Review
BibTex RIS Cite

Effect of Exercise on Mitochondrial Function, Oxidative Stress, Mitohormesis and Brown Adipose Tissue

Year 2024, , 506 - 519, 31.12.2024
https://doi.org/10.25279/sak.1082615

Abstract

Depending on the exercise's type, intensity, and duration, several physiological events occur in the body. It is known that with regular exercise, there are adaptations in many tissues in the body, especially in adipose tissue and skeletal muscle, and as a result, the endurance capacity and sports performance of athletes increase. Along with exercise, fat tissue develops some differentiations. Together with the transformation to brown adipose tissue by increasing mitochondria amount and activity in white fat tissue, the increase in total brown fat tissue positively affects sports performance. Exercise also increases energy production and the capacity for oxygen usage. Thus by increased mitochondrial activity, an increase in oxidative stress may also occur. To prevent an increase of free radicals formed by the effect of oxidative stress and to inactivate them, an antioxidant defense system activates in the body. Usually, the adaptive response is limited against a single acute exercise and results in oxidative damage. When exercise is regular, though, it can be observed that some adaptations occur to reduce oxidative stress in the body. The process is bidirectional in regular exercise. Firstly, free radical formation and thus oxidative stress occurs. Subsequently, the antioxidant defense system activates to minimize the adverse effects of oxidative stress due to exercise. Also, recently, mitochondrial stress may provide short-term metabolic advantages and may trigger a hormetic response that provides long-term benefits on life expectancy. This response, also called mitohormesis helps increase protection against stress factors exposed to organisms and adaptation. This study aims to underline the relations between exercise and brown adipose tissue, mitochondrial function, oxidative stress and consequent mitohormesis.

