease across North America. Npj Parkinson's Disease. 2018; 4(21): 1-7.
  • Mayo JC, Sainz RM, Tan DX, Antolin I, Rodriguez C, Reiter RJ. Melatonin and Parkinson's Disease. Endocrine. 2007; 27(2): 169-78.
  • Gergin S. Parkinson olgusu yaratılan sıçanlarda düzenli uygulanacak yüzme egzersizi ve Melatonin'in striatum'daki nöronlar üzerindeki etkisi [tez]. İstanbul: Marmara Üniversitesi, Sağlık Bilimleri Enstitüsü; 2021.
  • Thoenen H, Otten U, Haefely W, Stahli C. Diminished effect of sympathetic nerve stimulation in cats pretreated with 5-hydroxydopa; formation and liberation of false adrenergic transmitters. Naunyn Schmiedebergs Arch Pharmacol Exp Pathol 1967; 259: 17-33.
  • Richards JG, Tranzer JP. Electron microscopic localization of 5-hydroxydopamine, a 'false' adrenergic neurotransmitter, in the autonomic nerve endings of the rat pineal gland. Experientia 1969; 25(1): 53-4.
  • Tranzer JP, Thoenen H. An electron microscopic study of selective, acute degeneration of sympathetic nerve terminals after administration of 6-hydroxydopamine. Experientia 1968; 24(2): 155-6.
  • Noonong K, Sobhon P, Sroyraya M, Chaithirayanon K. Neuroprotective and neurorestorative effects of holothuria scabra extract in the MPTP/MPP+-ınduced mouse and cellular models of Parkinson's Disease. Front Neurosci 2020; 14: 575459.
  • Zhang M, Liu H, Guo Y, Wang L, Sun J, Ren J, et al. Suppression of NLRP3 inflammasome, pyroptosis, and cell death by NIM811 in rotenone-exposed cells as an in vitro model of Parkinson's Disease. Neurodegener Dis 2020; 20(2-3): 73-83.
  • Menchinskaya E, Chingizova E, Pislyagin E, Likhatskaya G, Sabutski Y, Pelageev D, et al. Neuroprotective effect of 1,4-Naphthoquinones in an ın vitro model of paraquat and 6-OHDA-induced neurotoxicity. Int J Mol Sci 2021; 22(18): 9933.
  • Lewis FW, Fairooz S, Elson JL, Hubscher-Bruder V, Brandel J, Soundararajan M, et al. Novel 1-hydroxypyridin-2-one metal chelators prevent and rescue ubiquitin proteasomal-related neuronal injury in an in vitro model of Parkinson's Disease. Arch Toxicol 2020; 94(3): 813-31.
  • Liu C, Liu Z, Fang Y, Zhang Y, Zhang Q, Lei S, et al. Exposure to dithiocarbamate fungicide maneb in vitro and in vivo: Neuronal apoptosis and underlying mechanisms. Environ Int 2023; 171: 107696.
  • Blum D, Torch S, Lambeng N, Nissou MF, Benabid AL, Sadoul R, et al. Molecular pathways involved in the neurotoxicity of 6-OHDA, dopamine and MPTP: contribution to the apoptotic theory in Parkinson's Disease. Prog Neurobiol 2001; 65(2): 135-72.
  • Galano A, Reiter RJ. Melatonin and its metabolites vs oxidative stress: from individual actions to collective protection. Wiley. 2018; 65(1): 1-33.
  • Majidinia M, Sadeghpour A, Mehrzadi S, Reiter RJ, Khatami N, Yousefi B. Melatonin: A pleiotropic molecule that modulates DNA damage response and repair pathways. J Pineal Res. 2017; 63(1): e12416.
  • Reiter RJ, Tan DX, Qi W, Manchester LC, Karbownik M, Calvo JR. Pharmacology and physiology of melatonin in the reduction of oxidative stress in vivo. Biol Signals Recept. 2000; 9(3-4): 160-171.
  • Antolin I, Mayo JC, Sainz RM, del Brio M de los A, Herrera F, Martin V, et al. Protective effect of melatonin in a chronic experimental model of Parkinson's Disease. Brain Res. 2002; 943(2): 163-173.
  • Andersen LP, Gögenur I, Rosenberg J, Reiter RJ. The safety of melatonin in humans. Clin Drug Investig. 2016; 36(3): 169-175.
  • Guo YL, Wei XJ, Zhang T, Sun T. Molecular mechanisms of melatonin-induced alleviation of synaptic dysfunction and neuroinflammation in Parkinson's Disease: a review. Eur Rev Med Pharmacol Sci. 2023; 27(11): 5070-82.