References

  • Akimoto, T., Pohnert, S. C., Li, P., Zhang, M., Gumbs, C., Rosenberg, P. B., Yan, Z. (2005). Exercise stimulates Pgc-1α transcription in skeletal muscle through activation of the p38 MAPK pathway. Journal of Biological Chemistry, 280(20), 19587-19593.
  • Bartelt, A., & Heeren, J. (2014). Adipose tissue browning and metabolic health. Nature Reviews Endocrinology, 10(1), 24-36.
  • Bloomer, R. J., & Goldfarb, A. H. (2004). Anaerobic exercise and oxidative stress: a review. Canadian journal of applied physiology, 29(3), 245-263.
  • Boström, P., Wu, J., Jedrychowski, M. P., Korde, A., Ye, L., Lo, J. C., Long, J. Z. (2012). A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature, 481(7382), 463-468.
  • Boveris, A., & Navarro, A. (2008). Systemic and mitochondrial adaptive responses to moderate exercise in rodents. Free Radical Biology and Medicine, 44(2), 224-229.
  • Calabrese, E. J. (2015). Hormesis: principles and applications. Homeopathy, 104(02), 69-82.
  • Cantó, C., Jiang, L. Q., Deshmukh, A. S., Mataki, C., Coste, A., Lagouge, M., Auwerx, J. (2010). Interdependence of AMPK and SIRT1 for metabolic adaptation to fasting and exercise in skeletal muscle. Cell metabolism, 11(3), 213-219.
  • Cheng, C.-F., Ku, H.-C., & Lin, H. (2018). PGC-1α as a pivotal factor in lipid and metabolic regulation. International journal of molecular sciences, 19(11), 3447.
  • Conley, K. E. (2016). Mitochondria to motion: optimizing oxidative phosphorylation to improve exercise performance. Journal of Experimental Biology, 219(2), 243-249.
  • Cypess, A. M., Lehman, S., Williams, G., Tal, I., Rodman, D., Goldfine, A. B., Doria, A. (2009). Identification and importance of brown adipose tissue in adult humans. New England journal of medicine, 360(15), 1509-1517.
  • D’Angelo, S., & Tafuri, D. (2020). Nutraceutical: their role in improving sports performance. Sport Science, 13(Suppl 1), 7-12.
  • De Groot, H. (1994). Reactive oxygen species in tissue injury. Hepato-gastroenterology, 41(4), 328-332.
  • Drake, J. C., Wilson, R. J., & Yan, Z. (2016). Molecular mechanisms for mitochondrial adaptation to exercise training in skeletal muscle. The FASEB Journal, 30(1), 13-22.
  • Droge, W. (2002). Free radicals in the physiological control of cell function. Physiological reviews, 82(1), 47-95.
  • Duclos, M., Oppert, J.-M., Verges, B., Coliche, V., Gautier, J.-F., Guezennec, Y., Strauch, G. (2013). Physical activity and type 2 diabetes. Recommandations of the SFD (Francophone Diabetes Society) diabetes and physical activity working group. Diabetes & metabolism, 39(3), 205-216.
  • Fiorenza, M., Gunnarsson, T., Hostrup, M., Iaia, F., Schena, F., Pilegaard, H., & Bangsbo, J. (2018). Metabolic stress‐dependent regulation of the mitochondrial biogenic molecular response to high‐intensity exercise in human skeletal muscle. The Journal of Physiology, 596(14), 2823-2840.
  • Flouris, A. D., Dinas, P. C., Valente, A., Andrade, C. M. B., Kawashita, N. H., & Sakellariou, P. (2017). Exercise-induced effects on UCP1 expression in classical brown adipose tissue: a systematic review. Hormone molecular biology and clinical investigation, 31(2).
  • Fry, C. S., Drummond, M. J., Glynn, E. L., Dickinson, J. M., Gundermann, D. M., Timmerman, K. L., Rasmussen, B. B. (2013). Skeletal muscle autophagy and protein breakdown following resistance exercise are similar in younger and older adults. Journals of Gerontology Series A: Biomedical Sciences and Medical Sciences, 68(5), 599-607.
  • Gan, Z., Fu, T., Kelly, D. P., & Vega, R. B. (2018). Skeletal muscle mitochondrial remodeling in exercise and diseases. Cell Research, 28(10), 969-980.
  • Garaude, J., Acín-Pérez, R., Martínez-Cano, S., Enamorado, M., Ugolini, M., Nistal-Villán, E., Enriquez, J. A. (2016). Mitochondrial respiratory-chain adaptations in macrophages contribute to antibacterial host defense. Nature immunology, 17(9), 1037-1045.
  • Gasparin, F., Spitzner, F., Ishii-Iwamoto, E., Bracht, A., & Constantin, J. (2003). Actions of quercetin on gluconeogenesis and glycolysis in rat liver. Xenobiotica, 33(9), 903-911.
  • Gill, J., & La Merrill, M. A. (2017). An emerging role for epigenetic regulation of Pgc-1α expression in environmentally stimulated brown adipose thermogenesis. Environmental epigenetics, 3(2), dvx009. Gomez-Cabrera, M.-C., Domenech, E., Romagnoli, M., Arduini, A., Borras, C., Pallardo, F. V., Vina, J. (2008). Oral administration of vitamin C decreases muscle mitochondrial biogenesis and hampers training-induced adaptations in endurance performance. The American journal of clinical nutrition, 87(1), 142-149.
  • Gross, M., Baum, O., & Hoppeler, H. (2011). Antioxidant supplementation and endurance training: win or loss? European Journal of Sport Science, 11(1), 27-32.
  • Heinonen, S., Jokinen, R., Rissanen, A., & Pietiläinen, K. H. (2020). White adipose tissue mitochondrial metabolism in health and in obesity. Obesity reviews, 21(2), e12958.
  • Hood, D. (2001). Plasticity in skeletal muscle, cardiac, and smooth muscle invited review: Contractile activity-induced mitochondrial biogenesis in skeletal muscle. J Appl Physiol, 90, 1137-1157.
  • Hood, D. A., Chabi, B., Menzies, K., O’Leary, M., & Walkinshaw, D. (2007). Exercise-induced mitochondrial biogenesis in skeletal muscle. In Role of Physical Exercise in Preventing Disease and Improving the Quality of Life (pp. 37-60): Springer.
  • Hood, D. A., Uguccioni, G., Vainshtein, A., & D'souza, D. (2011). Mechanisms of exercise‐induced mitochondrial biogenesis in skeletal muscle: implications for health and disease. Comprehensive Physiology, 1(3), 1119-1134.
  • Hou, L., Ge, L., Li, Y., Chen, Y., Li, H., He, J., Chen, Y. (2020). Physical activity recommendations for patients with type 2 diabetes: a cross-sectional survey. Acta diabetologica, 57(7), 765-777.
  • Huertas, J. R., Casuso, R. A., Agustín, P. H., & Cogliati, S. (2019). Stay fit, stay young: mitochondria in movement: the role of exercise in the new mitochondrial paradigm. Oxidative medicine and cellular longevity, 2019.
  • Ismaeel, A., Holmes, M., Papoutsi, E., Panton, L., & Koutakis, P. (2019). Resistance training, antioxidant status, and antioxidant supplementation. International journal of sport nutrition and exercise metabolism, 29(5), 539-547.
  • Kawamura, T., & Muraoka, I. (2018). Exercise-induced oxidative stress and the effects of antioxidant intake from a physiological viewpoint. Antioxidants, 7(9), 119.
  • Lehnig, A. C., & Stanford, K. I. (2018). Exercise-induced adaptations to white and brown adipose tissue. Journal of Experimental Biology, 221(Suppl_1), jeb161570.
  • Lobo, V., Patil, A., Phatak, A., & Chandra, N. (2010). Free radicals, antioxidants and functional foods: Impact on human health. Pharmacognosy reviews, 4(8), 118.
  • McArdle, W. D., Katch, F. I., & Katch, V. L. (2006). Essentials of exercise physiology: Lippincott Williams & Wilkins. Merry, T. L., & Ristow, M. (2016). Mitohormesis in exercise training. Free Radical Biology and Medicine, 98, 123-130.
  • Meyer, G. A., Gibbons, M. C., Sato, E., Lane, J. G., Ward, S. R., & Engler, A. J. (2015). Epimuscular fat in the human rotator cuff is a novel beige depot. Stem cells translational medicine, 4(7), 764-774.
  • Moreno-Navarrete, J. M., Ortega, F., Serrano, M., Guerra, E., Pardo, G., Tinahones, F., Fernández-Real, J. M. (2013). Irisin is expressed and produced by human muscle and adipose tissue in association with obesity and insulin resistance. The Journal of Clinical Endocrinology & Metabolism, 98(4), E769-E778.
  • Musci, R. V., Hamilton, K. L., & Linden, M. A. (2019). Exercise-induced mitohormesis for the maintenance of skeletal muscle and healthspan extension. Sports, 7(7), 170.
  • Nedergaard, J., Bengtsson, T., & Cannon, B. (2007). Unexpected evidence for active brown adipose tissue in adult humans. American Journal of Physiology-Endocrinology and Metabolism. Neeraj, J. P., Singh, S., & Singh, J. (2013). Role of free radicals and antioxidants in human health and disease. Int J Curr Res Rev, 5(19), 14-22.
  • Parry, H. A., Roberts, M. D., & Kavazis, A. N. (2020). Human skeletal muscle mitochondrial adaptations following resistance exercise training. International journal of sports medicine, 41(06), 349-359.
  • Petridou, A., Siopi, A., & Mougios, V. (2019). Exercise in the management of obesity. Metabolism, 92, 163-169.
  • Plowman, S. A., & Smith, D. L. (2013). Exercise physiology for health fitness and performance: Lippincott Williams & Wilkins.
  • Powers, S. K., & Shanely, R. A. (2002). Exercise-induced changes in diaphragmatic bioenergetic and antioxidant capacity. Exercise and sport sciences reviews, 30(2), 69-74.
  • Quindry, J. C., Stone, W. L., King, J., & Broeder, C. E. (2003). The effects of acute exercise on neutrophils and plasma oxidative stress. Medicine & Science in Sports & Exercise, 35(7), 1139-1145.
  • Radak, Z., Chung, H. Y., & Goto, S. (2008). Systemic adaptation to oxidative challenge induced by regular exercise. Free Radical Biology and Medicine, 44(2), 153-159.
  • Roberts, M. D., Bayless, D. S., Company, J. M., Jenkins, N. T., Padilla, J., Childs, T. E., Rector, R. S. (2013). Elevated skeletal muscle irisin precursor FNDC5 mRNA in obese OLETF rats. Metabolism, 62(8), 1052-1056.