  • Yoo YM, Joo SS. Melatonin can modulate neurodegenerative diseases by regulating endoplasmic reticulum stress. Int J Mol Sci. 2023; 24(3): 2381.
  • Tahan G, Gramignoli R, Marongiu F, Aktolga S, Cetinkaya A, Tahan V, Dorko K. Melatonin expresses powerful anti-inflammatory and antioxidant activities resulting in complete improvement of acetic-acid-induced colitis in rats. Dig Dis Sci. 2011; 56(3): 715-20.
  • Simko F, Paulis L. Melatonin as a potential antihypertensive treatment. J Pineal Res. 2007; 42(4): 319-22.
  • Hosseinzadeh A, Bagherifard A, Koosha F, Amiri S, Karimi-Behnagh A, Reiter RJ, Mehrzadi S. Melatonin effect on platelets and coagulation: implications for a prophylactic indication in COVID-19. Life Sci. 2022; 307: 120866.
  • Böhm A, Lauko V, Dostalova K, Balanova I, Varga I, Bezak B, et al. In-vitro antiplatelet effect of melatonin in healthy individuals and patients with type 2 diabetes mellitus. J Endocrinol Invest. 2023; 46(12): 2493-500.
  • Reiter RJ, Mayo JC, Tan DX, Sainz RM, Alatorre-Jimenez M, Qin L. Melatonin as an antioxidant: under promises but over delivers. J Pineal Res. 2016; 61(3): 253-78.
  • Arendt J, Aulinas A. Physiology of the Pineal Gland and Melatonin. In: Feingold KR, Anawalt B, Blackman MR, et al., editors. Endotext. South Dartmouth (MA): MDText.com, Inc.; 2022.
  • Dinç E, Ayaz L, Kurt AH. Protective effect of combined caffeic acid phenethyl ester and bevacizumab against hydrogen peroxide-induced oxidative stress in Human RPE cells. Curr Eye Res. 2017; 42(12): 1659-1666.
  • Uras E, Kilicaslan D, Kurt AH, Alli B, Doğaner A. Melatonin metabolites protect human retinal pigment epıthelıal cells from death caused by oxıdatıve stress. Pharmaceutical Chemistry. 2021; 55(8): 762-768.
  • Auso E, Gomez-Vicente V, Esquiva G. Biomarkers for Alzheimer's Disease early diagnosis. J Pers Med. 2020; 10(3): 114.
  • Cardinali DP. Melatonin: Clinical perspectives in neurodegeneration. Frontiers in Endocrinology. 2019; 10: 480.
  • Chen D, Zhang T, Lee TH. Cellular mechanisms of melatonin: Insight from Neurodegenerative Diseases. Biomolecules. 2020; 10(8): 1158.
  • Jimenez-Delgado A, Ortiz GG, Delgado-Lara DL, Fregoso-Aguilar T, Vazquez-Valls E, Ramos-Marquez ME, et al. Effect of melatonin administration on mitochondrial activity and oxidative stress markers in patients with Parkinson's Disease. Oxid Med Cell Longev. 2021; 2021: 5577541.
  • Muhammad T, Ali T, Ikram M, Khan A, Alam SI, Kim MO. Melatonin rescue oxidative stress-mediated neuroinflammation/neurodegeneration and memory ımpairment in scopolamine-ınduced amnesia mice model. J Neuroimmune Pharmacol. 2019; 14: 278-94.
  • Lin CH, Huang JY, Ching CH, Chuang JI. Melatonin reduces the neuronal loss, downregulation of dopamine transporter, and upregulation of D2 receptor in rotenone-induced Parkinsonian rats. J Pineal Res. 2008; 44(2): 205-13.
  • Li SP, Deng YQ, Wang XC, Wang YP, Wang JZ. Melatonin protects SH-SY5Y neuroblastoma cells from calyculin A-induced neurofilament impairment and neurotoxicity. J Pineal Res. 2004; 36(3): 186-91.
  • Singhal NK, Srivastava G, Patel DK, Jain SK, Singh MP. Melatonin or silymarin reduces maneb- and paraquat-induced Parkinson's disease phenotype in the Mouse. J Pineal Res. 2011; 50(2): 97-109.
  • Patki G, Lau YS. Melatonin protects against neurobehavioral and mitochondrial deficits in a chronic mouse model of Parkinson's Disease. Pharmacol Biochem Behav. 2011; 99(4): 704-11.
  • Maharaj DS, Maharaj H, Daya S, Glass BD. Melatonin and 6-hydroxymelatonin protect against iron-induced neurotoxicity. J Neurochem. 2006; 96(1): 78-81.