  • Russell, A. P., Foletta, V. C., Snow, R. J., & Wadley, G. D. (2014). Skeletal muscle mitochondria: a major player in exercise, health and disease. Biochimica et biophysica acta (BBA)-general subjects, 1840(4), 1276-1284.
  • Saeidi, A., Haghighi, M. M., Kolahdouzi, S., Daraei, A., Abderrahmane, A. B., Essop, M. F., Zouhal, H. (2021). The effects of physical activity on adipokines in individuals with overweight/obesity across the lifespan: A narrative review. Obesity reviews, 22(1), e13090.
  • Safdar, A., Little, J. P., Stokl, A. J., Hettinga, B. P., Akhtar, M., & Tarnopolsky, M. A. (2011). Exercise increases mitochondrial PGC-1α content and promotes nuclear-mitochondrial cross-talk to coordinate mitochondrial biogenesis. Journal of Biological Chemistry, 286(12), 10605-10617.
  • Scarpulla, R. C. (2012). Nucleus-encoded regulators of mitochondrial function: integration of respiratory chain expression, nutrient sensing and metabolic stress. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms, 1819(9-10), 1088-1097.
  • Sepa-Kishi, D. M., & Ceddia, R. B. (2016). Exercise-mediated effects on white and brown adipose tissue plasticity and metabolism. Exercise and sport sciences reviews, 44(1), 37-44.
  • Song, W.-H., Ballard, J. W. O., Yi, Y.-J., & Sutovsky, P. (2014). Regulation of mitochondrial genome inheritance by autophagy and ubiquitin-proteasome system: implications for health, fitness, and fertility. BioMed research international, 2014.
  • Stanford, K. I., & Goodyear, L. J. (2016). Exercise regulation of adipose tissue. Adipocyte, 5(2), 153-162.
  • Stanford, K. I., Middelbeek, R. J., & Goodyear, L. J. (2015). Exercise effects on white adipose tissue: beiging and metabolic adaptations. Diabetes, 64(7), 2361-2368.
  • Terada, S., Kawanaka, K., Goto, M., Shimokawa, T., & Tabata, I. (2005). Effects of high‐intensity intermittent swimming on PGC‐1α protein expression in rat skeletal muscle. Acta physiologica scandinavica, 184(1), 59-65.
  • Tsiloulis, T., & Watt, M. J. (2015). Exercise and the regulation of adipose tissue metabolism. Progress in molecular biology and translational science, 135, 175-201.
  • Urso, M. L., & Clarkson, P. M. (2003). Oxidative stress, exercise, and antioxidant supplementation. Toxicology, 189(1-2), 41-54.
  • Valko, M., Leibfritz, D., Moncol, J., Cronin, M. T., Mazur, M., & Telser, J. (2007). Free radicals and antioxidants in normal physiological functions and human disease. The international journal of biochemistry & cell biology, 39(1), 44-84.
  • van Marken Lichtenbelt, W. D., & Schrauwen, P. (2011). Implications of nonshivering thermogenesis for energy balance regulation in humans. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 301(2), R285-R296.
  • Vargas-Mendoza, N., Angeles-Valencia, M., Morales-González, Á., Madrigal-Santillán, E. O., Morales-Martínez, M., Madrigal-Bujaidar, E., Chamorro-Cevallos, G. (2021). Oxidative Stress, Mitochondrial Function and Adaptation to Exercise: New Perspectives in Nutrition. Life, 11(11), 1269.
  • Villarroya, F., Cereijo, R., Villarroya, J., & Giralt, M. (2017). Brown adipose tissue as a secretory organ. Nature Reviews Endocrinology, 13(1), 26-35.
  • Vincent, H. K., Shanely, R. A., Stewart, D. J., Demirel, H. A., Hamilton, K. L., Ray, A. D., Powers, S. K. (2002). Adaptation of upper airway muscles to chronic endurance exercise. American journal of respiratory and critical care medicine, 166(3), 287-293.
  • Widmann, M., Nieß, A. M., & Munz, B. (2019). Physical exercise and epigenetic modifications in skeletal muscle. Sports Medicine, 49(4), 509-523.
  • Williamson, J., & Davison, G. (2020). Targeted Antioxidants in Exercise-Induced Mitochondrial Oxidative Stress: Emphasis on DNA Damage. Antioxidants, 9(11), 1142.
  • Wu, J., Boström, P., Sparks, L. M., Ye, L., Choi, J. H., Giang, A.-H., Schaart, G. (2012). Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell, 150(2), 366-376.
  • Yan, Z., Lira, V. A., & Greene, N. P. (2012). Exercise training-induced regulation of mitochondrial quality. Exercise and sport sciences reviews, 40(3), 159.
  • Yun, J., & Finkel, T. (2014). Mitohormesis. Cell metabolism, 19(5), 757-766.
  • Zarse, K., & Ristow, M. (2021). Mitochondrial ROS signals prevent excessive immune response. Nature Metabolism, 3(5), 588-589.
  • Zhang, Y., Uguccioni, G., Ljubicic, V., Irrcher, I., Iqbal, S., Singh, K., Hood, D. A. (2014). Multiple signaling pathways regulate contractile activity‐mediated PGC‐1α gene expression and activity in skeletal muscle cells. Physiological reports, 2(5), e12008.