Investigation of Protective and Therapeutic Effects of 6-Hydroxy Melatonin, a Melatonin Metabolite, in an In Vitro Parkinson's Model

Year 2025, Volume: 15 Issue: 3, 328 - 332, 24.09.2025
https://doi.org/10.33631/sabd.1590415

Abstract

Aim: Parkinson's disease (PD) is a neurodegenerative disorder characterized by loss of dopaminergic neurons in the substantia nigra, presenting with bradykinesia, muscle rigidity, impaired posture-gait, hypokinetic movement disorders, and resting tremor. PD treatment is limited to symptomatic therapies that alleviate motor symptoms but cause significant side effects over time. Therefore, new therapeutic approaches are needed as alternatives to symptomatic treatments. Melatonin, with its broad regulatory properties and neuroprotective role, offers a promising alternative in PD treatment alongside conventional methods. This study aimed to investigate the protective and therapeutic effects of 6-hydroxymelatonin (6-OHM), a melatonin metabolite, in an in vitro Parkinson's model.
Material and methods: An in vitro PD model was established using 6-hydroxydopamine (6-OHDA) in glioblastoma (U-118MG) cell line. To investigate 6-OHM's protective effects, 6-OHM was applied at three concentrations (7 nM, 8 nM, 9 nM) 4 hours before 50 μM 6-OHDA treatment. For therapeutic effects, 6-OHM was applied 4 hours after 6-OHDA treatment. Cell viability was measured using XTT assay.
Results: 6-OHM showed no toxic effects when applied alone. 6-OHM demonstrated both protective and therapeutic effects in the 6-OHDA-induced in vitro PD model. The 7 nM, 8 nM, and 9 nM concentrations increased cell viability by 18.2%, 17.8%, and 17.3% respectively for protective effects, and by 6.7%, 6.2%, and 5% respectively for therapeutic effects.
Conclusion: This experimental study demonstrates that 6-OHM could be developed as a protective and therapeutic agent against PD, either alone or combined with current Parkinson's medications, following animal and clinical studies.