Egzersizin Mitokondriyal Fonksiyon, Oksidatif Stres, Mitohormesis ve Kahverengi Yağ Dokusu Üzerine Etkisi

Year 2024, , 506 - 519, 31.12.2024
https://doi.org/10.25279/sak.1082615

Abstract

Vücutta egzersizin tipine, şiddetine ve süresine bağlı olarak belirli fizyolojik değişiklikler olmaktadır. Düzenli yapılan egzersizle birlikte yağ doku ve iskelet kası başta olmak üzere vücutta birçok dokuda adaptasyonlar olduğu ve bunun sonucunda sporcuların dayanıklılık kapasitesinin ve spor performansının arttığı bilinmektedir. Egzersizle birlikte yağ dokuda bazı farklılaşmalar olmaktadır. Beyaz yağ dokuda meydana gelen mitokondri sayısında ve aktivitesinde artışla gözlenen kahverengileşmeyle birlikte toplam kahverengi yağ dokusunun artışı spor performansını olumlu etkileyebilmektedir. Egzersiz; enerji üretimini ve oksijen kullanma kapasitesini de artırmaktadır. Artan mitokondriyal aktiviteyle birlikte oksidatif streste artış gözlenebilmektedir. Oksidatif stres etkisiyle oluşan serbest radikallerin artışını önlemek ve oluşan serbest radikalleri etkisiz hale getirebilmek için vücutta antioksidan savunma sistemi devreye girmektedir. Genellikle tek bir akut egzersize karşı oluşturulan adaptif cevap sınırlıdır ve genellikle oksidatif hasarla sonuçlanır. Egzersiz düzenli olarak yapıldığında ise vücutta oksidatif stresi azaltmak için bazı adaptasyonların geliştiği gözlenmektedir. Kronik yapılan egzersizlerde süreç çift yönlüdür. Öncelikle serbest radikal oluşumu ve bunun sonucunda oksidatif stres gözlenir. Bunun ardından egzersiz nedeniyle oluşan oksidatif stresin negatif etkilerini minimuma indirmek için vücudun antioksidan savunma sistemi devreye girer. Ayrıca son yıllarda mitokondriyal stresin kısa vadeli metabolik faydalar sağlayabileceği, artan stres direncinde ve yaşam süresinde uzun vadeli faydalar sağlayan bir hormetik yanıtı da tetikleyebileceği düşünülmektedir. Mitohormesis olarak adlandırılan bu yanıt canlının maruz kaldığı stres faktörlerine karşı korumayı artırarak adaptasyon sağlamasına yardımcı olmaktadır.
Bu derlemenin amacı egzersizin kahverengi yağ dokusu, mitokondriyal fonksiyon, oksidatif stres, buna bağlı olarak gelişen mitohormesis ile ilişkili yolakları göstermektir.