Project Number

1919B012309524

References

  • Özsoy Ö. Deneysel Parkinson modeline glutatyon izopropil esterin etkisi ve mekanizması [tez]. Antalya: Akdeniz Üniversitesi, Sağlık Bilimleri Enstitüsü; 2012.
  • Marras C, Beck JC, Bower JH, Roberts E, Ritz B, Ross GW, et al. Prevalence of Parkinson's disease across North America. Npj Parkinson's Disease. 2018; 4(21): 1-7.
  • Mayo JC, Sainz RM, Tan DX, Antolin I, Rodriguez C, Reiter RJ. Melatonin and Parkinson's Disease. Endocrine. 2007; 27(2): 169-78.
  • Gergin S. Parkinson olgusu yaratılan sıçanlarda düzenli uygulanacak yüzme egzersizi ve Melatonin'in striatum'daki nöronlar üzerindeki etkisi [tez]. İstanbul: Marmara Üniversitesi, Sağlık Bilimleri Enstitüsü; 2021.
  • Thoenen H, Otten U, Haefely W, Stahli C. Diminished effect of sympathetic nerve stimulation in cats pretreated with 5-hydroxydopa; formation and liberation of false adrenergic transmitters. Naunyn Schmiedebergs Arch Pharmacol Exp Pathol 1967; 259: 17-33.
  • Richards JG, Tranzer JP. Electron microscopic localization of 5-hydroxydopamine, a 'false' adrenergic neurotransmitter, in the autonomic nerve endings of the rat pineal gland. Experientia 1969; 25(1): 53-4.
  • Tranzer JP, Thoenen H. An electron microscopic study of selective, acute degeneration of sympathetic nerve terminals after administration of 6-hydroxydopamine. Experientia 1968; 24(2): 155-6.
  • Noonong K, Sobhon P, Sroyraya M, Chaithirayanon K. Neuroprotective and neurorestorative effects of holothuria scabra extract in the MPTP/MPP+-ınduced mouse and cellular models of Parkinson's Disease. Front Neurosci 2020; 14: 575459.
  • Zhang M, Liu H, Guo Y, Wang L, Sun J, Ren J, et al. Suppression of NLRP3 inflammasome, pyroptosis, and cell death by NIM811 in rotenone-exposed cells as an in vitro model of Parkinson's Disease. Neurodegener Dis 2020; 20(2-3): 73-83.
  • Menchinskaya E, Chingizova E, Pislyagin E, Likhatskaya G, Sabutski Y, Pelageev D, et al. Neuroprotective effect of 1,4-Naphthoquinones in an ın vitro model of paraquat and 6-OHDA-induced neurotoxicity. Int J Mol Sci 2021; 22(18): 9933.
  • Lewis FW, Fairooz S, Elson JL, Hubscher-Bruder V, Brandel J, Soundararajan M, et al. Novel 1-hydroxypyridin-2-one metal chelators prevent and rescue ubiquitin proteasomal-related neuronal injury in an in vitro model of Parkinson's Disease. Arch Toxicol 2020; 94(3): 813-31.
  • Liu C, Liu Z, Fang Y, Zhang Y, Zhang Q, Lei S, et al. Exposure to dithiocarbamate fungicide maneb in vitro and in vivo: Neuronal apoptosis and underlying mechanisms. Environ Int 2023; 171: 107696.
  • Blum D, Torch S, Lambeng N, Nissou MF, Benabid AL, Sadoul R, et al. Molecular pathways involved in the neurotoxicity of 6-OHDA, dopamine and MPTP: contribution to the apoptotic theory in Parkinson's Disease. Prog Neurobiol 2001; 65(2): 135-72.
  • Galano A, Reiter RJ. Melatonin and its metabolites vs oxidative stress: from individual actions to collective protection. Wiley. 2018; 65(1): 1-33.
  • Majidinia M, Sadeghpour A, Mehrzadi S, Reiter RJ, Khatami N, Yousefi B. Melatonin: A pleiotropic molecule that modulates DNA damage response and repair pathways. J Pineal Res. 2017; 63(1): e12416.
  • Reiter RJ, Tan DX, Qi W, Manchester LC, Karbownik M, Calvo JR. Pharmacology and physiology of melatonin in the reduction of oxidative stress in vivo. Biol Signals Recept. 2000; 9(3-4): 160-171.
  • Antolin I, Mayo JC, Sainz RM, del Brio M de los A, Herrera F, Martin V, et al. Protective effect of melatonin in a chronic experimental model of Parkinson's Disease. Brain Res. 2002; 943(2): 163-173.
  • Andersen LP, Gögenur I, Rosenberg J, Reiter RJ. The safety of melatonin in humans. Clin Drug Investig. 2016; 36(3): 169-175.
  • Guo YL, Wei XJ, Zhang T, Sun T. Molecular mechanisms of melatonin-induced alleviation of synaptic dysfunction and neuroinflammation in Parkinson's Disease: a review. Eur Rev Med Pharmacol Sci. 2023; 27(11): 5070-82.
  • Yoo YM, Joo SS. Melatonin can modulate neurodegenerative diseases by regulating endoplasmic reticulum stress. Int J Mol Sci. 2023; 24(3): 2381.