Supporting Institution

Bulunmamaktadır

References

  • Akimoto, T., Pohnert, S. C., Li, P., Zhang, M., Gumbs, C., Rosenberg, P. B., Yan, Z. (2005). Exercise stimulates Pgc-1α transcription in skeletal muscle through activation of the p38 MAPK pathway. Journal of Biological Chemistry, 280(20), 19587-19593.
  • Bartelt, A., & Heeren, J. (2014). Adipose tissue browning and metabolic health. Nature Reviews Endocrinology, 10(1), 24-36.
  • Bloomer, R. J., & Goldfarb, A. H. (2004). Anaerobic exercise and oxidative stress: a review. Canadian journal of applied physiology, 29(3), 245-263.
  • Boström, P., Wu, J., Jedrychowski, M. P., Korde, A., Ye, L., Lo, J. C., Long, J. Z. (2012). A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature, 481(7382), 463-468.
  • Boveris, A., & Navarro, A. (2008). Systemic and mitochondrial adaptive responses to moderate exercise in rodents. Free Radical Biology and Medicine, 44(2), 224-229.
  • Calabrese, E. J. (2015). Hormesis: principles and applications. Homeopathy, 104(02), 69-82.
  • Cantó, C., Jiang, L. Q., Deshmukh, A. S., Mataki, C., Coste, A., Lagouge, M., Auwerx, J. (2010). Interdependence of AMPK and SIRT1 for metabolic adaptation to fasting and exercise in skeletal muscle. Cell metabolism, 11(3), 213-219.
  • Cheng, C.-F., Ku, H.-C., & Lin, H. (2018). PGC-1α as a pivotal factor in lipid and metabolic regulation. International journal of molecular sciences, 19(11), 3447.
  • Conley, K. E. (2016). Mitochondria to motion: optimizing oxidative phosphorylation to improve exercise performance. Journal of Experimental Biology, 219(2), 243-249.
  • Cypess, A. M., Lehman, S., Williams, G., Tal, I., Rodman, D., Goldfine, A. B., Doria, A. (2009). Identification and importance of brown adipose tissue in adult humans. New England journal of medicine, 360(15), 1509-1517.
  • D’Angelo, S., & Tafuri, D. (2020). Nutraceutical: their role in improving sports performance. Sport Science, 13(Suppl 1), 7-12.
  • De Groot, H. (1994). Reactive oxygen species in tissue injury. Hepato-gastroenterology, 41(4), 328-332.
  • Drake, J. C., Wilson, R. J., & Yan, Z. (2016). Molecular mechanisms for mitochondrial adaptation to exercise training in skeletal muscle. The FASEB Journal, 30(1), 13-22.
  • Droge, W. (2002). Free radicals in the physiological control of cell function. Physiological reviews, 82(1), 47-95.
  • Duclos, M., Oppert, J.-M., Verges, B., Coliche, V., Gautier, J.-F., Guezennec, Y., Strauch, G. (2013). Physical activity and type 2 diabetes. Recommandations of the SFD (Francophone Diabetes Society) diabetes and physical activity working group. Diabetes & metabolism, 39(3), 205-216.
  • Fiorenza, M., Gunnarsson, T., Hostrup, M., Iaia, F., Schena, F., Pilegaard, H., & Bangsbo, J. (2018). Metabolic stress‐dependent regulation of the mitochondrial biogenic molecular response to high‐intensity exercise in human skeletal muscle. The Journal of Physiology, 596(14), 2823-2840.
  • Flouris, A. D., Dinas, P. C., Valente, A., Andrade, C. M. B., Kawashita, N. H., & Sakellariou, P. (2017). Exercise-induced effects on UCP1 expression in classical brown adipose tissue: a systematic review. Hormone molecular biology and clinical investigation, 31(2).
  • Fry, C. S., Drummond, M. J., Glynn, E. L., Dickinson, J. M., Gundermann, D. M., Timmerman, K. L., Rasmussen, B. B. (2013). Skeletal muscle autophagy and protein breakdown following resistance exercise are similar in younger and older adults. Journals of Gerontology Series A: Biomedical Sciences and Medical Sciences, 68(5), 599-607.
  • Gan, Z., Fu, T., Kelly, D. P., & Vega, R. B. (2018). Skeletal muscle mitochondrial remodeling in exercise and diseases. Cell Research, 28(10), 969-980.
  • Garaude, J., Acín-Pérez, R., Martínez-Cano, S., Enamorado, M., Ugolini, M., Nistal-Villán, E., Enriquez, J. A. (2016). Mitochondrial respiratory-chain adaptations in macrophages contribute to antibacterial host defense. Nature immunology, 17(9), 1037-1045.
  • Gasparin, F., Spitzner, F., Ishii-Iwamoto, E., Bracht, A., & Constantin, J. (2003). Actions of quercetin on gluconeogenesis and glycolysis in rat liver. Xenobiotica, 33(9), 903-911.
  • Gill, J., & La Merrill, M. A. (2017). An emerging role for epigenetic regulation of Pgc-1α expression in environmentally stimulated brown adipose thermogenesis. Environmental epigenetics, 3(2), dvx009. Gomez-Cabrera, M.-C., Domenech, E., Romagnoli, M., Arduini, A., Borras, C., Pallardo, F. V., Vina, J. (2008). Oral administration of vitamin C decreases muscle mitochondrial biogenesis and hampers training-induced adaptations in endurance performance. The American journal of clinical nutrition, 87(1), 142-149.
  • Gross, M., Baum, O., & Hoppeler, H. (2011). Antioxidant supplementation and endurance training: win or loss? European Journal of Sport Science, 11(1), 27-32.
  • Heinonen, S., Jokinen, R., Rissanen, A., & Pietiläinen, K. H. (2020). White adipose tissue mitochondrial metabolism in health and in obesity. Obesity reviews, 21(2), e12958.
  • Hood, D. (2001). Plasticity in skeletal muscle, cardiac, and smooth muscle invited review: Contractile activity-induced mitochondrial biogenesis in skeletal muscle. J Appl Physiol, 90, 1137-1157.
  • Hood, D. A., Chabi, B., Menzies, K., O’Leary, M., & Walkinshaw, D. (2007). Exercise-induced mitochondrial biogenesis in skeletal muscle. In Role of Physical Exercise in Preventing Disease and Improving the Quality of Life (pp. 37-60): Springer.
  • Hood, D. A., Uguccioni, G., Vainshtein, A., & D'souza, D. (2011). Mechanisms of exercise‐induced mitochondrial biogenesis in skeletal muscle: implications for health and disease. Comprehensive Physiology, 1(3), 1119-1134.
  • Hou, L., Ge, L., Li, Y., Chen, Y., Li, H., He, J., Chen, Y. (2020). Physical activity recommendations for patients with type 2 diabetes: a cross-sectional survey. Acta diabetologica, 57(7), 765-777.
  • Huertas, J. R., Casuso, R. A., Agustín, P. H., & Cogliati, S. (2019). Stay fit, stay young: mitochondria in movement: the role of exercise in the new mitochondrial paradigm. Oxidative medicine and cellular longevity, 2019.
  • Ismaeel, A., Holmes, M., Papoutsi, E., Panton, L., & Koutakis, P. (2019). Resistance training, antioxidant status, and antioxidant supplementation. International journal of sport nutrition and exercise metabolism, 29(5), 539-547.
  • Kawamura, T., & Muraoka, I. (2018). Exercise-induced oxidative stress and the effects of antioxidant intake from a physiological viewpoint. Antioxidants, 7(9), 119.
  • Lehnig, A. C., & Stanford, K. I. (2018). Exercise-induced adaptations to white and brown adipose tissue. Journal of Experimental Biology, 221(Suppl_1), jeb161570.
  • Lobo, V., Patil, A., Phatak, A., & Chandra, N. (2010). Free radicals, antioxidants and functional foods: Impact on human health. Pharmacognosy reviews, 4(8), 118.
  • McArdle, W. D., Katch, F. I., & Katch, V. L. (2006). Essentials of exercise physiology: Lippincott Williams & Wilkins. Merry, T. L., & Ristow, M. (2016). Mitohormesis in exercise training. Free Radical Biology and Medicine, 98, 123-130.
  • Meyer, G. A., Gibbons, M. C., Sato, E., Lane, J. G., Ward, S. R., & Engler, A. J. (2015). Epimuscular fat in the human rotator cuff is a novel beige depot. Stem cells translational medicine, 4(7), 764-774.
  • Moreno-Navarrete, J. M., Ortega, F., Serrano, M., Guerra, E., Pardo, G., Tinahones, F., Fernández-Real, J. M. (2013). Irisin is expressed and produced by human muscle and adipose tissue in association with obesity and insulin resistance. The Journal of Clinical Endocrinology & Metabolism, 98(4), E769-E778.
  • Musci, R. V., Hamilton, K. L., & Linden, M. A. (2019). Exercise-induced mitohormesis for the maintenance of skeletal muscle and healthspan extension. Sports, 7(7), 170.
  • Nedergaard, J., Bengtsson, T., & Cannon, B. (2007). Unexpected evidence for active brown adipose tissue in adult humans. American Journal of Physiology-Endocrinology and Metabolism. Neeraj, J. P., Singh, S., & Singh, J. (2013). Role of free radicals and antioxidants in human health and disease. Int J Curr Res Rev, 5(19), 14-22.
  • Parry, H. A., Roberts, M. D., & Kavazis, A. N. (2020). Human skeletal muscle mitochondrial adaptations following resistance exercise training. International journal of sports medicine, 41(06), 349-359.
  • Petridou, A., Siopi, A., & Mougios, V. (2019). Exercise in the management of obesity. Metabolism, 92, 163-169.
  • Plowman, S. A., & Smith, D. L. (2013). Exercise physiology for health fitness and performance: Lippincott Williams & Wilkins.
  • Powers, S. K., & Shanely, R. A. (2002). Exercise-induced changes in diaphragmatic bioenergetic and antioxidant capacity. Exercise and sport sciences reviews, 30(2), 69-74.
  • Quindry, J. C., Stone, W. L., King, J., & Broeder, C. E. (2003). The effects of acute exercise on neutrophils and plasma oxidative stress. Medicine & Science in Sports & Exercise, 35(7), 1139-1145.
  • Radak, Z., Chung, H. Y., & Goto, S. (2008). Systemic adaptation to oxidative challenge induced by regular exercise. Free Radical Biology and Medicine, 44(2), 153-159.
  • Roberts, M. D., Bayless, D. S., Company, J. M., Jenkins, N. T., Padilla, J., Childs, T. E., Rector, R. S. (2013). Elevated skeletal muscle irisin precursor FNDC5 mRNA in obese OLETF rats. Metabolism, 62(8), 1052-1056.
  • Russell, A. P., Foletta, V. C., Snow, R. J., & Wadley, G. D. (2014). Skeletal muscle mitochondria: a major player in exercise, health and disease. Biochimica et biophysica acta (BBA)-general subjects, 1840(4), 1276-1284.
  • Saeidi, A., Haghighi, M. M., Kolahdouzi, S., Daraei, A., Abderrahmane, A. B., Essop, M. F., Zouhal, H. (2021). The effects of physical activity on adipokines in individuals with overweight/obesity across the lifespan: A narrative review. Obesity reviews, 22(1), e13090.