  • Tahan G, Gramignoli R, Marongiu F, Aktolga S, Cetinkaya A, Tahan V, Dorko K. Melatonin expresses powerful anti-inflammatory and antioxidant activities resulting in complete improvement of acetic-acid-induced colitis in rats. Dig Dis Sci. 2011; 56(3): 715-20.
  • Simko F, Paulis L. Melatonin as a potential antihypertensive treatment. J Pineal Res. 2007; 42(4): 319-22.
  • Hosseinzadeh A, Bagherifard A, Koosha F, Amiri S, Karimi-Behnagh A, Reiter RJ, Mehrzadi S. Melatonin effect on platelets and coagulation: implications for a prophylactic indication in COVID-19. Life Sci. 2022; 307: 120866.
  • Böhm A, Lauko V, Dostalova K, Balanova I, Varga I, Bezak B, et al. In-vitro antiplatelet effect of melatonin in healthy individuals and patients with type 2 diabetes mellitus. J Endocrinol Invest. 2023; 46(12): 2493-500.
  • Reiter RJ, Mayo JC, Tan DX, Sainz RM, Alatorre-Jimenez M, Qin L. Melatonin as an antioxidant: under promises but over delivers. J Pineal Res. 2016; 61(3): 253-78.
  • Arendt J, Aulinas A. Physiology of the Pineal Gland and Melatonin. In: Feingold KR, Anawalt B, Blackman MR, et al., editors. Endotext. South Dartmouth (MA): MDText.com, Inc.; 2022.
  • Dinç E, Ayaz L, Kurt AH. Protective effect of combined caffeic acid phenethyl ester and bevacizumab against hydrogen peroxide-induced oxidative stress in Human RPE cells. Curr Eye Res. 2017; 42(12): 1659-1666.
  • Uras E, Kilicaslan D, Kurt AH, Alli B, Doğaner A. Melatonin metabolites protect human retinal pigment epıthelıal cells from death caused by oxıdatıve stress. Pharmaceutical Chemistry. 2021; 55(8): 762-768.
  • Auso E, Gomez-Vicente V, Esquiva G. Biomarkers for Alzheimer's Disease early diagnosis. J Pers Med. 2020; 10(3): 114.
  • Cardinali DP. Melatonin: Clinical perspectives in neurodegeneration. Frontiers in Endocrinology. 2019; 10: 480.
  • Chen D, Zhang T, Lee TH. Cellular mechanisms of melatonin: Insight from Neurodegenerative Diseases. Biomolecules. 2020; 10(8): 1158.
  • Jimenez-Delgado A, Ortiz GG, Delgado-Lara DL, Fregoso-Aguilar T, Vazquez-Valls E, Ramos-Marquez ME, et al. Effect of melatonin administration on mitochondrial activity and oxidative stress markers in patients with Parkinson's Disease. Oxid Med Cell Longev. 2021; 2021: 5577541.
  • Muhammad T, Ali T, Ikram M, Khan A, Alam SI, Kim MO. Melatonin rescue oxidative stress-mediated neuroinflammation/neurodegeneration and memory ımpairment in scopolamine-ınduced amnesia mice model. J Neuroimmune Pharmacol. 2019; 14: 278-94.
  • Lin CH, Huang JY, Ching CH, Chuang JI. Melatonin reduces the neuronal loss, downregulation of dopamine transporter, and upregulation of D2 receptor in rotenone-induced Parkinsonian rats. J Pineal Res. 2008; 44(2): 205-13.
  • Li SP, Deng YQ, Wang XC, Wang YP, Wang JZ. Melatonin protects SH-SY5Y neuroblastoma cells from calyculin A-induced neurofilament impairment and neurotoxicity. J Pineal Res. 2004; 36(3): 186-91.
  • Singhal NK, Srivastava G, Patel DK, Jain SK, Singh MP. Melatonin or silymarin reduces maneb- and paraquat-induced Parkinson's disease phenotype in the Mouse. J Pineal Res. 2011; 50(2): 97-109.
  • Patki G, Lau YS. Melatonin protects against neurobehavioral and mitochondrial deficits in a chronic mouse model of Parkinson's Disease. Pharmacol Biochem Behav. 2011; 99(4): 704-11.
  • Maharaj DS, Maharaj H, Daya S, Glass BD. Melatonin and 6-hydroxymelatonin protect against iron-induced neurotoxicity. J Neurochem. 2006; 96(1): 78-81.
There are 38 citations in total.

Details

Primary Language Turkish
Subjects Pharmacology and Pharmaceutical Sciences (Other)
Journal Section Research Articles
Authors

Yusuf Emre Yılmaz 0009-0006-7893-3419

Cansu Kara Öztabağ 0000-0003-2108-2458

Uygar Zarif Sevinç 0009-0006-4354-8182

İrem Kalfa 0009-0002-5658-1011

Enes Karabacak 0009-0003-4131-804X

Akif Hakan Kurt 0000-0003-2940-3172

Project Number 1919B012309524
Publication Date September 24, 2025
Submission Date November 24, 2024
Acceptance Date June 13, 2025
Published in Issue Year 2025 Volume: 15 Issue: 3

Cite

Vancouver Yılmaz YE, Kara Öztabağ C, Sevinç UZ, Kalfa İ, Karabacak E, Kurt AH. İn Vitro Parkinson Modelinde Melatonin Metabolitlerinden 6- Hidroksi Melatoninin Koruyucu ve Tedavi Edici Etkisinin Araştırılması. VHS. 2025;15(3):328-32.