  • Safdar, A., Little, J. P., Stokl, A. J., Hettinga, B. P., Akhtar, M., & Tarnopolsky, M. A. (2011). Exercise increases mitochondrial PGC-1α content and promotes nuclear-mitochondrial cross-talk to coordinate mitochondrial biogenesis. Journal of Biological Chemistry, 286(12), 10605-10617.
  • Scarpulla, R. C. (2012). Nucleus-encoded regulators of mitochondrial function: integration of respiratory chain expression, nutrient sensing and metabolic stress. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms, 1819(9-10), 1088-1097.
  • Sepa-Kishi, D. M., & Ceddia, R. B. (2016). Exercise-mediated effects on white and brown adipose tissue plasticity and metabolism. Exercise and sport sciences reviews, 44(1), 37-44.
  • Song, W.-H., Ballard, J. W. O., Yi, Y.-J., & Sutovsky, P. (2014). Regulation of mitochondrial genome inheritance by autophagy and ubiquitin-proteasome system: implications for health, fitness, and fertility. BioMed research international, 2014.
  • Stanford, K. I., & Goodyear, L. J. (2016). Exercise regulation of adipose tissue. Adipocyte, 5(2), 153-162.
  • Stanford, K. I., Middelbeek, R. J., & Goodyear, L. J. (2015). Exercise effects on white adipose tissue: beiging and metabolic adaptations. Diabetes, 64(7), 2361-2368.
  • Terada, S., Kawanaka, K., Goto, M., Shimokawa, T., & Tabata, I. (2005). Effects of high‐intensity intermittent swimming on PGC‐1α protein expression in rat skeletal muscle. Acta physiologica scandinavica, 184(1), 59-65.
  • Tsiloulis, T., & Watt, M. J. (2015). Exercise and the regulation of adipose tissue metabolism. Progress in molecular biology and translational science, 135, 175-201.
  • Urso, M. L., & Clarkson, P. M. (2003). Oxidative stress, exercise, and antioxidant supplementation. Toxicology, 189(1-2), 41-54.
  • Valko, M., Leibfritz, D., Moncol, J., Cronin, M. T., Mazur, M., & Telser, J. (2007). Free radicals and antioxidants in normal physiological functions and human disease. The international journal of biochemistry & cell biology, 39(1), 44-84.
  • van Marken Lichtenbelt, W. D., & Schrauwen, P. (2011). Implications of nonshivering thermogenesis for energy balance regulation in humans. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 301(2), R285-R296.
  • Vargas-Mendoza, N., Angeles-Valencia, M., Morales-González, Á., Madrigal-Santillán, E. O., Morales-Martínez, M., Madrigal-Bujaidar, E., Chamorro-Cevallos, G. (2021). Oxidative Stress, Mitochondrial Function and Adaptation to Exercise: New Perspectives in Nutrition. Life, 11(11), 1269.
  • Villarroya, F., Cereijo, R., Villarroya, J., & Giralt, M. (2017). Brown adipose tissue as a secretory organ. Nature Reviews Endocrinology, 13(1), 26-35.
  • Vincent, H. K., Shanely, R. A., Stewart, D. J., Demirel, H. A., Hamilton, K. L., Ray, A. D., Powers, S. K. (2002). Adaptation of upper airway muscles to chronic endurance exercise. American journal of respiratory and critical care medicine, 166(3), 287-293.
  • Widmann, M., Nieß, A. M., & Munz, B. (2019). Physical exercise and epigenetic modifications in skeletal muscle. Sports Medicine, 49(4), 509-523.
  • Williamson, J., & Davison, G. (2020). Targeted Antioxidants in Exercise-Induced Mitochondrial Oxidative Stress: Emphasis on DNA Damage. Antioxidants, 9(11), 1142.
  • Wu, J., Boström, P., Sparks, L. M., Ye, L., Choi, J. H., Giang, A.-H., Schaart, G. (2012). Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell, 150(2), 366-376.
  • Yan, Z., Lira, V. A., & Greene, N. P. (2012). Exercise training-induced regulation of mitochondrial quality. Exercise and sport sciences reviews, 40(3), 159.
  • Yun, J., & Finkel, T. (2014). Mitohormesis. Cell metabolism, 19(5), 757-766.
  • Zarse, K., & Ristow, M. (2021). Mitochondrial ROS signals prevent excessive immune response. Nature Metabolism, 3(5), 588-589.
  • Zhang, Y., Uguccioni, G., Ljubicic, V., Irrcher, I., Iqbal, S., Singh, K., Hood, D. A. (2014). Multiple signaling pathways regulate contractile activity‐mediated PGC‐1α gene expression and activity in skeletal muscle cells. Physiological reports, 2(5), e12008.
There are 68 citations in total.

Details

Primary Language Turkish
Subjects Nutrition and Dietetics
Journal Section reviews
Authors

Ebru Arslanoğlu Badem 0000-0002-9291-017X

Derya Dikmen 0000-0003-2099-2863

Publication Date December 31, 2024
Submission Date March 4, 2022
Acceptance Date January 19, 2023
Published in Issue Year 2024

Cite

APA Arslanoğlu Badem, E., & Dikmen, D. (2024). Egzersizin Mitokondriyal Fonksiyon, Oksidatif Stres, Mitohormesis ve Kahverengi Yağ Dokusu Üzerine Etkisi. Health Academy Kastamonu, 9(3), 506-519. https://doi.org/10.25279/sak.1082615

Sağlık Akademisi Kastamonu, 2017 yılından itibaren UAK doçentlik kriterlerine göre 1-b dergiler (SCI, SSCI, SCI-expanded, ESCI dışındaki uluslararası indekslerde taranan dergiler) sınıfında yer almaktadır. SAĞLIK AKADEMİSİ KASTAMONU Dergi kapağı Türk Patent Enstitüsü tarafından tescil edilmiştir.